Latent variables	Observable variables	Measurement	Sources (adapted)
Stated intention, ST ^[a]	St ₁ : I intend to buy extra-virgin olive oil in my near future	Likert-scale ^[c]	Bagozzi (1993); Ajzen (2002)
Actual consumption, AC ^[a]	Ac ₂ : Consumption of extra-virgin olive oil Ac ₃ : Uses for type of cooking with extra- virgin olive oil Ac ₄ : Uses in each meal of extra-virgin olive oil	Per capita/monthly Per household/qualitative uses Per household/weekly	Ajzen (2002); Olsen (2003)
Subjective norm, SN ^[b]	Sn ₅ : To avoid/improve cholesterol problems, people, who are trustworthy, recommend me to buy extra-virgin olive oil Sn ₆ : I know people who are related to olive oil sector and recommend me to buy extra- virgin olive oil	Binary-scale	Ajzen (2002); Authors' elaboration
Attitude, AT ^[a]	 At₇: The degree to which you need extravirgin olive oil At₈: The degree to which you feel extravirgin olive oil is good for you At₉: The degree to which you will recommend extra-virgin olive oil At₁₀: The enjoyment you get from the consumption of extra-virgin olive oil 	Likert-scale ^[c]	Salazar-Ordóñez <i>et</i> al. (2018)
Socioeconomic factors, SE ^[b]	Se ₁₁ : Income per household Se ₁₂ : Age usual buyer Se ₁₃ : Household size Se ₁₄ : Living previously in rural areas	Continuous Continuous Members (big to small) Binary-scale	Rodríguez-Entrena et al. (2013)
Perception of the price, PP ^[b]	 Pp₁₅: Considering its features, extra-virgin olive oil has a suitable price Pp₁₆: Considering my annual food outlay, extra-virgin olive oil is a cheap product 	Likert-scale ^[c]	Michaelidou & Hassan (2010); Authors' elaboration
Perception of the taste, TT ^[b]	Tt ₁₇ : I prefer olive oil not giving a lot of flavour to the dishes Tt ₁₈ : Because of its taste, extra-virgin olive oil is less useful for cooking Tt ₁₉ : The taste of extra-virgin olive oil is too bitter for most of the dishes	Likert-scale ^[c]	Authors' elaboration

Supplementary Table S1. Definition of the latent and observed variables.

^[a] Endogenous or ^[b] Exogenous latent variables. ^[c] 7 points Likert-scales: 1 means the lowest level and 7, the highest level. *Source:* Authors' elaboration.

Supplementary tables to the article "Hybridizing consumer behavioural approaches on agrifood markets: Attitudes and judgements and choices", by Melania Salazar-Ordóñez and Macario Rodríguez-Entrena. Spanish Journal of Agricultural Research, Vol. 17, No. 2, June 2019 (https://doi.org/10.5424/sjar/2019172-14155)

	Supplementary Table 52. Measurement models.						
	M1	M2	M3	M4			
ST ^[a]							
St ₁	1.000		1.000				
AC ^[a, c]							
Ac ₂		0.320**		0.182**			
Ac ₃		0.396***		0.315***			
Ac ₄		0.552***		0.692***			
SN ^[a, c]							
Sn ₅	0.231 ^{ns}		0.231 ^{ns}	0.636*			
Sn ₆	0.976**		0.976***	0.764**			
AT ^[b, d]							
At ₇	0.803***		0.802***	0.895***			
At ₈	0.726***		0.723***	0.700***			
At ₉	0.782***		0.785***	0.743***			
At_{10}	0.813***		0.813***	0.772***			
SE ^[b, c]							
Se ₁₁		0.605***	0.328*	0.713***			
Se ₁₂		-0.084 ^{ns}	0.738***	0.024 ^{ns}			
Se ₁₃		0.767***	0.155 ^{ns}	0.596**			
Se ₁₄		0.344**	0.441**	0.392*			
PP ^[b, c]							
Pp ₁₅	0.630**	0.521**	0.581***	0.597***			
Pp ₁₆	0.523*	0.631**	0.573***	0.557**			
TT ^[b, c]							
Tt ₁₇	0.546***	0.128 ^{ns}	0.379***	0.284***			
Tt ₁₈	0.232*	0.341***	0.295**	0.300***			
Tt ₁₉	0.428**	0.683***	0.531***	0.605***			

^[a] Endogenous or ^[b] Exogenous latent variables. ^[c] Variance inflation factors are under 3.3 (Diamantopoulos & Siguaw, 2006). ^[d] Cronbach's Alpha (α), Dijkstra-Henseler's rho (ρ_A), Jöreskog's rho (ρ_c) values are over 0.8; and average variance extracted (AVE) value is over 0.6. *** p < 0.001; ** p < 0.01; * p < 0.05; ns means non-significative (t-statistic of two-tailed test, t_(4,999) from bootstrapping technique). *Source:* Authors' elaboration.

Supplementary tables to the article "Hybridizing consumer behavioural approaches on agrifood markets: Attitudes and judgements and choices", by Melania Salazar-Ordóñez and Macario Rodríguez-Entrena. Spanish Journal of Agricultural Research, Vol. 17, No. 2, June 2019 (https://doi.org/10.5424/sjar/2019172-14155)

Hypotheses		Path coefficients	Percentile bootstrap		£ 2[¢]
			2.5%	97.5%	1
M1 ^[a]					
$SN \rightarrow ST$	$\mathrm{H1}_{\mathrm{M1}}$	0.044 ^{ns}	-0.040	0.112	
		(0.036)			
$\mathrm{AT}^{[\mathrm{b}]}\! \rightarrow \mathrm{ST}$	H2 _{M1}	0.499***	0.423	0.571	0.332
		(0.038)			
$\mathrm{PP} \rightarrow \mathrm{AT}$	$H3_{M1}$	0.206***	0.138	0.281	0.052
		(0.036)			
$\mathrm{TT} \mathrm{AT}$	$H4_{M1}$	0.388***	0.321	0.453	0.183
		(0.034)			
M2 ^[a]					
$ES \rightarrow AC$	H1 _{M2}	0.107**	0.058	0.193	0.018
		(0.035)			
$PP \to AC$	$H2_{M2}$	0.196***	0.129	0.261	0.053
		(0.033)			
$\mathrm{TT} \mathrm{AC}$	$H3_{M2}$	0.426***	0.393	0.521	0.288
		(0.033)			

Supplementary Table S3. Structural models for M1 and M2 (standard errors in brackets).

^[a] Variance inflation factors of each set of predictor construct are under 3.3 (Diamantopoulos & Siguaw, 2006). ^[b] Stone-Geisser's Q² value (omission distant of 6) > 0. ^[c] Cohen's (1988) f² values (effect size index): 0.02, 0.15 and 0.35 result in small, medium and large effects, respectively. *** p < 0.001; ** p < 0.01; * p < 0.05; ns: non-significative (t-statistic of two-tailed test, t_(4,999) from bootstrapping technique). Adj- R^2 M1: AT = 0.182, ST = 0.253; and adj- R^2 M2: AC = 0.273. *Source:* Authors' elaboration.

Supplementary tables to the article "Hybridizing consumer behavioural approaches on agrifood markets: Attitudes and judgements and choices", by Melania Salazar-Ordóñez and Macario Rodríguez-Entrena. Spanish Journal of Agricultural Research, Vol. 17, No. 2, June 2019 (https://doi.org/10.5424/sjar/2019172-14155)