Table S1. Variables of SD model.

3	Population GDP	Level	$Population(t) = \int (Population \ growth) \ dt + Initial \ population$
		Level	
4 ($GDP(t) = \int (GDP \ growth) \ dt + Initial \ GDP$
	GDP growth	Rate	$GDP \ growth = GDP * GDP \ growth \ rate$
6	Demand	Level	$Demand(t) = \int (Change\ in\ demand)dt + Initial\ demand(0)$
7 (Change in demand	Rate	Change in demand = $(\alpha_1.GDP * \alpha_2.Population)/(\alpha_3.Price)$
8]	Price	Level	$Price (t) = \int (change in price) dt + Initial price$
9 (Change in price	Rate	Change in price = $Price * (1 + Inflation rate)$
10]	Inflation rate	Auxiliary	$Inflation \ rate = (\alpha_4. Demand * \alpha_5. Export)/(\alpha_6. Production * \alpha_7. Import)$
11 (Cultivated land area (CLA)	Level	$Agricultural\ land\ area(t) = \int (Change\ in\ CLA)\ dt + Initial\ CLA$
12	Change in ALA	Rate	Change in $CLA = \alpha_8$. Value added per worker/ α_9 . Residential land area
13	Residential land area	Auxiliary	Residential land area = α_{10} . GDP * α_{11} Population
14	Value added per worker	Auxiliary	Value added per worker = α_{12} . Farmer income * α_{13} . Price * α_{14} . Subsidy
15]	Farmers income	Auxiliary	Farmers income = α_{15} . Production * α_{16} . Price
16 1	Production	Auxiliary	$Production = \alpha_{17}$. $Agricultural\ land\ area*\alpha_{18}$. $Productivity$
17	Subsidy	Auxiliary	$Subsidy = \alpha_{19}$. Government expenditure
18	Government expenditure	Auxiliary	Government expenditure = α_{20} . GDP
19	Capital stock	Level	$Capital\ stock(t) = \int (Investment)\ dt + Initial\ capital\ stock$
20 1	Investment	Rate	$Investment = \alpha_{21}.GDP * \alpha_{22}.Investment \ rate$
21	Technology	Level	$Technology(t) = \int (Increase \ in \ technology) \ dt + Initial \ technology$
22 1	Increase of technology	Rate	Increase in technology = α_{23} . Capital stock
23	Productivity	Auxiliary	$Productivity = \alpha_{24}$. $Technology * \alpha_{25}$. $Available\ water\ resources * \alpha_{26}$. $Water\ productivity$
24	Water productivity	Auxiliary	Water productivity = α_{27} . Technology
25	Available water resources	Auxiliary	Available water resources = $(\alpha_{28}$. Precipitation * α_{29} . Capital stock)/ α_{30} . CLA
26 1	Import	Auxiliary	$Import = 1/\alpha_{31}$. $Trade\ tariff$
28	Trade tariffs	Auxiliary	Trade tariff = $1/(\alpha_{32}$. Ratio of In/Out price)
29 1	Export	Auxiliary	$Export = \alpha_{33}$. Trade incentive
30	Trade incentives	Auxiliary	Trade incentive = $1/\alpha_{34}$. Ratio of In/Out price

¹ "GDP Growth Rate", "Population Growth", "Precipitation" are exogenous variables. α_1 to α_{34} are coefficients that should be determined based on each case study conditions (here for instance, Iran)