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Abstract
Accounting for heterogeneity in the measurement of farm efficiency is crucial to avoid biases related to climate and soil quality 

diversity in a given area. Therefore, this paper investigates the level of technical efficiency (TE) of Polish crop farms based on several 
stochastic frontier panel data models with different approaches to the measurement of unobserved heterogeneity, short- and long- run 
inefficiency. In our study, we show that ignoring farm heterogeneity can lead to underestimation of the level of TE in conventional 
stochastic frontier panel data models. Moreover, we have found empirically that not accounting for heterogeneity in the Generalized 
True Random Effects model may lead to incorrect estimates of persistent TE. The obtained results for Polish crop farms indicate that the 
level of transient TE (0.81) is lower than the level of persistent TE (0.88). This result suggests that Polish farms may have, for example, 
problems with adopting new technologies and poor managerial skills.
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Introduction

Agricultural production is a land-based indus try. 
Therefore, there are a number of potential sources, 
including soil quality, climate conditions and other 
location-specific factors, which determine the 
produc tion technology of farms and thus should be 
taken into account in the efficiency measurement. 
In the case of Polish agriculture, the above-
mentioned fac tors also vary in different regions of 
the country. Obviously, when these inter-individual 
differences are observed (measured by variables 
to account for the observed heterogeneity), it is 
possible to incorporate environmental variables 
such as regional dummies (rainfall, nature of the 
soil, etc.). However, information on the above-
mentioned factors is very rarely available for each 
farm.

There are other determinants that seem to be impor-
tant when considering the productivity and efficiency 
of Polish agriculture. These include historical and 
social conditions that determine the agrarian structure 
of the country. It is important to mention main 
historical (external) factors in order to understand the 
motivation for this research and the interpretation of 
the results of further analyses. Heterogeneity of Polish 
agriculture is caused by the fact that there are a lot of 
farms which differ greatly in terms of economic size, 
utilised agricultural area or organisational culture, for 
instance in the share of rented land and owned land, 
share of family labour and hired labour. Small farms 
were created as a result of the land reform implemented 
immediately after World War II, where agricultural land 
from large estates was confiscated and distributed to 
small-scale family farmers. The socialist era in Poland 
(1945–1989) changed nothing in this matter because 
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the collectivization had failed and 75% of agricultural 
land was both owned and used by small family farms. 
State land dominated in the northern and western parts 
of Poland. Privatization of state land through sale after 
1989 had a certain impact on the farm structure. As a 
result, agricultural land in Poland is highly fragmented 
both in ownership and land use (Hartvigsen, 2014). 
These are examples of internal factors that could be 
taken into account, especially in the case of explicit 
modelling of heterogeneity.

Moreover, under socialism, according to Ellman 
(1981), farms increase their production until marginal 
product equals zero, while the standard microeconomic 
theory says that firms increase their production until the 
value of marginal product equals the price of the input. 
Thus, the optimization behaviour under socialism leads 
to overutilization of inputs and, in consequence, to low 
productivity. This is exactly the case of Poland, where, 
as Henningsen (2009) points out, despite the fact that 
most farms were private, they were inefficient. It seems 
that joining the European Union (EU) in 2004 did not 
improve the level of technical efficiency (TE) of Polish 
farms, since the studies conducted before Poland joined 
the EU (Brümmer et al., 2002; Latruffe et al., 2004, 
2005) as well as the studies conducted within several 
years after Poland’s accession to the EU (Makieła et 
al., 2017; Marzec & Pisulewski, 2017, 2019) report 
a similarly low level of overall TE. However, the 
overall TE can be decomposed into persistent (long-
run) inefficiency and transient (short-run) inefficiency. 
According to Njuki & Bravo-Ureta (2015), the long-run 
inefficiency may vary across farms for various reasons, 
which include prior institutional and statutory regimes 
(e.g. minimum pricing laws that effectively set price 
floors for crop products, food and safety regulations, 
environmental regulations), while the latter type may 
vary because of shocks associated with new production 
technologies, human capital, and learning-by-doing. 
Therefore, taking into account different optimization 
behaviour of Polish farms before 1989, distinguishing 
between the persistent (long-run) inefficiency and transient 
(short-run) inefficiency levels would allow to learn what 
measures should be taken to improve overall TE of farms.

In stochastic frontier literature, the problem with 
unobserved heterogeneity arises when the explanatory 
variables do not account enough for variability of the 
dependent variable and for the complexity of relations 
in the model conditional on some factors not available 
or not observed by the researcher. In the simple 
linear regression case, when omitted factors are not 
correlated with the explanatory variables, the problem 
of estimator bias does not appear. Unfortunately, the 
lack of correlation between observed and unobserved 
factors in nonlinear models is not sufficient to ignore 

these latter without consequences. The stochastic 
frontier analysis assumes there are unobserved sources 
(factors) that could cause technological diversity among 
firms. Firm characteristics omitted during the model 
building phase can imply heterogeneous technologies 
described by a production function or a cost function. 
Consequently, these characteristics affect inefficiency 
represented by the one-sided error component. One 
traditional way to include these hidden variables in the 
regression model is to add fixed or random effects that 
can vary across firms and over time. It is important to 
estimate these hidden effects and then to interpret them 
in light of economic theory. In the stochastic frontier 
analysis, this is the approach of the commonly used 
Pitt & Lee (1981) or Battese & Coelli (1992, 1995) 
random effects models. However, these models fail to 
distinguish between cross-firm heterogeneity unrelated 
to inefficiency and inefficiency itself. Thus, it leads to 
biased efficiency estimates (Greene, 2005a,b; Farsi et 
al., 2005; Abdulai & Tietje, 2007). That is why there is 
a need for modelling unobserved heterogeneity.

The first approach to statistical modelling of uno-
bserved heterogeneity is the use of mixed models 
or mixture models. The examples of these models 
applied in stochastic frontier analysis include random 
coefficients stochastic frontier model presented by 
Tsionas (2002) and Greene’s (2005b) latent class sto-
chastic frontier model, respectively. Another approach 
to account for heterogeneous technologies are 
extended fixed effects and random effects stochastic 
frontier models introduced by Greene (2005a,b). 
These models are labelled as true fixed effects (TFE) 
and true random effects (TRE). There is also a 
growing literature on the specific type of unobserved 
heterogeneity, i.e. spatial heterogeneity (Schmidt et 
al., 2009; Areal et al., 2012; Pede et al., 2018).

However, none of the above-mentioned models 
measure the persistent (long-run) TE. On the other 
hand, the Kumbhakar & Heshmati (1995) model, which 
distinguishes short-run and long-run inefficiency, 
ignores unobserved heterogeneity. With regard to 
the above-mentioned issues related to Polish farm 
sector, we are primarily interested in the measurement 
of the level of TE taking into account unobserved 
heterogeneity. Therefore, a model introduced recently 
by Colombi (2010) and Colombi et al. (2011, 2014), 
which takes into account all the above-mentioned issues 
(i.e. heterogeneity, transient inefficiency and persistent 
inefficiency) seems to be the most appropriate model in 
our empirical application.

The main contribution of this paper is not the 
methodological advances but investigation of practical 
application of recently developed models in the 
analysis of the efficiency of Polish crop farms. To the 
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best of our knowledge, this is the first application of 
Colombi (2010) and Colombi et al. (2011, 2014) 
model to Central and Eastern European agricultural 
production data. First of all, this paper shows the 
consequences of ignoring farm heterogeneity in 
efficiency analysis. Secondly, our contribution pinpoints 
the areas of agricultural policy for improvement, 
distinguishing persistent and transient inefficiency for 
the main agricultural sector in Poland.

Material and methods

Stochastic frontier production function models

The stochastic frontier models were first proposed 
by Aigner et al. (1977) as well as Meussen & van den 
Broeck (1977). Pitt & Lee (1981, Model II) generalised 
this class of models to handle cross-section and 
time-series data by considering the following model 
(hereafter referred to as pooled model and denoted in 
the present study by M1):

 
(1)

where yit is the natural log of the observed output for 
firm i (i=1,…, N) in period t (t=1,…, T), h is a known 
production function, xit is the (row) vector of natural logs 
of inputs used by the firm, β is a (column) vector of k 
parameters. This production function is usually spe ci fied to 
be log-linear in practice, i.e. h (xit;β) = xit β. Furthermore, 
vit is a normal random error term with a mean of 
zero and constant variance , representing random 
shocks, vit~N(0, ). Component uit≥0 is referred to 
as inefficiency, and so the output-oriented TE score 
is calculated as TEit = exp (–uit). The conventional 
assumption is that the error term and the inefficiency 
term are independently and identically distributed 
across i and t. In the study by Aigner et al. (1977), 
the inefficiency term is derived from a normal distri-
bution truncated above at zero, uit~N+(0, ), or it has 
an exponential distribution. Other commonly adopted 
distributions are the truncated-normal and gamma 
distributions (Stevenson, 1980). This study considers 
only the models with a half- normal distribution for the 
one-sided inefficiency component.

In crop production, the inefficiency term can be used 
to express errors in management, e.g. related to poor 
quality of seeds used by farmers or using farm-saved 
grains for planting, machine performance and other 
constraining factors. On the other hand, the random 
shock variable represents those effects which cannot be 
controlled by farms, such as environmental factors and 
weather conditions, etc.

The next model (M2) considered in this study is 
the Pitt & Lee (1981, Model I) model, which, unlike 
the specification presented in the above equation 
(1), makes the assumption that the inefficiency level 
is an individual effect, i.e. uit = ui (t=1,…,T). This 
assumption is substantiated when we use panel data 
corresponding to a short period of time and when we 
want to improve precision of inferences on individual 
inefficiency (treated as an unobservable firm-specific 
effect). This model takes the following form:

 (2)

However, the Pitt & Lee (1981, Model I) model has a 
shortcoming that the inefficiency in this model is time-
invariant. Kumbhakar (1990) and Battese & Coelli 
(1992) made inefficiency to be time-varying by the 
following specification of the inefficiency term:

 
(3)

where Kumbhakar (1990) defined f (t; η) as:

while Battese & Coelli (1992) formulated it as:

In the present study, we employed the Battese & 
Coelli (1992) model, which is denoted by M3, which 
allows heteroscedasticity of the inefficiency term in this 
sense that the zero-truncated variance of this component 
is time-varying.

To conclude, the above-mentioned models measure 
either time-invariant inefficiency (M2) or time-varying 
inefficiency (M1, M3). These models should be treated 
as reference points for building advanced models that 
account for heterogeneity.

Kumbhakar & Heshmati (1995) were the first to 
propose measuring both types of inefficiency in the 
same model (hereafter referred to as M4). Their model 
is as follows:

 (4)

where hi~N+(0, ) is interpreted as persistent (only 
firm-specific, time-invariant or long-run) component 
of inefficiency and uit is treated as one that varies 
randomly across firms as well as over time and 
represents the transient (short-run) part of inefficiency, 
uit~N+(0, ). Therefore, this model does not include 
individual-specific effects to control for unobserved 
time invariant heterogeneity. Kumbhakar & Heshmati 
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 (7)

where hi is non-negative disturbance – in this case a half-
normal random variable with parameter , identical 
with that proposed by Kumbhakar & Heshmati (1995). 
Following Kumbhakar et al. (2014), the model can 
be estimated using the multi-stage procedure whose 
statistical properties are, however, difficult to establish. 
Alternatively, the full maximum likelihood estimator 
can be employed, especially taking into account that, 
as showed by Colombi et al. (2014), it is more efficient 
and less biased than the multi-stage estimator. Other 
methods include Bayesian techniques presented by 
Tsionas & Kumbhakar (2014) or Makieła (2017). 
Finally, the estimation of this quite complicated model 
was considerably simplified by Filippini & Greene 
(2016), who used the MSL estimator. The simulated 
likelihood for this model is analogous to that for the 
TRE model, only with one difference that the composed 
error term is defined as

 
(8)

The commonly used estimator of technical ineffi-
ciency is the one proposed by Jondrow et al. (1982), 
which is exp {–E(uit│εit)}. However, Colombi (2010) 
and Colombi et al. (2011, 2014) followed Battese 
& Coelli (1988) suggestion to compute technical 
efficiency as the conditional expectation of TEit gi-
ven the composed error, E[exp(–uit)|εit], obtaining the 
following formula:

 

where ei = yi – Xi β, A = [ιT│IT], Σ = IT + IT,

V =  

and Λ = (V-1 + A' Σ-1 A)-1, R = –ΛA' Σ-1.
Furthermore, yi is a vector of T observations on 

firm i, Xi is the T×k matrix which indicates the values 
of the regressor variables, ũi = [hi, ui1,… , uiT], IT is the 
identity matrix of dimension T, ιT is a column vector 
of ones, 0T a vector of zeros. While τ is a column 
vector that contains only ones and zeros that indicate 
what kind of efficiency measure is calculated. For 
example, τ' = [1 0…0] indicates that the conditional 
expected value of the time-invariant inefficiency (for 
hi) is calculated. The assumption that τ' = [0 0…1] 
leads to E [exp (–uiT)|yi], respectively. ΦT+1(μ, Ω) is the 
probabi lity that a (T+1)-variate normal random variable 

(1995) proposed a multi-stage procedure in order to 
estimate the parameters of this model and TE.

Subsequently, Greene (2005a,b) reinterpreted the 
Kumbhakar & Heshmati (1995) model. He proposed to 
interpret the time-invariant component as firm-specific 
effects that occur among cross-sectional units but 
which are not captured by the explanatory variables and 
differ from inefficiency. This extension of the stochastic 
frontier accounts for unmeasured heterogeneity as well 
as firm time-varying inefficiency, but not time-invariant 
inefficiency. The model (hereafter referred to as M5) is 
called TRE model and takes the following form:

 
 (5)

where heterogeneous intercept wi is treated as 
a random variable and represents the effects of 
unobserved variables specific to firm i in the same 
fashion over time, wi~N(0, ). However, in contrast 
to inefficiency, this random variable can assume both 
positive and negative values.

Similarly, as in the Kumbhakar & Heshmati (1995) 
model, this model includes an additional time-invariant 
variable, by what the marginal probability density 
function for observations (yit) cannot be calculated 
exactly from the closed-form formula. For this reason, 
alternatively to Kumbhakar & Heshmati (1995), who 
employed a multi-stage estimation procedure, Greene 
(2005a,b) proposed maximum simulated likelihood 
(MSL) method. In order to estimate the parameters of 
this model, gradient based optimization procedures are 
required. Therefore, the Appendix [suppl] provides first 
and second order derivatives for the simulated likelihood 
function for this model that takes the following form:

 

(6)

where the composed error term εit,r = yit – xitβ – σwWi,r has 
a conditional (skew) normal distribution with parameters 
λ = σu⁄σv  and σ = ( + )0.5 conditional on wi. Furthermore, 
Wi is an auxiliary standard normal variable corresponding 
to the individual specific effect wi (i.e. Wi = wi/σw) with 
a probability (cumulative) density function ϕ (Φ) and R 
is the number of simulated draws of Wi.

Moreover, we employed the model (hereafter referred to 
as M6) which takes into account all the above-mentioned 
factors (i.e. time-varying inefficiency, time-invariant 
inefficiency and heterogeneity) proposed by Colombi 
(2010) and Colombi et al. (2011, 2014). Tsionas & 
Kumbhakar (2014) called it the Generalized True Random 
Effects (GTRE) model, which in the case of stochastic 
production function takes the following form:

(9)
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of expected value μ and variance matrix Ω belongs to 
the positive orthant. Computation of the multivariate 
distribution function was conducted using the algorithm 
proposed by Geweke (1989), Hajivassiliou (1990) and 
Keane (1994), which is known in the econometric 
literature as the GHK simulator. In particular, we used 
the GAUSS code presented by Hajivassiliou (2000).

The TE was estimated by the above estimator from 
models M4 and M6. The TE from models M1, M2, M3 
and M5 was calculated by the Battese & Coelli (1988) 
formula. However, in the case of the TRE model, to 
obtain an conditional mean of TEit given the observations 
(yi, Xi for i = 1,…,N), wi must be first integrated out of 
the following expression:  TEit = E [exp (–uit)|εit, Wi], 
where εit = yit – xit β – σwWi. The above integral cannot 
be computed in closed form. Therefore, following 
Greene (2008), we have approximated it by simulation 
(drawing for r = 1,…,R). As a result, this estimator of 
TE takes the following form:

  

where 

 
and LS,i,r is the si mu lated likelihood for T observations 
for individual i evaluated at MSL estimates σ, λ, σw and 
β (i.e. ). 

To conclude this section, in Table 1 we have pre-
sented the assumption about stochastic specification 
of the six models employed in the present study. It is 
noteworthy that two models (M4, M5) are not nested 
to each other, while model M3 has an entirely different 
construction compared to M4, M5 or M6. Therefore, 
Akaike’s information criterion (AIC) was used to order 
the models according to the degree of complexity and 
fitting.

Data on Polish crop farms

The dataset used for the analysis includes Polish 
farms specialised in crop production. The selection 
criterion was the FADN (Farm Accountancy Data 
Network) classification, where it is stated that a farm 
is classified as a crop farm if two-thirds of the standard 

output comes from general cropping (EC, 2008). The 
precise definition of the variables in the production 
function is based on other studies on the field crop 
sector in which FADN data were used (Latruffe et al., 
2004; Bojnec & Latruffe, 2009; Zhu & Lansink, 2010). 
Therefore, the output (Q) is specified as the deflated 
total net farm revenues from sales (deflated with base 
year 2004) excluding the value of feed, seeds and plants 
produced within the farm. Price indices of agricultural 
production (i.e. crop and animal market prices provided 
by the Central Statistical Office of Poland) are used as 
deflators. The four factors of production are defined as 
follows:

1. Physical capital (K) is measured in terms of 
deflated book value. It includes fixed capital such as 
buildings and fixed equipment, as well as machines 
and irrigation equipment. The aggregate of this input 
was deflated by the price index for machinery and 
equipment for agriculture, and building construction. 

2. Total labour (L) is measured in hours. This measure 
includes both hired and family labour declared by the 
farmer during the interview.

3. Total utilised agricultural area (A, in hectares) 
refers to owned and rented land.

4. Materials (M) consist of several subcategories: 
seeds and plants, fertilizers, crop protection, purchased 
feed, crop and livestock specific costs, energy and 
services. Originally, these subcategories are measured 
as the costs of resources used in farm production. 
In order to deflate the total reported expenditure on 
materials, we used price indices provided by the Central 
Statistical Office for each subcategory. An aggregate 
measure of materials is calculated by deflating the total 
cost of all items with a share-weighted average price 
index constructed using the expenditure share for all 
the components. Furthermore, we excluded the value 
of seeds and feed produced within the farm from this 
category to avoid double measuring these costs.

The stochastic frontier models of the Polish farms 
specialised in field crops were estimated using a yearly 
data set covering a sample of 660 farms from 2004 
to 2011. The sample summary statistics for farms are 
presented in Table 2. The arithmetic mean area of land 
per farm is 43 ha. However, since FADN data are biased 
toward larger farms, the average area per farm is in fact 
smaller. It amounted to 8.9 ha in 2010 (CSO, 2016). 

Table 1. Specification of the models used in this study.

Component Pooled model
(M1)

Pitt & Lee (1981)
(M2)

Battese & Coelli (1992)
(M3)

Kumbhakar & Heshmati (1995)
(M4)

TRE
(M5)

GTRE
(M6)

uit Yes No Yesa Yes Yes Yes
hi or ui No Yes Noa Yes No Yes
wi No No No No Yes Yes

a Note that uit is connected with ui by the deterministic relation (3).

(10)

and

 ̅ 
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On the other hand, crop farms in Western Europe are 
larger. For example, the average land area per owner is 
163 ha in Germany, 71 ha in the Netherlands, 115 ha in 
Sweden (Zhu & Lansink, 2010) and 142.9 ha in France 
(Latruffe et al., 2012). Crop farms in Central and Eastern 
European countries are also much larger than in Poland, 
for instance in the Czech Republic the average utilised 
agricultural area is 144 ha (Latruffe et al., 2008), while 
in Hungary it is 226.4 ha (Latruffe et al., 2012). The 
average size of a private farming company in Slovakia 
is 1030 ha, while of an agricultural cooperative it is 
1620 ha (Fandel, 2003). Farms with a similar size 
to Polish ones can be found in Slovenia, where the 
average land size is 20 ha (Bojnec & Latruffe, 2013).

As shown in Table 2, during the period from 2004 
to 2011, the annual average crop production per farm 
was about 29,000 € (if the exchange rate is 1 euro to 
4.15 Polish zloty). The average yearly revenue earned 
from selling crops was approximately 713 €/ha. The 
5th and 95th percentiles of the empirical distribution 
of output per area show that there are large differences 
in profitability and effectiveness of the production 
process between farms. Moreover, the average 
labour productivity in Polish crop farms was 10.4 €/h. 
According to PORDATA (2017), gross domestic pro-
duct (GDP) per hour worked was 7.2 € in Poland in 
2004, whereas in 2011 this indicator reached 12 €. 
Therefore, the agricultural labour productivity obtained 
from the sample data is similar in value to GDP per hour 
worked published in official statistics. It is noteworthy 
that GDP per hour worked in 2004 was 30.2 € in 28 
countries that presently constitute the EU, whereas in 
2011 this indicator reached 35.3 € (see PORDATA, 

2017). Therefore, it shows that labour productivity 
in Poland is still very low compared to EU average 
(of the 28 member states), and this also applies to 
agriculture. However, Bulgaria, Latvia, Lithuania and 
Romania have lower indicators than Poland.

Table 2 also reveals that the share of family labour 
is equal to 69% of total labour force. The share of 
owned land in total utilised agricultural area is also 
high (about 55%). Moreover, every second farm did 
not use hired labour and over 29% of farms reported 
that they used only their own land. Another important 
factor is the differences between farms depending on 
whether they grow root crops or cereals. Root crops are 
generally expensive to grow since they require organic 
fertilizers. Cereals occupied 65% of the total reported 
crop acreage and the share of crop production in total 
agricultural output equals 59%. Cereals crops and use 
of owned land dominated in almost 75% of all the farms 
under study. The 85% of the farms revenues come from 
selling cereals, as well as other crops (including oilseeds 
and fodder crops). Thus, 15% of the farms covered in 
the sample report that they earn revenue solely from 
cereal production. 

Consequently, we can observe large diversity of the 
studied farms in terms of type of field crops, their area 
and labour productivity of this agricultural production 
system. Likewise, many of the selected farmers do not 
make decisions to employ hired labour because they 
have realised that family labour is cheaper than the 
former. A similar situation applies to utilised agricultural 
area they own. Despite the fact that farms are small and 
they probably should rent land from others to improve 
its economic performance, they do not do it. Instead, 

Table 2. Descriptive statistics for the variables in the sample.

Variablea Meanb
Percentile

5th 25th 50th 75th 95th

Output (thousand euros) 29 6 15 28 56 143
Capital (thousand euros) 56 13 30 56 104 252
Labour (h) 4,056 1,826 2,900 3,938 5,214 11,013
Materials (thousand euros) 20 5 10 19 36 95
Agricultural area (ha) 43 10 21 40 83 220
Output per labour (€/h) 10.4c 2 4 7 12 25
Output per area (€/ha) 713.1c 253 472 677 928 2,345
Share of family labour in total labour 0.69d 0.33 0.75 1.00 1.00 1.00
Share of owned land in total land 0.55d 0.17 0.50 0.76 1.00 1.00
Share of cereals area in total area 0.65d 0.15 0.49 0.64 0.77 0.97
Share of cereal production in total agricultural production 0.59d 0.03 0.34 0.61 0.86 1.00

a Figures were first deflated (with base year 2004) and then converted with the exchange rate of 4.15 PLN per 1 €. b Descriptive 
statistics for output and input variables were calculated on the logarithmic scale and then transformed back to the original 
scale. c The mean for this ratio is calculated by dividing the total output of all farms by the total input of production factor, i.e. 
by land areas or labour, respectively. d The mean for this ratio is calculated by dividing the family labour on all farms by the 
total labour force, etc. Source: FADN data.
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they cultivate small areas in order to receive subsidies, 
treating agricultural activity as an additional source of 
income. 

The relationship between production and use of 
the four main inputs (capital, labour, materials and 
agricultural area) is a one of the main issues in this line 
of research. Figure 1 illustrates the dependence between 
farms’ output and inputs averaging the data over time 
using a geometric mean (a few out liers were removed 
to improve the visibility of the graphs). These figures 
show a monotonicity or a li near relationship between 
production and all inputs except one. The absence of a 
relationship between labour and production is puzzling 
since the estimate for this effect turned out to be high and 
statistically significant, as opposed to the relationship 
between production and capital. Furthermore, in the 
sample analysed here, there are not many large farms. 
Therefore, small and medium-sized farms dominate in 
this sector in Poland.

In our research, the size of the panel dataset is large 
and it includes different farms in terms of the factors 
discussed earlier. Because of the above reason, this 
sample is clearly heterogeneous. It might cause the 
typical modelling of the production function, which 
is based on the use of the translog specification, to be 
insufficient to cope adequately with the problem of 
heterogeneity of farm economic activity. In this context, 

more general models discussed above can deal with 
heterogeneous data, without using additional variables 
that would be effective in controlling for heterogeneity.

Results

The most popular functional form of the production 
frontier is translog, which belongs to the family of 
flexible functional forms (Christensen et al., 1973). 
These functional forms are commonly used in applied 
econometrics including production and cost analysis. 
Translog is a second-order local approximation of any 
twice-differentiable function, and it is important that it 
satisfies Diewert’s minimum flexibility requirement for 
the flexible form. In our study, the deterministic kernel 
of the stochastic production frontier is given in this 
form (there are four production factors in this study, 
i.e.: J = 4):

   

where lower case letter of x indicates natural logs of 
inputs. The presented translog form (12) with a linear 
trend in the parameters was used (e.g. by Coelli et 

Figure 1. Output (production) versus capital, labour, materials and agricultural area in the sample (cross-sectional data 
averaged over time). Source: FADN data.

(12)
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Table 3. Estimates for parameters of stochastic frontier models (standard errors in parentheses).
Parameter M1 M2 M3 M4 M5 M6

Const 0.240 (±0.012) 0.271 (±0.013) 0.271 (±0.013) 0.465 (±0.015) 0.198 (±0.013) 0.330 (±0.03)
lnK -0.009 (±0.009) -0.002 (±0.012) -0.004 (±0.012) 0.002 (±0.012) 0.014 (±0.013) 0.008 (±0.013)
lnL 0.255 (±0.011) 0.287 (±0.014) 0.286 (±0.014) 0.293 (±0.014) 0.269 (±0.015) 0.274 (±0.015)
lnM 0.870 (±0.014) 0.664 (±0.017) 0.663 (±0.017) 0.645 (±0.017) 0.656 (±0.018) 0.656 (±0.017)
lnA 0.042 (±0.01) 0.195 (±0.014) 0.199 (±0.014) 0.193 (±0.014) 0.222 (±0.016) 0.218 (±0.015)
lnK·lnL 0.113 (±0.018) 0.069 (±0.02) 0.072 (±0.02) 0.060 (±0.02) 0.077 (±0.021) 0.062 (±0.021)
lnK·lnM -0.042 (±0.023) 0.009 (±0.024) 0.008 (±0.024) 0.006 (±0.024) -0.013 (±0.024) -0.003 (±0.024)
lnK·lnA 0.026 (±0.017) -0.01 (±0.018) -0.005 (±0.018) -0.013 (±0.018) -0.0004 (±0.019) 0.002 (±0.019)
lnL·lnM -0.2 (±0.031) -0.142 (±0.032) -0.132 (±0.032) -0.143 (±0.032) -0.135 (±0.032) -0.140 (±0.032)
lnL·lnA -0.032 (±0.021) -0.077 (±0.024) -0.08 (±0.024) -0.078 (±0.024) -0.068 (±0.024) -0.067 (±0.024)
lnM·lnA -0.055 (±0.027) -0.096 (±0.028) -0.118 (±0.028) -0.107 (±0.028) -0.078 (±0.029) -0.082 (±0.029)
(lnK) 2 -0.015 (±0.009) -0.015 (±0.009) -0.015 (±0.009) -0.010 (±0.009) -0.013 (±0.009) -0.013 (±0.009)
(lnL) 2 0.093 (±0.014) 0.115 (±0.016) 0.111 (±0.016) 0.119 (±0.016) 0.108 (±0.016) 0.114 (±0.017)
(lnM) 2 0.07 (±0.022) 0.063 (±0.021) 0.071 (±0.021) 0.081 (±0.021) 0.057 (±0.022) 0.062 (±0.022)
(lnA) 2 0.032 (±0.011) 0.081 (±0.013) 0.087 (±0.013) 0.089 (±0.013) 0.059 (±0.015) 0.060 (±0.015)
trend (t) -0.025 (±0.009) -0.028 (±0.007) -0.016 (±0.007) -0.031 (±0.007) -0.033 (±0.007) -0.033 (±0.007)
(t)2 0.003 (±0.001) 0.003 (±0.001) 0.003 (±0.001) 0.003 (±0.001) 0.003 (±0.001) 0.003 (±0.001)
t·lnK -0.007 (±0.004) -0.009 (±0.003) -0.009 (±0.003) -0.009 (±0.003) -0.009 (±0.003) -0.010 (±0.003)
t·lnL 0.001 (±0.004) 0.001 (±0.003) 0.005 (±0.003) 0.001 (±0.003) 0.0004 (±0.003) 0.001 (±0.003)
t·lnM 0.014 (±0.005) 0.017 (±0.005) 0.005 (±0.005) 0.016 (±0.004) 0.015 (±0.004) 0.016 (±0.004)
t·lnA -0.005 (±0.004) -0.007 (±0.003) 0.002 (±0.003) -0.006 (±0.003) -0.005 (±0.003) -0.005 (±0.003)
σ 0.407 (±0.008) 0.457 (±0.012) 0.524 (±0.018) 0.321 (±0.007) 0.330 (±0.004) 0.330 (±0.007)
λ 1.275 (±0.085) 1.562 (±0.063) 1.894 (±0.011) 1.366 (±0.101) 1.597 (±0.056) 1.580 (±0.107)
σw - - - - 0.227 (±0.008) 0.194 (±0.016)
σh - - - 0.376 (±0.013) - 0.171 (±0.035)
η - - -0.055 (±0.008) - - -
lnL -1393.80 -727.27 -704.79 -696.29 -664.49 -659.19

al., 2005). The time trend included in the equation 
above can be treated as an additional input and, in 
consequence, it allows for a non-neutral technical 
change, i.e. this latter raises the productivity of some 
factors more than others. Alternatively, the advantage 
of this form is that the elasticities with respect to 
factors and the economies of scale may change over 
time.

Table 3 shows the results of the estimation of the 
considered models. Due to mean-correction of the data 
prior to estimation, the first order parameters can be 
interpreted as elasticities of production with respect to 
inputs evaluated at the geometric mean of the data.

The model selection based on AIC (see Table 4) 
suggests that the best model supported by the data 
is the GTRE model. The elasticity with respect to 
capital was found to be statistically non-significant in 
this model. The highest output elasticity of materials 
is approximately 0.66. The lowest is area elasticity, 
which amounts to 0.22. In addition, it turns out that 

a 1% increase in labour use, while keeping all other 
explanatory variables constant, leads to a 0.27% 
increase in production. The sum of the above-mentioned 
elasticities is interpreted as returns to scale (RTS). 
The estimated RTS, at geometric mean of the data, is 
approximately 1.16, therefore it is increasing.

Moreover, we have tested the GTRE model 
against TRE and Kumbhakar & Heshmati (1995) 
models using the likelihood-ratio (LR) test. The 
comparison of model M6 with models M5 and M4 
indicates that persistent component of inefficiency 
is generally less preferred than random farm effects 
that capture heterogeneity. Likewise, AIC confirms 
this conclusion. As Colombi et al. (2011) point out, 
testing the restrictions in stochastic frontier models is 
a non-standard problem since the distribution of LR 
statistic is a mixture of χ2 distri butions, denoted by 

. Determining the critical value for one-sided LR 
tests (G2) is simple in single restriction hypothesis, 
since for a test of size α it is equal to the critical 
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Table 4. Model selection based on Akaike’s criterion (AIC) and on the LR test (G2)a.
Model No. of parameters G2 df Critical value AIC Rank by AIC

M1 23 1481.47 2 5.138 2833.60 6
M2 23 136.15 2 5.138 1500.53 5
M3 24 - - - 1457.58 4
M4 24 74.20 1 2.706 1440.58 3
M5 24 10.59 1 2.706 1376.97 2
M6 25 - - - 1368.38 1

a: G2 = –2 · (lnLMi – lnLM6) for i ={1, 2, 4, 5}. df: degrees of freedom.

Table 5. Estimates of technical efficiency (TE) scores - Descriptive 
statistics from the sample.

Model 1st 
quartile Median 3rd 

quartile Mean (±SD)

M1 0.75 0.81 0.85 0.79 (±0.09)
M2 0.66 0.77 0.86 0.75 (±0.14)
M3 0.66 0.77 0.86 0.75 (±0.14)
M5 0.77 0.83 0.87 0.81 (±0.08)
M4 - persistent TE 0.65 0.76 0.86 0.75 (±0.14)
M4 - transient TE 0.79 0.84 0.87 0.82 (±0.07)
M4 - Overall TE 0.53 0.63 0.72 0.62 (±0.14)
M6 - persistent TE 0.86 0.89 0.90 0.88 (±0.04)
M6 - transient TE 0.77 0.83 0.87 0.81 (±0.08)
M6 - Overall TE 0.67 0.73 0.77 0.71 (±0.08)

value of the χ2(1) distribution for a standard test of 
size 2α (Coelli, 1995). The extension to multiple 
restrictions is more complicated (Gourieroux et 
al., 1982). The table with critical values for the 
distribution was provided by Kodde & Palm (1986). 
The results indicated that random components are 
statistically significant and cannot be excluded from 
model M6.

The aggregate results of efficiency estimates 
are presented in Table 5 and they require further 
explanation. It should be noted that the TE scores 
differ across the two types of models. The estimated 
efficiencies scores obtained in simpler models (M1, 
M2, M3, M5) are clearly greater than in models (M4, 
M6) that include the unit-specific intercept. It should 
be highlighted that the heterogeneous intercept term 
is the real-valued random variable with symmetric 
distribution around zero. Therefore, it partly captures 
inefficiency effects. Consequently, TRE model (M5) 
exhibits the highest TE scores, while in model M4 
these scores are lowest due to the presence of two 
inefficiency terms and the lack of random farm 
effects. This result shows that it is difficult to separate 
inefficiency from unobserved individual effects. In 
summary, the omission of the latent heterogeneity 
results in overestimation of the long-run inefficiency, 

but not the short-run inefficiency. In our empirical 
example, the omission of the long-run inefficiency 
inflates the latent-heterogeneity component but not 
the short-run inefficiency.

Regarding the detailed discussion about the GTRE 
model, it can be observed that the level of persistent 
TE is 0.88, while the level of transient TE is 0.81. 
Therefore, the overall level of TE amounts to 0.71. 
The obtained overall efficiency from the GTRE model 
is, as mentioned and explained earlier, lower than that 
of the TRE model. 

Figure 2 shows a significant variation in the 
transient TE. Unfortunately, it is not possible to 
distinguish the general pattern of efficiency scores. We 
can, however, notice that after the initial downturn in 
the first year of EU membership, there was a progress 
in TE until 2007. However, probably because of the 
economic crisis that affected all of the sectors, there 
was a decrease in TE.

Some of the models have time-varying efficiency 
and produce NT technical efficiency scores, and some 
are time-invariant and produce N scores. Therefore, 
in order to calculate correlation coefficient between 
NT and N scores, we averaged efficiency scores 
from time-varying models over the sample period 
for farm i. 
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Figure 2. Efficiency decomposition into persistent and transient components.

Table 6. Pearson’s correlation coefficients between efficiency scores.

Model M1 M2 M3 M4
TTE

M4
PTE M5 M6

TTE
M1 (uit) -
M2 (ui) 0.94 -
M3 (uit) 0.62 0.99 -
M4 TTE (uit) 0.81 0.68 0.18 -
M4 PTE (hi) 0.93 ≈1.00 0.99 0.64 -
M5 (uit) 0.81 0.67 0.18 0.99 0.61 -
M6 TTE (uit) 0.81 0.68 0.18 0.99 0.62 0.99 -
M6 PTE (hi) 0.93 0.96 0.96 0.58 0.96 0.61 0.60

PTE: persistent TE. TTE: transient TE. All correlations were significant at a 
5% level. Correlations that were calculated using NT observations are in bold.

Table 6 indicates that there is a close connection 
between transient efficiency scores, in particular 
correlation coefficient between M1 and M4, M1 and 
M5, and M1 and M6. Moreover, there is a nearly 
perfect correlation between M4 and M5, M4 and M6, 
and M5 and M6. Similarly, in the case of persistent 
TE scores there is a nearly perfect correlation between 
M4 and M2, M6 and M2, and M4 and M6.

Discussion

In the present study, we employed several stochastic 
frontier panel data models. It was revealed that the 
elasticities of production with respect to inputs are si-
milar in all models except the pooled model. There  fore, 
our results support the conclusions drawn by Greene 
(2005a,b) as well as by Filippini & Greene (2016) that 
TRE and GTRE models produce very similar results for 
structural parameters to the Pitt & Lee (1981) model 
with time-invariant inefficiency. However, unlike 

Greene (2005a,b), our results are quite different from the 
pooled model (similar results were obtained by Abdulai 
& Tietje (2007)), therefore all models except M1 give 
similar conclusions for the elasticities. Similarly, in 
all considered models we found increasing returns to 
scale at the geometric mean of the data. However, the 
estimates of TE are sensitive to model specification. 
Based on AIC, we can conclude that the GTRE model 
is the best among the considered models, i.e. the pooled 
Pitt & Lee (1981, Model II), Pitt & Lee (1981, Model 
I), Battese & Coelli (1992), Greene’s TRE models, 
and Kumbhakar & Heshmati (1995). Our empirical 
study in particular shows that ignoring heterogeneity 
in the production function leads to incorrect results of 
efficiency measurement. The studied dataset showed 
that omitting the latent heterogeneity component leads 
to lower overall TE scores in the pooled, Pitt & Lee 
(1981), Battese & Coelli (1992) and M4 models.

On one hand, when the Kumbhakar & Heshmati 
(1995) model (which does not account for unobserved 
heterogeneity) was adopted, the persistent inefficiency 
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was revealed to be relatively high, and so this 
model might confound persistent inefficiency with 
heterogeneity. On the other hand, it was found that if 
the model without the long-run inefficiency is adopted, 
the variance of farm effects is inflated. Moreover, as 
pointed out by Colombi et al. (2014), the TRE model 
fails to account for persistent inefficiency; hence the 
estimated efficiencies are likely to be higher than 
overall efficiencies from the GTRE model.

The above-presented differences in TE scores 
between the considered models show that using an 
appropriate model is essential, since it leads to different 
policy recommendations. In our empirical analysis, the 
models which measure overall TE and do not account 
for unobserved heterogeneity (M1, M2 and M3) 
indicate its low level. On contrary, model M5 which as 
well measure overall TE but account for heterogeneity, 
indicate higher efficiency of farms. The most noticeable 
difference is between M4 and M6 models. While, the 
former model indicates that policy makers should 
take measures to eliminate the long-run inefficiency, 
in the latter model (GTRE) it was found that it is the 
transient efficiency that contributes most to the low 
overall TE score. Therefore, it seems that accounting 
for unobserved heterogeneity is crucial in formulating 
proper policy recommendations. Additionally, it is 
noteworthy that adopting different distributional 
assumptions for the inefficiency term leads to lower TE 
scores in M2 and M3 models (see Marzec & Pisulewski 
(2019) for comparison).

Moreover, the estimated level of overall TE is lower 
than that obtained in the previous studies on crop farms 
in Western Europe (Zhu & Lansink, 2010; Kumbhakar 
et al., 2014). Previous studies on Polish crop farms 
reported a similar overall average TE score, i.e. 0.73 
(Latruffe et al., 2004). However, in the case of dairy 
farms, Marzec & Pisulewski (2017) found a higher 
average level of efficiency scores (0.83).

We found a higher level of persistent TE than 
transient TE in the GTRE model. This result contradicts 
the findings of Kumbhakar et al. (2014), who reported 
higher transient TE than persistent TE for Norwegian 
grain farms. Similarly, Lachaud et al. (2015) 
reported transient TE higher or equal to persistent 
TE of agriculture across all analysed Latin American 
countries.

Generally, correlation coefficients between the values 
of the transient TE (M1, M4, M5, M6) and persistent 
TE (M2, M5, M6) are relatively low. However, there 
are two exceptions. First, the efficiency scores from the 
pooled model are closely related to Pitt & Lee (1981) 
estimates. A similar result was obtained by Farsi et al. 
(2005), who pointed out that both models, although 
affected by heterogeneity bias in the coefficients, 

have a reasonable 'mutual consistency' with regard to 
efficiency estimation. Secondly, we also found that TE 
scores obtained from the Battese & Coelli (1992) model 
(which aims to measure transient TE) are perfectly 
correlated with persistent TE scores from models M2, 
M5 and M6, while poorly correlated with transient TE 
scores from models M4, M5 and M6. Therefore, it seems 
that this specification fails to measure the transient 
efficiency. Similarly, Greene (2005a,b) obtained nearly 
identical results with the Battese & Coelli (1992) model 
and the Pitt & Lee (1981) model for a panel of U.S. 
commercial banks.

In terms of agricultural policy, we showed that low 
overall TE of Polish crop farms is mainly due to the 
transient part. Therefore, in order to eliminate technical 
inefficiency, agricultural policy should focus on factors 
affecting the short-term inefficiency. Following Njuki & 
Bravo-Ureta (2015), these factors include adoption of 
new technologies, managerial skills, knowledge transfer 
or agricultural education. Moreover, this conclusion is 
supported by an earlier study by Henningsen (2009) 
who pointed out that poor managerial skills and low 
education of Polish farmers prevent them from optimal 
use of new technologies. Another factor which may 
decrease the transient TE are the considerable subsidies 
under the Common Agricultural Policy (CAP) that 
allow inefficient farms to survive. Different types of 
CAP subsidies may provide no incentives to improve 
efficiency. There are numerous studies on the impact of 
CAP subsidies on TE. However, these studies usually 
concern only one type of efficiency, i.e. transient or 
persistent. Therefore, it remains an unresolved issue 
which type of efficiency is affected by subsidies, thus 
further research is needed to confirm these findings. 
However, the confirmation of the effect of the above-
mentioned factors on TE requires the use of, for 
example, a heteroscedastic GTRE model, such as 
presented by Badunenko & Kumbhakar (2017), which 
explicitly accounts for exogenous factors affecting 
efficiency. Although the level of persistent inefficiency 
is lower than that of transient inefficiency, it is still 
relatively substantial. In the case of Polish agriculture, 
it seems that its high level is connected with the 
unfavourable agrarian structure, which changes very 
slowly. Therefore, in order to improve the persistent 
efficiency, measures that could change the agrarian 
structure of Polish agriculture are required. Still, further 
research is needed to confirm these findings.
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