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Abstract
Aim of study: Crop phenology is a critical component in the identification of impacts of climate change. Then, the assessment 

of germplasm collections provides relevant information for cultivar selection and breeding related to phenology, being the base for 
identifying adaptation strategies to climate change.

Area of study: The World Olive Germplasm Bank located at IFAPA Centre “Alameda del Obispo” (WOGB-IFAPA) in Cordoba 
(Southern Spain) was considered for the study.

Material and methods: Data gathered for nine years on flowering and ripening time of olive cultivars from WOGB-IFAPA 
were evaluated. Thus, full flowering date (FFD) for 148 cultivars and ripening date (RD) for 86 cultivars, coming from 14 
olive growing countries, were considered for characterization of olive phenology and for calibration/validation of pheno-
logical models. 

Main results: The characterization of WOGB-IFAPA has allowed the identification of cultivars with extreme early (‘Borriolenca’) 
and late (‘Ulliri i Kuq’) flowering as well as the ones with extreme early (‘Mavreya’) and late (‘Gerboui’) ripening dates. However, 
the very limited inter-cultivar variability, especially for FFD, resulted in a non-optimal simulation models performance. Thus, for 
FFD and RD the root mean square error was around 6 and 24 days, respectively. The limited inter-cultivar variability was associ-
ated to the low average temperatures registered during winter at WOGB-IFAPA generating an early accumulation of the chilling 
requirements, thus homogenizing FFD of all the analyzed cultivars. 

Research highlights: The identification of cultivars with early FFD and late RD provides useful information for breeding programs 
and climate change studies for identifying adaptation strategies.
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strategies (Fereres & Soriano, 2007; Pierantozzi et al., 
2014). As a result, olive genotypes with late flowering 
date generated a higher probability of damage caused 
by heat and/or water stress, and the cultivation of 
genotypes with early flowering date was revealed to 
be a positive strategy (Gabaldón et al., 2017).

Despite the relevance of the phenology in olive 
characterization, available experimental data on flow-
ering date of different olive cultivars are still limited 
(Orlandi et al., 2006; Aybar et al., 2015; Torres et al., 
2017). Very few studies have been focused on the olive 
cultivar variability under the same reference environ-
mental conditions (Sanz-Cortés et al., 2002; Caballero 
et al., 2006; Trentacoste & Puertas, 2011). In this sense, 
ex situ germplasm collections play an important role 
as they permit acquiring, maintaining, documenting and 
assessing the genetic and agronomic diversity of many 
cultivars in the same environmental conditions (Belaj 
et al., 2012; 2016). This provides the opportunity for 
a general view of their diversity (Caballero et al., 
2006). However, information on the agronomical be-
havior of olive cultivars (Ozkaya et al., 2006; Taamal-
li et al., 2006; Hannachi et al., 2008; Trentacoste & 
Puertas, 2011; Alba et al., 2012; Di Vaio et al., 2013; 
Ruiz-Dominguez et al., 2013; Bodoira et al., 2015, 
2016) in germplasm collections is still limited. The use 
of olive germplasm for identifying adaptation measures 
to climate change has not been reported yet, being 
limited for the rest of crops (Egea et al., 2017).

To carry out studies related to the crop behavior 
under future weather conditions, the consideration of 
simulation models has been frequent (Webber et al., 
2018). For phenology simulation, the consideration of 
dynamic models overlapping chilling and heat accu-
mulation stages (Pope et al., 2014) focusing on 
dormancy release (Andreini et al., 2014) has been 
frequent. However, phenological models for olive are 
limited and focused on a small number of cultivars (de 
Melo et al., 2004; Gabaldón et al., 2017). The simula-
tion of two independent stages (endodormancy and 
ecodormancy), or the consideration of mainly heat 
accumulation (Fornaciari et al., 1998; El Yaacoubi 
et al., 2014) have been the most common methodolo-
gies considered for olive. 

The World Olive Germplasm Bank located at 
IFAPA Centre “Alameda del Obispo” (WOGB-IFAPA) 
in Córdoba (Spain), was established around 50 years 
ago and represents the first international attempt of 
conservation and management of the olive germplasm 
through a FAO-INIA project and with the Interna-
tional Olive Council (IOC) support (Caballero et al., 
2006; Belaj et al., 2016). At present, this collection 
accounts around 900 accessions from 26 countries 
(Belaj et al., 2016) and is an international reference on 

Introduction

In the last years, numerous studies have confirmed 
the impact of climate change on the agricultural systems, 
especially in the Mediterranean environments located at 
Southern Europe (Koubouris et al., 2009; Viola et al., 
2013; El Yaacoubi et al., 2014; Ponti et al., 2014; Dono 
et al., 2016). Thus, the Mediterranean area is considered 
as one of the most impacted by climate change (Giorgi 
& Lionello, 2008; Giannakopoulos et al., 2009), fore-
casting reductions in rainfall and a clear increase of heat 
and water stress events (Gabaldón et al., 2017). 

The use of crop simulation models is an innovative 
methodology to assess the impact of climate change on 
crops, especially in cereals (Pirtiojja et al., 2015; Ga-
baldón et al., 2016; Webber et al., 2018). Equally, 
phenological models have been promoted in the last 
years as response to the necessity to predict the impact 
of climate change on critical phenological stages as 
flowering or ripening. Thus, for Mediterranean tree 
crops such as almond, vineyard or olive, advanced 
phenological models based on experimental data have 
been developed (de Melo-Abreu et al., 2004; Parker 
et al., 2011; Pope et al., 2014; Gabaldón et al., 2017). 
To carry out an accurate modelling of the impact of 
climate change on crops, intensive experimental ac-
tivities in many growing regions with heterogeneous 
climatic conditions would be very useful for the devel-
opment of advanced simulation tools considering all 
the key physiological and phenological components 
(Torres et al., 2017; Navas et al., 2018). 

Olive tree has a capital importance in the economi-
cal sustainability of rural areas of most of the Mediter-
ranean countries (Fernández-Escobar et al., 2013). 
However, despite the crop´s importance, studies re-
lated to the impact of climate change on these systems, 
and the identification of adaptation measurements are 
still limited (Morales et al., 2016; Gabaldón et al., 
2017; Lorite et al., 2018). Previous studies evaluated 
the main impacts of climate change on olive phenol-
ogy using experimental datasets from WOGB-IFAPA 
(De Melo-Abreu et al., 2004; Gabaldón et al., 2017) 
and on olive yield (Morales et al., 2016; López-Bernal 
et al., 2018). In this sense, phenology has been identi-
fied as a key component to determine the impacts of 
climate change and the possible adaptation measures. 
Thus, the evaluation of the weather conditions during 
flowering has allowed to identify the probability of 
occurrence of heat and/or water stress (Gabaldón et al., 
2017), the amount of flowering failure caused by the 
lack of chilling hours (De Melo-Abreu et al., 2004; 
Aybar et al., 2015; Morales et al., 2016) or the identi-
fication of those phenological stages when irrigation 
must be applied considering controlled deficit irrigation 



Spanish Journal of Agricultural Research� March 2020 • Volume 18 • Issue 1 • e0701

3Phenological diversity of a World Olive Germplasm Bank

Material and methods

The World Olive Germplasm Bank of 
“Alameda del Obispo” (WOGB-IFAPA)

The phenology data came from the WOGB-IFAPA, 
located in Córdoba, Southern Spain (37º 51’ 39” N, 
4º 48’ 30” W). The data set included only previously 
identified cultivars by means of both morphological 
and molecular markers (Atienza et al., 2013; Trujillo 
et al., 2014; Belaj et al., 2018). These cultivars were 
introduced at different moments in the collection (1987-
2002). Trees were planted at 7 × 7 m and grown in the 
same edaphoclimatic conditions, using drip irrigation 
and standard cultural practices. The selection of these 
cultivars was carried out based on data availability 
during each one of the six years considered for calibra-
tion in the period 2002-2008. Thus, the present study 
included FFD and RD for 148 and 86 olive cultivars 
respectively, being 150, the total number of cultivars 
evaluated (Table S1 [suppl.]). All these cultivars had 
Mediterranean origin except one, native to Southern 
America (Fig. 1 and Tables S1, S2 and S3 [suppl.]): 
Albania (ALB), Chile (CHL), Croatia (HRV), France 
(FRA), Greece (GRC), Israel (ISR), Italy (ITA), Leba-
non (LBN), Morocco (MOR), Portugal (PRT), Spain 
(SPA), Syria (SYR), Tunisia (TUN), and Turkey (TUR). 

For all the cultivars considered, at least two trees 
were analyzed for every year, although, due to varietal 

olive germplasm due to the high number of accessions 
included and their high degree of identification and 
evaluation (Barranco et al., 2005; Belaj et al., 2012; 
2016; Trujillo et al., 2014). The agronomical evaluation 
of olive cultivars maintained in the collection has 
shown that they may be a useful source of diversity for 
important traits related to vigor, production, fruit char-
acters (Barranco et al., 2005; Caballero et al., 2006; 
Belaj et al., 2012) as well as oil content and composi-
tion (Beltrán et al., 2016; León et al., 2018). 

The objective of this study was to evaluate the phe-
nological data of a set of 150 olive cultivars (148 for full 
flowering date [FFD], and 86 for ripening date [RD] 
characterization) grown under the same environmental 
conditions in the WOGB-IFAPA, during 9 years in the 
period 1994-2008 (2002, 2003, 2004, 2005, 2006 and 
2008 for calibration, and 1994, 1995 and 1999 for vali-
dation of the models). This characterization will enable 
to get a better knowledge on the olive cultivar variabil-
ity in terms of phenology, and it will allow thus to clas-
sify them depending on the phenology, identifying the 
cultivars with potential use for breeding programs and 
for the development of adaptation measures to climate 
change. Besides, a spatial analysis of the phenology for 
each of the cultivars under study was also carried out. 
Finally, two flowering models (De Melo-Abreu et al., 
2004; Gabaldón et al., 2017), and a ripening model have 
been parameterized with the experimental data for the 
150 olive cultivars analyzed in this study. 

Figure 1. Map showing the origin of the 150 cultivars considered in this study (Albania, ALB; Chile, 
CHL; Croatia, HRV; France, FRA; Greece, GRC; Israel, ISR; Italy, ITA; Lebanon, LBN; Morocco, 
MOR; Portugal, PRT; Spain, SPA; Syria, SYR; Tunisia, TUN and Turkey, TUR), number of cultivars 
analyzed by country, and zones delimitated within the Mediterranean basin. The olive live cultivar 
from Chile was not considered in the spatial analysis.



Angjelina Belaj, Raúl de la Rosa, Lorenzo León, et al.

Spanish Journal of Agricultural Research� March 2020 • Volume 18 • Issue 1 • e0701

4

to De Andrés (1974) phenological scale were trans-
lated to the BBCH scale using the already established 
correspondence (Sanz-Cortés et al., 2002). Thus, FFD 
was calculated as the number of days between the 
day when phenophase 61 (beginning of flowering,  
10% open flowers) appeared as most common for the 
first time, until the last day when phenophase 65 (full 
flowering, at least 50% open flowers) was found as 
most common. Full bloom date was then calculated 
as the average date found on full bloom period. Data 
for ripening stage of fruits were recorded according 
to the ripening index described by Frías et al. (1991). 
This method is based on color changes of peel and 
pulp classified into eight groups or categories: green 
intense (0), yellow or yellowish green (1), green with 
reddish spots (2), reddish or light violet (3), black 
with white pulp (4), black with <50% purple flesh 
(5), black with ≥50% purple flesh (6) and black with 
100% purple flesh (7). Ripening observations were 
carried out around the canopy at weekly intervals 
from September and characterized, as in the case of 
flowering, by three numbers representing the most 
delayed, abundant and advanced categories observed, 
respectively. From these determinations, RD was 
calculated as the date in which the most abundant 
category observed change from 2 to 3 (De la Rosa 
et al., 2008).

Only trees with similar flower intensity and crop 
load were evaluated in this work to minimize as much 
as possible the potential influence of alternate bearing. 
Moreover, the early harvest date and the irrigation 
management carried out in the experimental fields of 
the WOGB-IFAPA are designed also to reduce potential 
effects of alternate bearing. 

As the consideration of correct experimental data is 
critical for achieving accurate simulation models, a 
detailed evaluation of available experimental data is 
required. For our study, detailed evaluation of meta-
data of the whole dataset was done, removing those 

redundancies in the collection (Atienza et al., 2013; 
Belaj et al., 2018), the number of trees considered for 
some cultivars such as ‘Frantoio’, ‘Gordal de Grana-
da’, ‘Manzanilla’, ‘Mollar de Cieza’, ‘Ocal’, ‘Picho-
line Marocaine’ or ‘Verdial de Badajoz’ reached more 
than 10. Cultivars were pooled in ten groups (Fig. 1 
and Fig. S1, Table S1 and Table S2 [suppl.]) depend-
ing on their full flowering (F1 to F10) or on their 
ripening date (R1 to R10) and including all the 
ranges from the earliest flowering and ripening date 
(Groups F1 and R1) to the latest ones (Groups F10 
and R10), respectively. ‘Borriolenca’, ‘Empeltre’, 
‘Arbequina’, ‘Manzanilla Cacereña’, ‘Nevado Azul’, 
‘Picholine Marocaine’, ‘Frantoio’, ‘Bolvino’, ‘Picual’ 
and ‘Blanqueta’ were the representative cultivars of 
these groups (Table 1). 

Data collection

Weather data were collected by a weather station 
included in the Agroclimatic Information Network of 
Andalusia (RIA) and located in the experimental field 
IFAPA-Alameda del Obispo (Gavilán et al., 2006), 
the same farm where the WOGB orchard is grown, 
and by an additional weather station managed by 
AEMET (State Agency of Meteorology) in Córdoba 
Airport.

The flowering data were provided from the 
WOGB-IFAPA database (Del Río & Vallejo, 2005). 
These phenology data were recorded following the 
procedure described by Barranco et al. (2005). Thus, 
flowering data were recorded every three days iden-
tifying successive phenological stages from winter 
rest period to fruit set. In every scoring day, the most 
delayed, frequent and advanced phenological stage 
was recorded for each tree. The BBCH scale was used 
for the phenological data analysis (Sanz-Cortés et al., 
2002). For that, the original data recorded according 

Table 1. Average full flowering date (FFD) and ripening date (RD) for representative cultivars. 
DOY indicates the day of the year.

Flowering group Representative cultivar
FFD Ripening 

group
RD

(DOY) (DOY)

F1 Borriolenca 114.9 R6 304.0
F2 Empeltre 118.6 R4 292.4
F3 Arbequina 119.6 R8 314.5
F4 Manzanilla Cacereña 119.8 R5 298.3
F5 Nevado Azul 120.6 R4 292.1
F6 Picholine Marocaine 121.0 R9 320.8
F7 Frantoio 121.4 R5 301.4
F8 Bolvino 122.1 R2 284.9
F9 Picual 123.2 R7 312.3
F10 Blanqueta 123.8 R5 300.1
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(TU) and the required thermal time until flowering 
(TT) are achieved, the flowering happens. Thus, TU 
is computed depending on the hourly temperature 
considering the rate of increase described in Fig. 2a 
and TT considering the mean daily temperature with 
the rate of increase described in Fig. 2b. This model 
is called thereafter Chilling+Heat flowering model. 
The second one was developed by Gabaldón et al. 
(2017) and uniquely considers heat accumulation units 
until a threshold is achieved (TT parameter) and then, 
flowering happens. TT parameter is computed follow-
ing the rate of increase described in Fig 2b. This 
model is called thereafter Heat flowering model. For 
assessment of ripening date, a simple model was de-
veloped computing heat accumulation until a thresh-
old (TT parameter), when ripening of the fruits is 
achieved as defined above. Similarly, TT parameter 
is computed following the rate of increase described 
in Fig 2b.

TU and TT parameters for Chilling+Heat flowering 
model and TT for Heat flowering and Ripening mod-
els were calculated for each cultivar, minimizing the 
error in the flowering/ripening date assessment using 
Root Mean Square Error (RMSE) as statistic. Due to 
the small number of parameters considered, the cali-
bration procedure to obtain the parameter set that 
minimized the RMSE did not consider any computa-
tional procedure. 

For the calibration of phenological models, six years 
in the period 2002-2008 were considered (year 2007 
was not included in the study due to a very poor flow-
ering and fruiting set observed). For the validation of 
the phenological models three years in the period 1994-
1999 were considered (years 1996, 1997 and 1998 were 
not included for the same reason than 2007). 

In order to assess the performance of flowering and 
ripening models by comparing simulated and observed 

years with poor flowering or with doubts about the 
quality of the measurements. The removal of these 
years was done to avoid including in the simulation 
models wrong components that could mask relevant 
processes. 

Variability analysis

ANOVA analysis was performed to evaluate the 
relative contribution of cultivar and year on FFD and 
RD variability. Spearman Rank correlation was used 
to determine the stability of the cultivar rank order 
among years for both variables. Correlation (Pear-
son) was done between the two variables under 
study. 

To determine the influence of the cultivar origin on 
the phenology, cultivars under study were grouped in 
West, Centre and East- Mediterranean geographic 
areas (Fig. 1). These three Mediterranean areas have 
been defined as the main gene pools in olive germ-
plasm (Haouane et al., 2011; Belaj et al., 2012; Bes-
nard et al., 2013). Besides, a clustering of olive cul-
tivars according to their putative geographical 
distribution has also been evidenced (Belaj et al., 
2016). The olive cultivar from Chile was not consid-
ered in the spatial analysis.

Phenological models

For assessing full flowering date, two simulation 
models were calibrated and validated for the 148 
cultivars previously described. The first one was de-
veloped by De Melo-Abreu et al. (2004) and is based 
in the computation of chilling and heat accumulation 
units. When the required accumulated chilling hours 

Figure 2. Rates of chilling unit accumulation for Chilling+Heat model (a) and rates of heat accumulation for 
Chilling+Heat, Heat and Ripening models (b).
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fact that, for 97% of the cultivars analyzed, the average 
FFD ranged between DOY 117 and 124. Even more, 
the FFD of 84% of the cultivars was concentrated in 
the range of 4 days (DOY 119-123). However, some 
exceptions with earlier (‘Borriolenca’, ‘Canetera’, 
‘Vallesa’ and ‘Figueretes’) and later (‘Ulliri i Kuq’) 
flowering cultivars were also observed (Table S1 
[suppl.]). Analyzing ripening date for the 86 cultivars 
under study during the same period (2002-2008), average 
RD values ranged from DOY 292 (for 2002 and 2003) 
to DOY 313 (2004) with mean average DOY value of 
301 (Table 3). When considering the cultivars (Table S1 
[suppl.]) the average RD values varied from DOY 272 
(‘Mavreya’) to DOY 330 (‘Gerboui’). 

The significant interaction cultivar by year was 
confirmed by the differences in FFD between the 
earliest and latest olive cultivars by year. This ranged 
from 8 days (from DOY 113 to DOY 121, in 2008) to 
17 days (from DOY 111 to DOY 129, in 2004) 
(Table 3). Analyzing by cultivar, the average range of 
FFD in the analyzed period was equal to 7.1 days, 
ranging from 4 days (‘Picual’, ‘Majhol 152’, ‘Es-
carabajuelo de Atarfe’ y ‘Escarabajuelo de Posadas’) 
to 13.5 days (‘Plementa Bjelica’) (Table S1 [suppl.]). 
Besides, the rank of cultivars according to their full 
flowering date was calculated for each year’s data. 
The correlation among the ranks obtained in the dif-
ferent years under study was very low (Spearman rank 
correlation between 0.34 and 0.69). 

Cultivar was the factor with the highest contribution 
to total variance for RD. Accordingly, the Spearman cor-
relations between the ranks of the cultivars in the differ-
ent years under study were higher (between 0.56 and 
0.72) than for FFD. The average range of RD by cultivar, 
in the period considered, was equal to 33 days, ranging 
from 10.5 days (‘Leccino’) to 63.5 days (‘Gordal de Velez 
Rubio’) (Table S1 [suppl.]). Differences in RD between 
the earliest and latest olive cultivars varied according to 
the year, with the largest range for 2005 (82 days, from 
DOY 268 to DOY 350) and the smallest for 2008 (55 
days, from DOY 272 to DOY 327; Table 3).

values, the RMSE statistic was considered. This statis-
tic is defined as:

	 RMSE =
(Si – 0i )2i=1

n∑
n

	  [1]

where Si is the simulated full flowering/ripening date 
value, Oi is the observed value, and n represents the num-
ber of data. De Melo-Abreu et al. (2004) reported RMSE 
values around 2.4 days using phenological models to 
assess flowering dates with satisfactory performance.

Results

Full flowering (FFD) and ripening date (RD)

The analysis of variance indicates that the three fac-
tors evaluated, i.e., cultivar and year, and their interac-
tion, had significant effect in both FFD and RD 
(Table 2). However, in the case of FFD, most of the 
variance was due to year variability, even though the 
number of cultivars was much higher than the years. 
The average FFD values by year ranged from DOY 118 
(2008) to DOY 124 (2005) with mean average value 
of DOY 121 (May 1st) (Table 3). On the contrary, a 
narrow variability for FFD was observed for the 148 
cultivars under study (Table 1, Table 3 and Fig. 3, and 
Table S1 [suppl.]) during the 2002-2008 period. The 
low cultivar variability in FFD was confirmed by the 

Table 2. Variance components (%) for full flowering date 
(FFD) and ripening date (RD) for the cultivars evaluated in 
the 6 years under study. All factors (cultivar, year and their 
interaction) had a significant effect (p< 0.001).

Factor FFD RD

Cultivar 18.0 37.3
Year 41.8 19.8
Cultivar*Year 10.5 6.3
Error 29.7 36.6

Table 3. Average full flowering date (FFD) and ripening date (RD) by year, including the range 
of variation. DOY indicates de day of the year.

Year
FFD RD

Avg. DOY Max Min Avg. DOY Max Min

2002 120.0 128.0 114.0 292.4 334.3 256.5
2003 121.6 125.0 111.0 291.5 325.0 254.5
2004 120.8 128.5 111.3 313.1 353.3 270.3
2005 124.0 129.0 118.5 308.8 349.5 268.0
2006 121.2 125.0 116.0 299.2 342.0 271.5
2008 117.6 121.0 113.0 301.0 326.5 271.5
Avg. 120.9 301.0
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climate change (i.e. early flowering date) or/and har-
vest (i.e. late harvest date) (Fig. 4). ‘Maurino’, 
‘Bolvino’, ‘Majhol1059’, ‘Kalamon’, ‘Dokkar’ and 
‘Leccino’ showed later flowering and early ripening. 
In the opposite site, ‘Arbequina’, ‘Verdial de Bada-
joz’, ‘Bouteillan’ and ‘Gerboui’ showed early flower-
ing and late ripening (Fig. 4).

Correlations between FFD and RD were calculated 
at tree level by year. Pearson coefficients obtained 
were very low, ranging between 0.007 and 0.140, 
indicating the lack of relationship between those pa-
rameters. In addition, the comparison of FFD and RD 
for each cultivar led to the identification of cultivars 
with valuable phenology in terms of adaptation to 

Figure 3. Inter-genotype full flowering date (FFD; in cyan) and ripening date (RD; in orange) 
variability for 148 and 86 genotypes, respectively. DOY means Day of Year

Figure 4. Comparison of beginning of full flowering (FFD) and ripening (RD) dates for each analyzed genotype. 
Codes for each cultivar are shown in Table S1 [suppl.]. A, B, C and D mark the cultivars with early FFD and early 
RD, early FFD and late RD, late FFD and early RD, and late FFD and late RD, respectively. 
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averaged RMSE for the whole validation period of 
7.1 days (Table 5). This pattern was similar for all 
the analyzed cultivars. Thus, for example, the dif-
ferences between observed and simulated FFD for 
‘Picual’ varied from 1 day in 1995 to 9.3 days in 
1994 (data not shown).

Heat flowering model

Averaged heat requirements (TT parameter) were 
equal to 583 U, ranging from 506 (for ‘Borriolenca’ 
cultivar) to 624 U (for ‘Ulliri i Kuq’ cultivar) (Table 4 
and Fig. 5b, and Table S4 [suppl.]). The TT values for 
each cultivar generated an averaged root mean square 
error (RMSE) equal to 5.2 days, ranging from 3.7 days 
(for ‘Changlot Real’, ‘Carrasqueño de Alcaudete’ and 
‘Negrillo Redondo’ cultivars) to 6.9 days (for ‘Joanenca’ 
cultivar).

The validation provided RMSE values from 3.7 days 
(in 1994) to 7.3 days (in 1995), with an averaged 
RMSE equal to 5.2 days (Table 5). This pattern was 
very similar for all the analyzed cultivars. For example, 
for ‘Picual’ differences ranged from 1.3 days (in 1994) 
to 13.0 days (in 1995).

Finally, a spatial analysis of the origin of the cul-
tivars was carried out. Thus, three regions within the 
Mediterranean basin were considered (Fig. 1) to 
evaluate differences in FFD and RD depending on the 
cultivar origin. Averaged FFD was very similar for 
the three regions, DOY 121, indicating thus a lack of 
clear pattern between phenological data and the origin 
of the cultivars under study. Thus, analyzing the cul-
tivars with the latest FFD, diverse origins were found 
such as ‘Ulliri i Kuq’ (Albania), ‘Blanqueta’ (Spain), 
‘Dokkar’ (Tunisia) and ‘Itrana’ (Italy) (Table 1 and 
Table S1 [suppl.]). Similarly, no-spatial pattern was 
detected for RD, although more differences between 
regions were found, with values ranging from aver-
aged DOY 293 in cultivars from Central Mediterra-
nean region to averaged DOY 307 from Western 
Mediterranean region.

Cultivar parameterization for assessing 
full flowering date

Chilling+Heat flowering model

Average chilling requirements (TU) was equal to 
279 U, ranging from 256 U (‘Blanqueta’ and ‘Fulla de 
Salze’) to 313 U (‘Vera’). Averaged heat requirements 
(TT) were equal to 313 U, ranging from 291 U (‘Bor-
riolenca’, ‘Canetera’ and ‘Vallesa’), to 349 U 
(‘Dokkar’) (Table 4 and Fig. 5a, and Table S4 [suppl.]).

The proposed parameterization described in Ta-
bles 4 and S4 [suppl] generated an averaged RMSE 
equal to 4.9 days, ranging from 3.6 days (for ‘Lec-
cino’) to 6.4 days (‘Chetoui’ and ‘Manzanilla de 
Abla’). The performance of the validation varied 
with the year, ranging from averaged RMSE equal 
to 5.1 days in 1995 to 9.1 days in 1994, with an 

Table 4. Optimum parameterization (chilling and heat requirements, TU and TT, respectively) for Flowering Chilling+Heat 
(C+H), Flowering Heat (H) and Ripening models, and root mean square error (RMSE) for representative cultivars sorted 
by full flowering date. 

Flowering 
group Representative cultivar

Flowering C+H Flowering H Ripening

TU TT RMSE
(days) TT RMSE 

(days) TT RMSE
(days)

F1 Borriolenca 288 291 5.6 506 5.0 5663 25.7
F2 Empeltre 304 319 5.0 553 5.0 5506 16.8
F3 Arbequina 290 324 4.6 568 5.8 5835 21.0
F4 Manzanilla Cacereña 284 324 4.9 570 4.4 5611 16.9
F5 Nevado Azul 290 332 5.2 579 4.8 5512 16.8
F6 Picholine Marocaine 274 334 4.7 584 5.2 5933 18.1
F7 Frantoio 271 334 4.7 589 5.1 5644 18.9
F8 Bolvino 271 334 4.8 599 4.8 5389 15.2
F9 Picual 270 343 5.4 611 5.0 5823 15.4
F10 Blanqueta 256 344 5.5 615 5.0 5624 19.8

Table 5. Averaged and annual root mean square error (RMSE, 
days) generated for each model (Flowering Chilling+Heat 
(C+H), Flowering Heat (H) and Ripening) in the validation 
process

Year Flowering C+H Flowering H Ripening

1994 9.1 3.7 19.5
1995 5.1 7.3 22.9
1999 7.0 4.5 30.2
Avg. 7.1 5.2 24.2
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Figure 5. Parameterization of the 150 genotypes for Flowering Chilling+Heat (C+H) (a), Flowering 
Heat (H) (b) and Ripening (c) models.
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diversity could be an interesting option. Thus, analyz-
ing the dataset obtained from WOGB-IFAPA, cultivars 
such as ‘Arbequina’, originally from Northeastern of 
Spain (Fernández i Martí et al., 2015), showed an early 
flowering date and late ripening, and confirm the rec-
ommendations carried out in previous studies (Gab-
aldón et al., 2017). However, at WOGB-IFAPA, under 
the weather conditions of continental Southern Spain, 
a low variability of full flowering dates was observed 
between the 148 cultivars under study. Thus, for the 
analyzed period, limited differences in flowering date 
between the earliest and the latest cultivar (12 days in 
average) and a significant interaction between cultivar 
and year was observed. Similar overlapping of flower-
ing dates was found previously by Barranco et al. 
(2005) in Córdoba (Spain), by Trentacoste & Puertas 
(2011) in Mendoza (Argentina) as well as by Vuletin-
Selak et al. (2018) in Split (South-West Croatia). The 
limited variability observed in full flowering date be-
tween cultivars from the WOGB-IFAPA may be re-
lated to the meteorological conditions of Córdoba (cold 
winters and warm springs). Besides, the overlapping 
in flowering date may represent an adaptation of the 
cultivars to ensure cross pollination as most of them 
are self-incompatible (Díaz et al., 2007). In addition, 
these results and the lack of a clear pattern between 
phenology and the origin of the cultivars may indicate 
that flowering phenology has not been a selection cri-
terion in olive growing regions. 

The lack of genetic variability detected in this study 
seriously hampered the possibility to include early 
flowering as a selection character on breeding programs 
and the development of adaptation strategies to climate 
change. It contrasted with the significant genetic vari-
ability found for other plant, fruit and oil quality traits 
on olive cultivars (Ben Sadok et al., 2013; León et al., 
2016; De la Rosa et al., 2016). As consequence of this 
lack of variability, no-recommendations related with 
earliness of flowering can be provided as all the geno-
types showed similar phenological characteristics, 
especially for the most-common grown olive cultivars 
(average full flowering date was DOY 123, DOY 120 
and DOY 121 for ‘Picual’, ‘Arbequina’ and ‘Frantoio’, 
respectively). Considering fewer common cultivars as 
‘Borriolenca’ (DOY 115), ‘Canetera’ (DOY 116) or 
‘Vallesa’ (DOY 117), some variability could be found, 
although other agronomic traits and their behavior 
under different environmental conditions (Navas et al., 
2018) should be considered in order to recommend 
those cultivars. Flowering time is greatly influenced 
by environment. Flowering normally occurs in a time 
when high air temperatures and water stress are fre-
quent. Therefore, to breed for earliness of flowering 
seems very convenient as a way of escaping from 

Cultivar parameterization for assessing 
ripening date

Average TT was equal to 5638 U, ranging from 5120 
U (for ‘Figueretes’) to 6034 U (for ‘Gerboui’) (Fig. 5c). 
The TT values for each cultivar (Tables 4 and S4 
[suppl.]) generated an averaged root mean square error 
(RMSE) for ripening date assessment equal to 16.2 
days, ranging from 5.8 days to 25.7 days (for ‘Leccino’ 
and ‘Borriolenca’, respectively). 

Validation results provided differences depending 
on the year. Thus, RMSE ranged from 19.5 (in 1994) 
to 30.2 days (in 1999), with averaged RMSE values of 
24.2 days (Table 5). Similar behavior was found analyz-
ing each cultivar. For instance, for ‘Picholine Maro-
caine’ the differences ranged from 7.3 days (in 1994) 
to 30 days (in 1995).

Discussion

Adaptation measures to climate change are required 
under Mediterranean environments as climate projec-
tions describe a clear increase in the temperatures 
(Giorgi & Lionello, 2008), that will aggravate negative 
impacts related to water and heat stress on the crops. 
However, the identification of adaptation measures to 
climate change for tree crops is not an easy task due to 
the limited flexibility in agricultural practices compared 
with those for annual crops, such as modifications in 
sowing date or crop cycle selection (Gabaldón et al., 
2015; Ruiz-Ramos et al., 2018). Thus, for new olive 
orchards the identification of cultivars with early flow-
ering date (Gabaldón et al., 2017) or/and with low 
chilling requirements (De Melo-Abreu et al., 2004; 
Torres et al., 2017) emerge as some of the most prom-
ising adaptation measures. This may be possibly re-
lated to the fact that heat and water stress impacts 
during the critical period of flowering and irrigation 
requirements (considering controlled deficit irrigation 
strategies) will be reduced (Gabaldón et al., 2017; 
Lorite et al., 2018). Equally, issues related to ripening 
could be considered; cultivars with early ripening could 
be impacted by damages in the olive trunk generated 
by the mechanized harvest process as sap flow reduc-
tion only is done under cold temperatures. Moreover, 
high temperatures during harvesting and fruit process-
ing in mills may also represents some disadvantages 
regarding oil quality (Torres et al., 2017). Then, culti-
vars with late ripening would be desirable in a future 
climate warming scenario.

In the search of cultivars with early flowering date 
and late ripening, optimal phenology adapted to future 
climate scenarios, the use of germplasm collection´s 
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IFAPA were high and variable depending on the year, 
with annual chilling units for the period 2001-2008 
varying between 635 U (for 2004/05) and 1188 U (for 
2001/02). Then, experimental fields located in regions 
with warmer winter temperatures than the identified 
under Mediterranean weather conditions (Aybar et al., 
2015) would provide more confidence in the evaluation 
and characterization of olive chilling requirements. 
Validation results for the flowering models obtained 
in this study confirm the uncertainty for assessing olive 
phenology. The validation of Chilling+Heat flowering 
model provided unsatisfactory results mainly caused 
by uncertainties in the estimation of chilling require-
ments parameter (TU). Under weather conditions with 
moderate winter temperatures, the consideration of 
phenological models uniquely based on heat require-
ments could be a reasonable alternative (Fornaciari 
et al., 1998; Galán et al., 2005; Perez-Lopez et al., 
2008; Gabaldón et al., 2017). This approach avoids 
the simulation/parameterization of the end of endodor-
mancy, cause of high uncertainty by the difficulty in 
the identification of this phenological stage (Chuine 
et al., 2016), and overcomes the huge variability in 
the calibration parameters related with basal tempera-
tures and chilling requirements thresholds (De Melo-
Abreu et al., 2004; Orlandi et al., 2006; Aguilera et al., 
2014). Thus, when the Heat flowering model was 
considered for the same years, and then TU parameter 
was not considered, more satisfactory results were 
obtained although these are not satisfactory either. 
These results coincide with those provided by Gab-
aldón et al. (2017) testing both approaches under 
controlled weather conditions. As consequence of 
those uncertainties, when the parameterization ob-
tained in the WOGB-IFAPA was compared with stud-
ies carried out in other locations, significant differ-
ences were found, indicating that the local weather 
conditions impacted on the calibration process. Thus, 
the parameterization of chilling requirements (TU) 
showed significant differences (De Melo-Abreu et al., 
2004; Aybar et al., 2015), even detecting some con-
tradictory results for same cultivars as ‘Frantoio’ (Bar-
ranco et al., 2005; Aybar et al., 2015). However, when 
uniquely accumulated temperature was evaluated (i.e. 
Heat flowering model), differences were lower (Tren-
tacoste & Puertas, 2011). 

A correct assessment of dormancy release is critical 
for a correct crop model performance. Unlike other 
crops as apricot (Andreini et al., 2014) or almond (Pope 
et al., 2014), olive shows a low variability in chilling 
requirements. However, despite the high relevance of 
olive in the Mediterranean agriculture, still high uncer-
tainties about the quantification of chilling require-
ments and thermal accumulation for olive remains 

stresses that could affect normal fecundation and initial 
fruit set. Considering that chilling requirements and 
flowering date are clearly related, the generation of 
early flowering cultivars implies indirect selection for 
low chilling requirements. 

In this study, two traits were considered to charac-
terize the phenological diversity of a World Olive 
Germplasm Bank; FFD and RD. However, other com-
ponents such as alternate bearing or fruit set have a 
critical relevance. Although effects of alternate bear-
ing on olive yield have been described (Lavee, 2007; 
Rojo et al., 2015), the agronomical practices carried 
out in the WOGB such as the early harvest and the 
irrigation management (Lodolini et al., 2016), have 
reduced the incidence of alternate bearing on olive 
yield and phenology. However, the limited available 
data avoided the consideration of alternate bearing or 
fruit set in the modelling process carried out in the 
current study. Future studies combining all these traits 
are required.

The variability in flowering date could be signifi-
cantly increased by including wild genetic resources 
(Klepo et al., 2014). Thus, Gabaldón et al. (2017) 
found significant variability in flowering date when 
wild genotypes from Canary Islands were considered. 
In that case, however, variability was increased only 
in terms of delayed flowering, i.e. the opposite to the 
desirable early flowering for climate change adaptation. 
In any case, the consideration of different wild genetic 
resources in breeding programs for increase variabil-
ity could be a reasonable strategy (Lavee & Zohary, 
2011; León et al., 2018).

Phenological models for olive flowering parameters 
usually have been based on experimental data under 
moderate cold winter conditions (Gabaldón et al., 
2017). Thus, previous studies carried out in locations 
such as Córdoba (Spain) or Mendoza (Argentina) have 
provided specific cultivar-parameterization of pheno-
logical models (De Melo-Abreu et al., 2004; Trenta-
coste & Puertas, 2011). However, some cautions must 
be considered as the low winter temperatures could 
generate uncertainties in the identification of chilling 
requirements due to in excess fulfillment of these re-
quirements for all the cultivars, homogenizing the end 
of endodormancy stage for all the cultivars, indepen-
dently of the chilling requirements of each cultivar. 
For example, average temperature in winter time in 
Córdoba during the analyzed period was 10.3ºC, gen-
erating enough accumulation of chilling-hour to fulfil 
well above the chilling requirements for all the ana-
lyzed cultivars, even for those with the highest chilling 
requirements. Thus, following the methodology and 
parameterization provided by De Melo-Abreu et al. 
(2004) the accumulation of chilling units in WOGB-
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and RD assessment as the combination of Dynamic 
model (Fishman et al., 1987) and ASYMCUR approach 
(Anderson et al., 1986; Pope et al., 2014) or the con-
sideration of maximum or minimum temperature in-
stead of the traditional average temperature (Andreini 
et al., 2014) are valuable alternatives for future re-
search. However, the low variability of the observations 
will be a critical fact that impact on the model effi-
ciency when indexes such as the Nash-Sutcliffe model 
efficiency was considered. 

Regarding ripening date, the evaluation of WOGB-
IFAPA allowed to identify early ripening cultivars such 
as ‘Mavreya’ (29th September; DOY 272), ‘Figueretes’ 
(DOY 273), ‘Leccino’ (DOY 275) and ‘Menya’ (DOY 
277). The effect of cultivar for this character seems to 
be much higher than for the case of the flowering time. 
However, modelling for assessing ripening date equal-
ly provided a non-optimal performance. Thus, the 
unique consideration of temperatures does not explain 
correctly the process. Other components such as crop 
load (Trentacoste & Puertas, 2011) or water status must 
be included in the phenological models for assessing 
ripening date. Moreover, it should be noted that ripen-
ing phenology (measured as a pigmentation index of 
the fruit) represents uniquely an indirect measurement 
of the actual agronomic traits of interest such as oil 
content and quality and, therefore, the development of 
specific models based on direct measurements of these 
traits should be considered in future works (De la Rosa 
et al., 2013).

Under future weather conditions the detected high 
homogeneity in flowering date between cultivars will 
be increased (Gabaldón et al., 2017) but also the un-
certainties associated to climate projections, chilling 
hour requirements parameterization and crop behavior. 
This implies that recommendations to stakeholders 
must be carried out with caution. To solve the detected 
limitations, future studies must be focused on the inte-
gration of additional olive germplasm banks under 
warmer weather conditions for assessing chilling re-
quirements, and to promote the experimentation and 
adapted modelling under future weather conditions such 
as under elevated CO2 or impact of heat/water stress 
under flowering and ripening.
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