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Abstract
Aim of study: To investigate the effects of three early leaf removal treatments on the phenolic compounds of cv. ‘Tempranillo’ (Vitis 

vinifera L.) grape skins.
Area of study: The experiment was conducted in a vineyard located in Requena, Valencia (South-eastern Spain) over two consecutive seasons.
Material and methods: Four treatments were investigated over two seasons in drip-irrigated vines: Control (C), non-defoliated and three 

defoliation treatment, applied at different phenological stages and intensities where all leaves from the first 6 nodes were eliminated just 
before flowering (ED) and at fruitset (LD). The fourth defoliation treatment was performed at the same time of ED but only the leaves facing 
east of the eight first nodes were removed (EED). At harvest, thirty-eight phenolic compounds were quantified by HPLC in the grape skins, 
including anthocyanins, flavanols, flavonols, hydroxycinnamic acids and their tartaric derivatives.

Main results: A general increase of the skin phenolic compounds concentration was found in response to the defoliation treatments. 
The largest and more significant effects were observed for LD in 2009 with relative increases with respect to the un-defoliated vines of 
14.8, 86.0, 119.0, and 75.9% for anthocyanins, flavanols, flavonols and hydroxycinnamates, respectively. On the other hand, EED did 
not clearly modify any polyphenolic compound. In addition, the response of phenolic families analyzed to defoliation treatments was 
different. Malvidine derivatives were not altered by any of the treatments, while the contents of quercetin and kaempferol derivatives 
and ferulic and coumaric acids, increased in both years when LD was applied. 

Research highlights: The defoliation effects on specific phenolic substances were dependent on timing, severity, and the season. Skin 
phenolic compounds increase in response to defoliation treatments and flavonols and hydroxycinnamates were the most affected families.

Additional key words: anthocyanins, flavanols, flavonols, hydroxycinnamic acids
Abbreviations used: B1, B2 and B3 (procyanidins B1, B2 and B3); C (Control); CA [(+)-catechin]; CF (caffeic acid); CFT (caftaric 

acid); CI (cool night index); COU (coumaric acid); COUT (coutaric acid); Cy (cyanidin); DI (Dryness index); Dp (delphinidin); DpA, CyA, 
PtA, PnA and MvA (respective acetylglucoside forms); DpC, CyC, PtC, PnC and MvC (respective p-coumaroylglucoside forms); DpG, 
CyG, PtG, PnG and MvG (respective 3-glucoside forms); EC [(-)-epicatechin); ED (Hand leaf removal applied just before flowering); EED 
(Hand leaf removal applied just before flowering but only the leaves facing east of the eight first nodes were removed); FE (ferulic acid); 
FET (fertaric acid); HI (Huglin index); Ih (isorhamnetine); Kp (kaempherol); KpR (kaempherol-3-rutinoside); LD (Late hand defoliation 
applied at fruit set); Mv (malvidine); My (myricetin); MyG, QcG, KpG and IhG (respective 3-glucoside forms); Pn (peonidine); Pt (pe-
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Introduction
In modern viticulture, canopy management plays a key 

role, and it is widely recognized as an important factor in 
the composition of the resulting grapes and wines. Tra-
ditionally, leaves have been removed around the area of 
the clusters between fruit set and ripening in cool climate 
viticulture regions around the world to manipulate and to 
reduce the canopy density in order to increase canopy air 
circulation and improve bunch microclimate (Poni et al., 
2006; Lemut et al., 2011). In the first decade of this cen-
tury, defoliation started to be applied before and or at the 
beginning of bloom. This technique is called early defo-
liation (Poni et al., 2009; Diago et al., 2010). Limiting car-
bohydrate supply, induced by early leaf removal applied 
around bloom, causes a reduction in fruit set (Poni et al., 
2009; Acimovic et al., 2016), lowering cluster compact-
ness, decreasing yield (Tardaguila et al., 2010), affecting 
the content of primary and secondary metabolites in grape 
berries (Lemut et al., 2013a; VanderWeide et al., 2018; 
Yue et al., 2019), improving fruit technological maturi-
ty and polyphenolic composition at harvest (Gatti et al., 
2012; Silvestroni et al., 2018), and improving wine aroma 
(Vilanova et al., 2012; Moreno et al., 2017). However, it 
has been reported that the effect of early defoliation de-
pends on timing, intensity and site specific characteristics 
(Uriarte et al., 2012). Severe defoliation (i.e. more than 
five leaves) has to be carried out to clearly affect vine per-
formance (Tardaguila et al., 2008). 

Phenolic compounds belong to an important group 
of pigments that are widely spread throughout the plant 
kingdom. These compounds, which include flavonoids 
(i.e., anthocyanins, flavonols and flavanols) and non-fla-
vonoids (i.e., hydroxycinnamic acids and stilbenes), have 
been described as important indicators of grape qua-
lity. The main anthocyanins identified in Vitis vinifera 
L. grapes and wines are the 3-O-glucosides, 3-O-acetyl 
glucosides and 3-O-pcoumaroyl glucosides of five an-
thocyanidins (delphinidine-Dp, cyanidine-Cy, petunidi-
ne-Pt, peonidine-Pn and malvidine-Mv). Flavonols are 
also largely localized to the grape skins, where they are 
found as flavonol glycosides of quercetin, kaempferol, 
myricetin and isorhamnetin. Flavan-3-ols, such as cate-
chin and epicatechinin, and flavan-3,4-diol dimers such 
as B1, B2 and B3, are present in the skin and mainly in 
grape seeds. Lastly, hydroxycinnamic acids such as cou-
maric, caffeic and ferulic acids, and their tartaric esters 
or diesters caffeoyltartaric acid, p-coutaric acid (couma-
royltartaric acid), and fertaric acid (feruloyltartaric acid) 
are commonly accumulated in berry skin and the flesh of 
white and red vinifera and non-vinifera varieties (Downey 
et al., 2006). 

The phenolic content and profile of grapes depends 
on the cultivar and, for a determinate cultivar, on the 
growing area, climatic conditions, and viticultural practi-

ces (Downey et al., 2006). As the different polyphenolic 
compounds are synthesized at different times, and as they 
have different chemical reactivity and play different roles 
in the organoleptic characteristics of wines, a detailed and 
thorough study of their response to the different viticultu-
ral and oenological practices is necessary.

Studies have shown that the timing of defoliation (Poni 
et al., 2006; Lemut et al., 2013b) as well as the specific 
percentage of leaves removed (Acimovic et al., 2016) may 
affect phenolic berry composition differently. Contrary to 
anthocyanins, limited data exist regarding the effect of 
this technique for other skin phenolic compounds. 

Color is an important factor for evaluating the qua-
lity of red wine, and it is linked to the accumulation of 
anthocyanins in the grape berry skin. However, it is not 
only the anthocyanin concentration and profile that is res-
ponsible for wine color: copigmentation phenomena can 
account for 30% to 50% of color in young wines (Boul-
ton, 2001). Some authors suggest that the copigmentation 
reactions of anthocyanins are the first phase in the for-
mation of stable polymeric pigments during wine aging 
(González-Manzano et al., 2008). Copigmentation results 
from molecular interactions between anthocyanin pig-
ments and other organic molecules, called cofactors. The 
principal cofactors in young red wines are flavonoids and 
non-flavonoid phenolic compounds, such as the flavonols, 
flavan-3-ols, oligomeric proanthocyanidins, cinnamic 
acids and hydroxycinnamoyl derivatives (Boulton, 2001). 
Given the importance of these phenolic substances on the 
stability and intensity of the color of red wines through 
copigmentation phenomena, the study and monitoring of 
agronomic factors and viticultural practices that increase 
their content and improve the cofactor concentration is a 
major objective for the production of high quality wines, 
especially in terms of their color. 

A previous work on 'Tempranillo' vines grown in 
South-eastern Spain (Risco et al., 2014) studied the 
effects of early defoliation on grape performance, cluster 
micro-climate and berry soluble solids, acids and general 
phenolic composition. In the same way, the aim of this 
research was to provide more information about the effect 
of defoliation on anthocyanins, flavanols, flavonols, and 
hydroxycinnamic phenolic compounds from grape skins 
in a ‘Tempranillo’ vineyard grown in the semiarid condi-
tions of SE Spain.

Material and methods
Plant material and site description

The experiment was conducted in a ‘Tempranillo’ 
vineyard (rootstock 161-49) located in Requena, Valen-
cia, SE Spain (lat: 39º 29' N, long: 1º 13' W; elevation 
750 m asl) for two consecutive seasons (2008 and 2009).  
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The same experimental set up was also used in Ris-
co et al. (2014) to report the grape performance results. 
The vineyard was planted in 1991 at a spacing of 2.45 
× 2.45 m (1666 plants/ha). Vines were trained to a ver-
tical shoot position (VSP) training system oriented in a 
north-south direction. All treatments were drip-irrigated 
to replace half of the estimated crop water needs. By the 
end of the season, irrigation applications were 130 and 
174 mm in 2008 and 2009 respectively. The soil at the 
site was a Typic Calciorthid with clay loam to light clay 
texture and the climate semi-arid continental with annual 
rainfall of 430 mm, with 65% falling during the vine  
dormant period.

Climatic conditions

Weather conditions were measured with an automated 
meteorological station located in the plot. Climatic indi-
ces were calculated (Table S1), related to water balance 
and thermal conditions: Huglin index (HI) (Huglin, 1978), 
cool night index (CI) and dryness index (DI) (Tonietto & 
Carbonneau, 2004). These indices are commonly used in 
viticulture-climate studies, helping to define the represen-
tative variability of viticulture climates worldwide.

Leaf removal treatments

A randomized block design was set up with each treat-
ment replicated across four blocks. Four treatments were 
studied: 

 — Control: no leaves were removed.
 —ED: Early defoliation. Leaf removal was applied on 
the 29th and 25th of May in 2008 and 2009 respectively, 
just before flowering (phenological stage H, Baggioli-
ni, 1952). All leaves from the first six nodes, including 
leaves from lateral shoots at these node positions were 
removed. The portion of the total leaf area removed 
were 79% and 93% in 2008 and 2009, respectively.
 —LD: Late defoliation. Leaf removal was performed at 
fruit set (phenological stage J, Baggiolini, 1952) on 
the 17th and 6th of June in those years, respectively. All 
leaves from the first 6 nodes were removed. The por-
tions of the total leaf area removed were 58 and 84% 
in 2008 and 2009 respectively.
 — EED: As in the ED treatment, leaf removal was performed 
just before flowering in phenological stage H, but only the 
leaves facing east of the eight first nodes were removed 
(four leaves). The portion of the total leaf area removed 
were 55% and 60% in 2008 and 2009, respectively.
In all leaf defoliation treatments, the main leaves from 

the secondary shoot were also removed. The amount of 
leaf area (LA) removed was estimated using allometric 
relationships between shoot length and leaf area obtained 

in four shoots per experimental vine using the methodolo-
gy proposed by Mabrouk & Carbonneau (1996).

Harvest and sampling

All treatments were harvested on the same day, on the 
1st and 20th of September in 2008 and 2009, respectively. 
The clusters were harvested according to a technologi-
cal maturation index (TSS/TA), using a threshold ratio  
between 5 and 6.5. Analysis for total soluble solids (TSS, 
ºBrix), and titratable acidity (TA, g/L) were performed ac-
cording to the official methods of the Organisation Interna-
tionale de la Vigne et du Vin (OIV, 1990). At harvest, 500 g 
of healthy grapes were randomly sampled from each expe-
rimental plot. From them, samples composed of 150 berries 
were obtained, weighed (analytical balance, Mettler Toledo 
PL602-S), and stored three months at -20 °C until analysis.

Determination of berry skin low molecular  
weight phenolic compounds

Extraction of berry skin phenolics

Berry skins of 50 berries from each plot (in duplica-
te) were separated from the pulp and seeds with a scalpel 
and weighed using a high-precision analytical scale (CSB 
600C, Cobos, Barcelona). The skins were brought to full 
dryness in a Virtis Genesis 25L0L lyophilizer (Virtis Com-
pany, Gardiner, NY, USA). The lyophilized skins obtained 
were weighted and homogenized. Extraction of phenolic 
compounds from 0.5 g of homogeneous grape skin powder 
with 4 mL methanol/formic acid (95:5 v/v) was done ac-
cording to Gao et al. (1997). The extracts were centrifuged 
for 10 min at 1962 ×g. The supernatant was collected in a 
laboratory flask and stored in the fridge at 4 ºC. The ex-
traction process was repeated until the skin were colorless. 
The supernatants were combined in a flask and the volume 
was brought to 50 mL with methanol:formic acid. For each 
sample, two extractions were performed. 

Analysis of berry skin phenolic compounds by HPLC

The acid-alcohol extracts, which were previously pas-
sed through a 0.25 μm pore size nylon membrane (Chro-
mafil GF/PET-20/25 filters), were analyzed with an HPLC 
Agilent Model 1200 LC instrument (Agilent Technolo-
gies, Palo Alto, CA, USA), equipped with a UV–Visible 
diode-array detector (DAD), fluorescence spectropho-
tometer detector (FLD), and the Chemstation software 
package for LC 3D Systems (Agilent Technologies, Palo 
Alto, CA, USA) to control the instrument and for data 
acquisition and data analysis.
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The analysis was carried out as described, following a 
previously reported method (Moreno et al., 2015). For iden-
tification and quantification of compounds, 10 µL extracts 
were injected directly into the HPLC. Absorbance at 280, 
320, 360 and 520 nm was measured with the DAD detector 
and excitation at 280 and emission at 320 nm was measured 
with the FLD detector. Phenolic compounds were identified 
according to the retention times of pure compounds availa-
ble. The total amount of polyphenols families was given in 
mg of malvidine-3-glucoside, myricetin-3-glucoside, (+)-ca-
techin and caffeic acid per kg of berry fresh weight for an-
thocyanins, flavonols, flavanols and hydroxycinnamic acids, 
respectively, and total phenolic content (TPC) was calcula-
ted from the sum of the concentrations (mg of gallic acid per 
kg of berry fresh weight) for each compound individually.

Forty-two phenolic compounds were identified and 
quantified in 'Tempranillo' grape skins, including antho-
cyanins, flavonols, and hydroxycinnamic acids, as well 
as flavanol monomers and dimmers. The HPLC analyses 
were performed in duplicate. Thus, each result is the mean 
value from 32 determinations (2 HPLC/extract*2 extract/
sample*2 samples/block*4 blocks/treatment). 

Statistical analysis

The effect of treatment, year and treatment × year interac-
tion was evaluated by a one- (treatment) or two-way (treat-
ment, year) analysis of variance ANOVA. Means were com-
pared using Tukey’s HSD test (p<0.05). The data analyses 
were performed using XLstat-Pro (Addinsoft, Paris, 2009). 

Results
Climate index study

The HI were 2109 and 2271 for 2008 and 2009 vinta-
ges, respectively (Table S1). This implies that in the area 
of study, the HI corresponded to warm temperate (HI+1; 
2100<HI<2400). The CI for this location reached values 
from 14.5 °C (2008 vintage) to 14.7 °C (2009 vintage) 
classifying the area of study as temperate nights (CI-1; 
14<CI<18). In terms of drought, different DI values were 
obtained in the two seasons, with the 2008 vintage classi-
fied as sub-humid (DI-1; 50<DI<150) and 2009 as mode-
rately dry (DI+1; -100<DI<50). 

Effect of early defoliation 

Berry components

The data on the effect of early defoliation, year and 
their interaction on berry components and yield in 'Tem-

pranillo' cultivar is reported in Table S2 [suppl]. The effect 
of the treatment was significant on berry weight, pulp 
and seed fresh weight, and yield, however all parameters 
were affected by year except for the pulp and seed fresh  
weight. It is important to note the yield decrease repor-
ted in 2009 respect with the previous season, especially 
in the defoliated treatments (17.1%, 46.5%, 39.0% and 
28.1% for C, ED, LD and EED respectively). When the 
effect of treatments was investigated on a yearly basis, 
it is to mention that in 2008, with respect to C, all early 
leaf removal treatments (ED, EED and LD) significantly 
reduced the berry weight, with the lowest value for LD. 
These decreases in berry weight were due to a reduction 
in weight of all the berry constituents, pulp, seeds and 
skins. Nevertheless, in 2009, no effect on berry weight 
was observed in LD and EED, and skin weight was not 
modified by any of the treatments imposed. Regarding the 
skin-to-berry-ratio (%), no significant differences were 
detected for any of the two years under study. Finally, 
with the exception of EED in 2008, a significant decrease 
in yield was observed for all defoliated treatments respect 
to C in both years. Besides, these decreases were higher 
in 2009. Thus, the reduction in yield registered compared 
with C in LD and ED reached 22.5% and 26.1% in 2008 
and 50.0% and 45.6% in 2009, respectively. In 2009, the 
reduction in yield observed in EED compared with the C 
treatment was of only 27.2%. The entire grapevine perfor-
mance data set is reported in Risco et al. (2014). 

Polyphenolic compounds 

Polyphenolic families: As depicted in Fig. 1, the con-
tent of polyphenolic families analyzed was different on 
both seasons and a statistically significant year effect 
was observed for all families except for flavonol. With 
respect to the experimental treatments carried out, in 
both years, a general trend to increase the concentration 
of polyphenolics from defoliated treatments respect to 
the Control was found. Statistically significant differen-
ces were found on the biannual mean with exception of 
total anthocyanin (Fig. 1). Because the effects of defo-
liation were different according to the applied treatment, 
polyphenolic groups and seasons, it was interesting to 
analyse the effect of the treatments on different families 
in each year. In 2008, with respect to the C, LD did not 
significantly affect the total anthocyanin family content 
in the skins of cv. ‘Tempranillo’ berries; however, fla-
vanol, flavonol and hydroxycinnamic compounds con-
centrations increased significantly (27.3%, 105.7% and 
38.3% respectively, p<0.01). There were not significant 
differences between LD and ED, either EDD or C treat-
ments for any polyphenolic group analyzed. 

In 2009, there were clear increases of flavanol, fla-
vonol and hydroxycinnamic contents on LD (86.0%, 
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111.9% and 75.9%, respectively) and also on ED 
(86.0%, 87.1% and 47.3%, respectively) with respect 
to the C. Significant increases of TPC were found on 
LD. The LD was the most effective treatment for in-
creasing phenolic compounds concentration of the cv. 
‘Tempranillo’ skins. 

Anthocyanin compounds: Fifteen compounds were 
identified, quantified and grouped according to the  
corresponding anthocyanidin derivatives: Dp, Cy, Pt, Pn 
and Mv, as shown in Table 1. The results show that Mv, 
(61.3%), Pt (17.4%) and Dp (14.7%) derivatives were the 
predominant anthocyanin substances in grape skins of 
‘Tempranillo’, regardless of the season and the treatment, 
while Cy and Pn exhibited the lowest values in all treat-
ments under our experimental conditions. Table 1 also 
shows that anthocyanidin-monoglucosides were predomi-
nant forms, followed by coumaroyl glucosides. However, 
the acetyl glucoside group had the lowest value. Malvi-
dine-3-glucoside (43.5% with respect to the total antho-
cyanin content average value) was the major individual 
anthocyanin compound. 

Table 1 reflects the effect of treatment, year and their 
interaction on these compounds. The factor treatment was 
statistically significant on nine individual anthocyanin 
compounds and on ΣDp, ΣCy, ΣPt and ΣPn. It should be 
highlighted that ΣMv (the most abundant group) were not 
affected by the early defoliation treatments, neither by the 
year and treatment × year effect. 

In general, the contents of ED and EED were similar 
to C in 2008 and 2009, and LD was the most effective 
treatment for increasing the anthocyanin compounds in 
both seasons. Focusing on this treatment (LD), with res-
pect to C, significant differences were registered for DpG, 
CyA, and PtG in 2008 and CyC and PnC in 2009. Thus, 
in 2008, LD increased the concentrations of ΣDp, ΣCy 
and ΣPt derivatives in ‘Tempranillo’ grape skins. Howe-
ver, only ΣDp and ΣPt increased in 2009. Nevertheless, 
it was noticeable that MvG compounds were not altered 
by any of the treatments in any of the two years studied. 
The anthocyanin profile was modified by LD defoliation 
treatment in both years. Considering the biannual mean, 
LD increased the content of DpG, DpA, ΣDp, CyA, CyC, 

 
Statistical significance a

Treatment (T) Year T×Year
Anthocyanin ns ** ns

Flavanol *** *** *
Flavonol *** ns ns

Hydroxicinamic *** *** ns
TPC b *** *** ns

Data are average values (n = 32). Vertical bars represent ± SD. The vertical dotted line mark the separation between years.   Treat-
ments: C: control, no defoliated. ED and LD: all leaves from the first 6 nodes were eliminated just before flowering and at fruit-set 
respectively. EED: only the leaves facing east of the 8 first nodes were removed just before flowering.   a For the same year (sam-
pling date), different letters indicate statistically significant differences at after Tukey test (p<0.05). *, **, *** indicate statistical 
differences at p<0.05, 0.01, 0.001 respectively; ns: not significant.    b TPC: Total phenolic content.

Figure 1.  Effect of early leaf removal on ´Tempranillo´ grape-skin content of total anthocyanin, flavanols, flavonols, 
hydroxycinnamic compounds and total phenolic content (TPC)
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Compound 1 Treatment 
(T) 2

Year Interannual
mean

Statistical significance 3

2008 2009 T Year T×Year

Dp derivates

DpG

Control
ED
LD

EED

131.49a

151.02ab

161.04b

134.99a

84.94ab

90.81ab

112.26b

81.32a

108.22a

120.91ab 

136.65b

108.15a 

** ** ns

DpA

Control
ED
LD

EED

4.07a

4.50a
4.87a

4.32a

4.33a

4.47a

5.37a

4.36a

4.20a

 4.49ab
 5.13b
4.35a

** ns ns

DpC

Control
ED
LD

EED

1.71a

1.46a

1.63a

1.84a

7.98a

9.02a

8.38a 
11.80a

4.84ª 
5.24ª 
5.00a 

6.82b 

* *** ns

ΣDp

Control
ED
LD

EED

137.27a

158.98bc

167.55c

141.17ab

97.24a

104.30ab

126.02b

97.48b

117.26a

130.64ab

146.79b

119.32a

** *** ns

Cy derivates

CyG

Control
ED
LD

EED

16.50ab

16.96ab

20.40b

14.27a

12.95a

13.00a

17.11a

11.04a

14.73ab

14.99ab

18.75b

12.66a

** ** ns

CyA

Control
ED
LD

EED

0.67a

1.24ab

1.35b

1.00ab

nd
nd
nd
nd

0.34ª 
0.62b 
0.68b 

0.50ab 

* *** *

CyC

Control
ED
LD

EED

3.47a

4.15a

4.90a 
3.62a

3.44a

4.88bc

4.99c

3.86ab

3.46a

 4.52b

4.95b

3.74a

*** ns ns

ΣCy

Control
ED
LD

EED

20.65a

22.37a

26.65b

18.90a

16.39ab

17.89ab

22.10b

14.90a

18.52a

20.13ab

24.38b

16.90a

** ** ns

Pt derivates

PtG

Control
ED
LD

EED

116.03a

129.04ab

138.26b

115.56a

94.63a

100.60a

123.00a

95.68a

105.33a

114.82ab

130.63b

105.62a

** *** ns

PtA

Control
ED
LD

EED

4.60a

4.58a

5.20a

4.96a

6.61a

7.20a

7.70a

7.35a

5.61a

5.89a

6.45a

6.16a

ns *** ns

PtC

Control
ED
LD

EED

29.20a

32.58a

32.84a

31.81a

28.84a

32.53a

32.25a

30.70a

29.02a

32.56a

32.55a

31.26a

ns ns ns

ΣPt

Control
ED
LD

EED

149.83a

166.21ab

176.30b

152.33ab

130.08a

140.33ab

162.95b

133.72ab

139.95a

153.27ab

169.63b

143.03a

** ** ns

Pn derivates PnG

Control 34.95a 24.96a 29.96ab

* ** ns
ED 29.47a 25.89a 27.68ab

LD 35.12a 30.99a 33.06b

EED 27.08a 23.81a 25.44a

Table 1.  Effect of early leaf removal on grape-skin anthocyanin concentration (mg/kg berry fresh weight) under three defoliation 
regimes
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Compound 1 Treatment 
(T) 2

Year Interannual
mean

Statistical significance 3

2008 2009 T Year T×Year

Pn derivates

PnA

Control 0.68a 0.65a 0.66a

ns ns ns
ED 0.86a 0.84a 0.85a

LD 0.92a 0.99a 0.96a

EED 0.51a 0.85a 0.68a

PnC

Control 7.97a 7.02a 7.49a

** ns *
ED 7.28a 8.38ab 7.83ab

LD 8.21a 9.47b 8.84b

EED 7.20a 7.38a 7.31a

ΣPn

Control 43.60a 32.62a 38.11ab

* * ns
ED 37.61a 35.11a 36.36ab

LD 44.25a 41.46a 42.85b

EED 34.83a 32.04a 33.43a

Mv derivates

MvG

Control 404.94a 344.88a 374.91a

ns ** ns
ED 417.80a 332.17a 374.99a

LD 392.94a 383.37a 388.15a

EED 404.29a 353.84a 379.07a

MvA

Control 20.21a 26.85a 23.53a

ns *** ns
ED 20.62a 27.32a 23.97a

LD 20.74a 28.19a 24.46a

EED 22.44a 29.33a 25.88a

MvC

Control 123.56a 135.18a 129.37a

ns ** ns
ED 119.65a 139.76a 129.71a

LD 121.73a 135.09a 128.41a

EED 132.33a 144.22a 138.28a

ΣMv

Control 548.70a 506.90a 527.80a

ns ns ns
ED 558.00a 499.25a 528.66a

LD 535.41a 546.65a 541.03a

EED 559.06a 527.39a 543.23a

Σ Monoglucosides forms

Control 723.13a 576.31a 649.74ª 

ns *** ns
ED 761.02a 576.79a 668.92ª 
LD 767.66a 684.22a 726.01ª 

EED 711.32a 578.71a 644.96a 

Σ Acetyl glucoside forms

Control 30.33a 38.73a 34.69ª 

ns *** ns
ED 32.47a 40.17a 36.32ª 
LD 33.81a 42.68a 38.19ª 

EED 33.74a 42.32a 38.00ª 

Σ Coumaroyl glucoside forms

Control 170.16a 186.30a 178.28ª 

ns ** ns
ED 169.34a 199.32a 184.34ª 
LD 174.03a 195.54a 184.67ª 

EED 180.92a 202.11a 191.52a

Data are average values (n = 32). Within each column: different letters indicate significant difference among treatments after Tukey test (p<0.05).  
1 Dp: delphinidine. DpG: delphinidine-3-glucoside. DpA: delphinidine-3-glucoside acetate. DpC: delphinidine-3-glucoside coumarate. Cy: cya-
nidine. CyG: cyanidine-3-glucoside. CyA: cyanidine-3-glucoside acetate. CyC: cyanidine-3-glucoside coumarate. Pt: petunidine: PtG: petunidi-
ne-3-glucoside. PtA: petunidine-3-glucoside acetate. PtC: petunidine-3-glucoside coumarate. Pn: peonidine. PnG: peonidine-3-glucoside. PnA: 
peonidine-3-glucoside acetate. PnC: peonidine-3-glucoside coumarate. Mv: malvidine. MvG: malvidine-3-glucoside. MvA: malvidine-3-gluco-
side acetate. MvC: malvidine-3-glucoside coumarate.  2 C: Control, no defoliated. ED and LD: all leaves from the first 6 nodes were eliminated 
just before flowering and at fruit-set respectively. EED: only the leaves facing east of the 8 first nodes were removed just before flowering.   
3 *, **, ***: statistical differences at p<0.05, 0.01, 0.001 respectively; ns: not significant. 

Table 1 (cont.).  Effect of early leaf removal on grape-skin anthocyanin concentration (mg/kg berry fresh weight) under three de-
foliation regimes
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ΣCy, PtG, ΣPt, PnC respect with C and increased the con-
tent of DpG, DpA, DpC, ΣDp, CyG, CyC, ΣCy, PtG, ΣPt, 
PnG, PnC, ΣPn respet with EED. However, no significant 
differences were reported between ED and LD for any 
compound.

Non-anthocyanin flavonoid compounds: Results for 
the non-anthocyanin flavonoid compounds are shown in 
Table 2, where it is observed that CA was the predomi-
nant flavan-3-ol in cv. ‘Tempranillo’ skins in both years, 
while B3 and B1 were the main flavan-3,4 diols in 2008 
and 2009, respectively. In 2008, respect to C, the LD 
treatment significantly affected only one compound, in-
creasing the B3 concentration value. However, it is no-
teworthy the increase of EC, B1 and B3 in LD respect to 
EED. In 2009, ED and LD increased the contents of all 
flavonol analyzed respect to C, where the contents were 
similar to EED, whit exception of CA. As a consequence 
of these results, a significant interaction treatment × year 
(p<0.001) was reported for CA and B1 compounds.

As shown in Table 3, MyG, QcGR, and QcG, were 
the most abundant flavonol compounds in ‘Tempranillo’ 
skins in both years. Because the treatment factor was sta-

tistically significant for all compounds, this family was 
the most affected by the early leaf removal treatments. 
ED, and mainly LD treatments exerted a positive effect 
in the accumulation of all individual flavonol compounds 
in the grape skins for these two seasons, while no effect 
of the EED treatment respect to control was observed in 
any season. In the LD treatment, the largest increases with 
respect to the control were found in QcR (242% in 2008) 
and KpR (over 300% in both seasons) compounds. In 
contrast, this increase never reached 40% for IhG. 

Non-flavonoid compounds: Hydroxycinnamic com-
pounds and t-resveratrol: The influence of early  
defoliation, year and their interaction on hydroxycinna-
mic acids (CF, COU, and FE), and on their cis- and trans- 
tartaric derivatives (c and t CFT, COUT and FET), and 
stilbenes (tR) are shown in Table 4. The results show that 
CF and c-FET were the predominant hydroxycinnamic 
compounds in ‘Tempranillo’ skins for the C treatment 
in 2008 and 2009, respectively. As reported in Table 4, 
the contents of hydroxycinnamic compounds depended 
mostly of the year, where the highest contents were repor-
ted for the 2008 season. With regard to the effect of the 

Compound 1 Treatment (T) 2
Year

Interannual mean
Statistical significance 3

2008 2009 T Year T×Year

CA

Control 0.79a 0.42a 0.60a

*** ** *** 
ED 0.80a 1.29c 1.05b

LD 0.74a 1.30c 1.02b

EED 0.42a 0.71b 0.57a

EC

Control 0.39ab 0.13a 0.26ab

** *** ns
ED 0.45ab 0.35b 0.40bc

LD 0.59b 0.34b 0.46c

EED 0.29a 0.18a 0.24a

B1

Control 5.48a 4.28a 4.88a

** ** ***
ED 4.53a 7.32b 5.93b

LD 4.85a 7.12b 5.98b

EED 4.60a 4.80a 4.70a

B2

Control 0.53ab 0.19a  0.36a

*** *** ns
ED 0.61ab 0.37b  0.49b

LD 0.65b 0.45b  0.55b

EED 0.40a 0.17a 0.28b

B3

Control 6.54a 2.35a 4.45a

*** *** ns
ED 8.32ab 4.83b 6.58b

LD 10.65b 4.47b 7.56b

EED 5.91a 2.65a 4.28a

Data are average values (n = 32). Within each column: different letters indicate significant difference among treatments after Tukey test 
(p<0.05).  1 CA: (+)-catechin. EC: (-)-epicatechin. B1: procyanidin B1. B2: procyanidin B2. B3: procyanidin B3.  2 Treatments: see  
Table 1.  3 *, **, ***: statistical differences at p<0.05, 0.01, 0.001 respectively; ns: not significant. 

Table 2.  Effect of early leaf removal on grape-skin flavanol concentration (mg/kg berry fresh weight) under three defoliation  
regimes.
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defoliation treatments carried out, a trend to increase the 
concentration of eight of these compounds was observed 
in the ED and LD treatments with respect to the C (inte-
rannual mean value). In 2008, the increases of hydroxy-
cinnamic compounds due to the application of the LD 
treatment was more clear than what reported for the EED 
regime respect to the C. On the other hand, the ED treat-
ment did not modify the concentration of any hydroxycin-
namic compound. In 2009, LD treatment increases, res-
pect to the C, the concentration of C-CFT, COU, C-FET, 
T-FET and tR, while ED increases the concentration of 
C-CFT, COU and FE. However, EED treatment only in-
creases the concentration of two compounds (C-CFT and 
tR). The most largely modified compounds for the LD 
treatment were FE (increases of 290% and 338% in 2008 
and 2009, respectively) and COU (188% and 171% in the 
same years).

Discussion 
The results of this work indicate that the application of 

early leaf removal on ‘Tempranillo’ grapevines growing 
under temperate-warm conditions decreased berry weight 
and yield, particularly in the more intense leaf pulling re-
gimes. Removal of the first six basal leaves at the pre-an-
thesis stage has been shown to be an effective strategy for 
controlling yield potential via source-sink relationships 
(Poni et al., 2006; Acimovic et al., 2016). Furthermore, 
several authors attributed the changes in berry weight in 
response to defoliation to changes in temperature and the 
light regime within the cluster that probably influenced 
the berry sink capacity (i.e. the ability to attract pho-
to-assimilates) (Kliewer & Antcliff, 1970). In this sense,  
Risco et al. (2014) reported that the microclimate condi-
tions in the fruit zone were only influenced and improved 
by the LD regime imposed. On other hand, a previous  
research showed that the effect of defoliation on final  
berry size and yield at harvest is linked with the timing 
and extent of defoliation (Poni et al., 2006). Respect to 
this extent, in accordance with a previous study by Tarda-
guila et al. (2008), when defoliation was carried out with 
a lower intensity (like in the EED treatment), the final 
effect on the yield components was only slight. 

The significant differences in berry weight and yield 
registered in 2009 respect to the previous season, espe-
cially in the defoliated treatments, could be in part exp-
lained by the higher proportion of leaves removed in this 
second year. In addition, defoliation carried out around 
berry flowering and set is known to induce a strong com-
petition for assimilates between vegetative and reproduc-
tive organs: the major part of photosynthetically active 
foliage is removed at a time of high carbon and nitrogen 
requirements by the inflorescences, forcing the vine to use 
its reserves accumulated in the woody permanent struc-

tures (Verdenal et al., 2017). Consequently, according to 
previous works, during the year following defoliation, a 
lower vigor, bud fruitfulness and pruning weights were 
noted (Palliotti et al., 2011; Uriarte et al., 2012; Risco 
et al., 2014). Moreover, the differential responses of ear-
ly defoliation across seasons may be linked to a different 
number of flower buttons formed year after year on the 
inflorescences, which in turn can modify the level of berry 
set induced by treatments (Poni et al., 2006). 

Early leaf removal also altered berry components. The 
effects of defoliation on grape berry skin phenolic com-
position reported in this study could be due to different 
whole vine physiology, including those changes in berry 
size and total yield, resulting in a concentration effect, as 
demonstrated by Roby et al. (2004). In addition, the clus-
ter microclimate was modified by defoliation as reported 
in our previous study (Risco et al., 2014). 

In agreement with previous works, the results of this 
study indicate that the early defoliation modified the phe-
nolic profile of the skins, and this effect was dependent 
on the year’s weather conditions, timing and intensity of 
defoliation, and the polyphenolic family involved (Kot-
seridis et al., 2012; Lemut et al., 2013a; Bogicevic et al., 
2015; Moreno et al., 2015). This behavior is due to the 
biosynthetic pathways of phenolic substances being regu-
lated by enzymes that are light-and temperature sensitive. 
Hence, the changes in microclimatic conditions, such as 
those imparted by early defoliation, may have a signi-
ficant effect on the synthesis and accumulation of these 
substances (Diago et al., 2012). On the other hand, since 
the different phenolic compounds are not synthesized at 
the same developmental stage, and the different phenolic 
families respond in different degrees to the same varia-
tion of light and temperature (Degu et al., 2016; Gouot et 
al., 2020), the timing and severity of defoliation affected  
different polyphenolic families compounds and aspects of 
berry composition in a different manner. 

Under our experimental conditions, the effect of defo-
liation on anthocyanins, flavanols, flavonols, hydroxycin-
namic acids and total phenolic compounds in grape skin 
was most noticeable in 2009, suggesting that the environ-
mental conditions also influenced the final response to the 
field practice applied in both seasons. Previous research 
has also shown a different season-to-season response to 
leaf pulling performed in several cultivars such as ‘Tem-
pranillo’ (Diago et al., 2012; Moreno et al., 2015), ‘Char-
donnay’ (Hed et al., 2015), and ‘Pinot Noir’ (Verdenal et 
al., 2017). One possible explanation for our results may 
be due to the leaf area removed as a portion of the total 
area was higher in 2009 for the treatments of the same 
severity (see Risco et al., 2014 for details). Also, the de-
creases in yield caused by defoliation were higher in this 
second year (Risco et al., 2014). In general, when a field 
practice results in a yield drop, this is often followed by 
an increase in the concentration of polyphenol substances 
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(Peña Neira et al., 2007; Guidoni et al., 2008; Gamero et 
al., 2018). 

The positive impact of early defoliation on grape  
phenolic composition has been demonstrated for ‘Tempra-
nillo’ and other cultivars in several terroirs (Diago et al., 
2012; Bogicevic et al., 2015; Moreno et al., 2015; Acimo-
vic et al., 2016; Verdenal et al., 2017). In agreement with 

Pallioti et al. (2011), the results can be related mostly to 
the reduction in berry size of defoliated treatments caused 
by the competition for assimilates between the growing 
canopy and the inflorescences during early season. Bo-
gicevic et al. (2015) demonstrated an increased synthesis 
of anthocyanins and proanthocyanidins in the 'Vranac' va-
riety as a response to the variation in fruit microclimate 

Compound 1 Treatment (T) 2
Year

Interannual mean
Statistical significance 3

2008 2009 T Year T×Year

My derivates MyG

Control 21.07ab 19.16ab 20.11a

*** ** *
ED 28.54b 24.84bc 26.69b

LD 37.36c 26.56c 31.96c

EED 19.14a 18.80a 18.97a

Qc derivates

QcG

Control 10.56ab 9.31a 9.94a

*** ns ns
ED 17.51b 21.43b 19.47b

LD 25.67c 23.98b 24.83c

EED 11.18a 9.46a 10.32a

QcR

Control 0.52ab 0.55a 0.53a

*** ns **
ED 1.15b 1.51b 1.33b

LD 1.78c 1.53b 1.66c

EED 0.72a 0.46a 0.59a

QcGL

Control 1.65ab 1.31a 1.48a

*** ** ns
ED 3.03b 3.15b 3.09b

LD 4.26c 3.21b 3.73c

EED 1.83a 1.19a 1.51a

QcGR

Control 21.99a 20.11a 21.05a

** ns ns
ED 53.60a 43.10b 48.35b

LD 49.40a 51.76b  50.58b

EED 23.91a 22.30a 23.10a

Kp derivates

KpG

Control 3.53a 1.78a 2.65a

*** * ns
ED 5.05ab 5.46b 5.25b

LD 7.18b 6.37b 6.78c

EED 3.22a 1.65a 2.44a

KpR

Control 0.70a 0.57a 0.64a

*** ns ns
ED 1.43a 2.00b 1.72b

LD 3.18b 2.49b 2.83c

EED 0.90a 0.64a 0.77a

Ih derivates IhG

Control 2.64a 2.89a 2.76a

*** ns ns
ED 3.06a 3.97b 3.52b

LD 3.57a 3.84b 3.70b

EED 2.31a 2.24a 2.27a

Data are average values (n = 32). Within each column: different letters indicate significant difference among treatments after Tukey 
test (p<0.05).  1 My: myricetine. MyG: myricetin-3-glucoside. Qc: quercetine. QcG: quercetin-3-glucoside. QcR: quercetin-3-rutinosi-
de. QcGL: quercetin-3- galactoside. QcGR: quercetin-3-glucuronide. Kp: kaempherol. KpG: kaempherol-3-glucoside. KpR: kaemphe-
rol-3-rutinoside. Ih: isorhamnetine. IhG: isorhamnetin-3- glucoside.  2 Treatments: see Table 1.  3 *, **, ***: statistical differences at 
p<0.05, 0.01, 0.001 respectively; ns: not significant.

Table 3.  Effect of early leaf removal on grape-skin flavonol concentration (mg/kg berry fresh weight) under three defoliation  
regimes.
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Compound 1 Treatment (T) 2
Year

Interannual mean
Statistical significance 3

2008 2009 T Year T×Year

CF

Control 16.92ª 5.18ª 11.05ª 

ns *** ns
ED 17.81ª 4.56a 11.19ª 
LD 19.14a 5.33ª 12.23ª 

EED 27.22ª 4.86ª 16.04ª 

c-CFT

Control 0.22ª 0.73a 0.48a

*** *** ***
ED 0.26ª 1.32b 0.79b

LD 0.31ª 1.83c 1.07c

EED 0.30ª 1.37b 0.84b

t-CFT

Control 4.49ª 2.31ª 3.40a

ns *** ns
ED 5.09ª 2.32ª 3.70a

LD 5.47a 4.03ª 4.75a

EED 4.91a 2.62ª 3.76a

COU

Control 3.66a 3.90a 3.78 a

*** ns ns
ED 7.16ab 8.63b 7.90b

LD 10.57b 10.59c 10.58c

EED 4.21a 4.52ª 4.36a

c-COUT

Control 2.09ª 0.59ª 1.34a

* *** ns
ED 1.73ª 0.49ª 1.11b

LD 2.09ª 0.59ª 1.34b

EED 1.50ª 0.49ª 0.99a

t-COUT

Control 0.72a 0.43ª 0.58a 

** *** *
ED 1.14ab 0.56ª 0.85b 

LD 1.30b 0.50ª 0.90b

EED 0.84ab 0.38ª 0.61a 

FE

Control 1.27a 0.73a 1.00a

*** ns ns
ED 2.26a 2.54b  2.40b

LD 4.96b 3.20c  4.08c

EED 1.08ª 0.85a 0.97a

c-FET

Control 7.25ab 5.59ab 6.42a

*** *** ***
ED 12.39b 7.33bc 9.86b

LD 16.48b 7.61c 12.05c

EED 5.96a 5.45a 5.71a

t-FET

Control 2.20ª 4.38a 3.29a

** *** **
ED 2.31ª 6.99bc 4.65bc

LD 2.69ª 7.70c 5.20c

EED 2.61ª 5.39ab 4.00ab

tR

Control 0.62ª 0.26a 0.44a

** ns ns
ED 0.76ª 0.74b  0.75bc

LD 0.84ª 1.03c  0.94c

EED 0.52ª 0.44a  0.48ab

Data are average values (n = 32). Within each column: different letters indicate significant difference among treatments after Tukey test 
(p<0.05).  1 CF: caffeic acid. c and t CFT: cis and trans caftaric acid. COU: coumaric acid. c and t COUT: cis and trans coutaric acid. FE: 
ferulic acid. c and t FET: cis and trans caftaric acid: tR: trans resveratrol.  2 Treatments: see Table 1.  3 *, **, ***: statistical differences 
at p<0.05, 0.01, 0.001 respectively; ns: not significant.

Table 4.  Effect of early leaf removal on grape-skin hydroxycinnamic acids and stilbenes concentration (mg/kg berry fresh weight) 
under three defoliation regimes.
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generated by early defoliation. Previous studies stated 
that the increase of anthocyanin content under manual 
defoliation may be due to improved cluster microclimate 
(Kliewer & Smart, 1989). Many investigations confirmed 
that the cluster light exposure increases total anthocya-
nins and phenols (Kliewer & Antcliff, 1970; Dokoozlian 
& Kliewer, 1996; Chorti et al., 2010). The increased tem-
perature accelerates the rate of metabolic processes in the 
plant, with subsequent acceleration in the development 
and metabolite accumulation (Downey et al., 2006). In 
the present trial, light exposure in the fruit zone was at the 
maximum in the LD treatments, whereas the ED and EED 
treatments had similar fruit exposure (Risco et al., 2014). 
Besides, the berries from defoliated vines had 1-2 ºC and 
0.5-1 ºC lower night-time temperature than that of con-
trol berries and the berry temperature difference among 
the different defoliation treatments was not as clear (re-
sults presented in Risco et al., 2014). Shortly after fruit-
set, the ED had a berry temperature slightly higher than 
that of the LD and EED treatments (Risco et al., 2014). 
In cool climates, improved cluster exposure can enhance 
berry color (Dokoozlian & Kliewer, 1996), although other  
works conducted under warm air temperature conditions 
has warned about the negative effects on berry pigmenta-
tion due to over-exposure of the fruiting zone (Bergqvist 
et al., 2001), that may decrease anthocyanin accumula-
tion (Smart & Robinson, 1991). This is the reason behind 
testing the EED approach, where only leaves from the 
west-oriented canopy were removed in order to protect 
berries from the afternoon sunlight. However, in our case, 
defoliation carried out early in the season resulted in some 
vegetative re-growth, which prevented berry over-expo-
sure. Similar results were observed by Poni et al. (2009) 
in ‘Barbera’ vines grown in Piacenza, Italy. 

Our study was particularly focused on profiling the  
different phenolic families. This is particularly important, 
as not all phenolic compounds have the same impor-
tance for the intensity, tone and color stability of wines 
(Boulton, 2001). The anthocyanin profile was similar to 
that observed in other studies carried out on different clo-
nes of ‘Tempranillo’ in other terroirs (Santesteban et al., 
2011; García Estevez et al., 2015; Gamero et al., 2018). 
Despite a trend favoring the highest anthocyanin accumu-
lation in defoliation treatments, no differences were ob-
served in total anthocyanins among the treatments. The 
effects of defoliation on anthocyanin compounds were 
not always consistent, but were dependent on cultivar 
grapevine genotype: increases were found in ‘Pinot Noir’ 
(Verdenal et al., 2017), ‘Merlot’, and ‘Cabernet Sauvig-
non’ (Kotseridis et al., 2012) but no effects were reported 
in ‘Cabernet Sauvignon’ and ‘Vranac’ (Bogicevic et al., 
2015), or in ‘Tempranillo’ grown in the semiarid terroir of 
western Spain (Moreno et al., 2015). Similar to previous  
works (Diago et al., 2010; Moreno et al., 2015), our re-
sults showed the relevance of the timing and season of 

the defoliation period on the effect on these polyphenol 
families on the 'Tempranillo' cultivar. VanderWeide et 
al. (2018) also found no difference in the total anthoc-
yanin content of ‘Merlot’ when early defoliations treat-
ments were applied manually and mechanically and no 
alterations occurred in terms of total monoglycoside, total 
acylated and p-coumarylated. According to these authors, 
the environmental conditions in the cluster zone were 
enhanced in all treatments, each relative to the time of 
application and leaf removed (VanderWeide et al., 2018). 
On the other hand, the trend to increase of the acetylated  
forms is an interesting result because acetylation can 
be related to an increase of the anthocyanidin stability 
against light, temperature or pH changes (He et al., 2012).

With respect to the different anthocyanin compounds, 
our results indicate that the effect of defoliation was depen-
dent on the anthocyanin considered, and the anthocyanin 
profile can be altered by the defoliation treatment. Other 
authors reported similar results on cultivars sensitive to 
defoliation (Moreno et al., 2015; Verdenal et al., 2017). 
In this sense, in agreement with VanderWeide's et al. 
(2018), the forms considered more stable following me-
thylation or esterification (trihydroxylated, OCH3-subs-
tituted, acylated, and coumarylated), mainly the related 
to the Mv derivatives, were not significantly modified by 
the early leaf removal treatments. These results suggest a 
different sensitivity to environmental conditions induced 
by early leaf removal on the flavonoid 3’-hydroxylase and 
flavonoid 3’,5’-hydroxylase enzymes, whose products are 
precursors for Cy-based anthocyanins and Dp-based an-
thocyanins. One possible explanation would be that un-
like F3′5′H enzymes, F3′H enzymes, which control the 
biosynthesis of disubstituted anthocyanins and flavonols, 
are modulated early in development, providing a longer 
time period for their accumulation under enhanced micro-
climate conditions (Falginella et al., 2010).

The increases in catechin and epicatechin concen-
trations in grape berry skins found in the 2009 results  
support the general knowledge that cluster exposure sti-
mulated catechin synthesis by increasing leucoanthocya-
nidin reductase (LAR) activity, the enzyme responsible 
for the catalyzed reduction of 2R, 3S, 4S-flavan-3,4-diols 
to the corresponding 2R, 3S-flavan-3-ols i.e. (+)-catechin 
(Torres et al., 2017). The profiles detected in control skins 
from both seasons were similar to the existing literatu-
re for this cultivar (Torres et al., 2017), where berry skin 
flavonols were dominated by myricetin and quercetin 
compounds. Greater synthesis of flavonols in grapes, as 
a result of increased sun exposure caused by defoliation, 
has widely been reported by several authors (Spayd et al., 
2002; Giovanelli & Brenna, 2007). In fact, flavonol oc-
currence can be considered as a biomarker for a sun expo-
sure regime achieved in a bunch area within the canopies 
following microclimate manipulation management. Thus, 
as expected, the content of flavonols was largely affected 
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in berry skins under the LD and ED treatments in both 
years. By examining the occurrence of individual flavo-
nols, it is important to note that, like anthocyanins, the 
magnitude of the effect depends on the substance under 
consideration (increases on Qc and Kp derivatives were 
much higher than My and Il), timing (LD was the most 
effective treatment), and intensity (no significant effect of 
EED was observed in any case). Similar responses were 
observed in ‘Pinot Noir’ grown in Switzerland (Lemut et 
al., 2013b) and in ‘Tempranillo’ in La Rioja and Extre-
madura (Spain) (Diago et al., 2010; Moreno et al., 2015). 
These results suggest a similar response of these com-
pounds in the different varieties and terroirs. 

The positive effect of early defoliation on the hydroxy-
cinnamic acid content has been attributed to an improve-
ment in the microclimate of the bunch by other authors 
(Tardáguila et al., 2010; Lemut et al., 2013a; Intrigliolo 
et al., 2014). At the level of individual compounds, these 
researchers coincided in pointing out increases in COU 
when leaf pulling was performed, but there was no con-
sistent pattern for the rest of the substances in this group, 
i.e. an increase of FE found by those studies was not re-
ported. The increases in certain substances belonging to 
the flavanol, flavonol and hydroxycinnamic acid families 
found in the skins from defoliated vines are very signifi-
cant for wine making purposes, as these compounds are 
mainly involved in copigmentation processes with antho-
cyanins, which affect the color of red wines. According 
to González-Manzano et al. (2008), catechin or epica-
techin are recognized as powerful cofactors, which can 
form colored complexes most easily and intensely, and 
oligomeric flavan-3-ols (B1, B2 and B3) have stronger 
copigmentation effects than the monomers, and even the 
ethyl-bridged flavan-3-ols could act as strong cofactors  
(González-Manzano et al., 2008). Moreover, the most 
stable anthocyanin-copigmentation bonds take place 
between the first wine anthocyanins, such as malvidi-
ne-3-glucoside, quercetin flavonols and quercetin-O-glu-
coside (Boulton, 2001). Lastly, hydroxycinnamic acids 
react with monomeric anthocyanins to form pyranoan-
thocyanins, which are more stable and thus stabilize wine 
color (Schwarz et al., 2003) and among these phenolic 
acids, ferulic acid exhibits a strong color enhancement 
(Markovic, 2000). 

In summary, in a temperate-warm terroir, early de-
foliation is a useful strategy for improving the phenolic 
profile of grapes, with the effect more dependent on the 
intensity of leaf removal than the timing of defoliation. 
In any case, defoliation at fruit set by removing all leaves 
from the first six nodes was the most effective treatment 
for modifying skin phenolic content, mainly flavonol, 
and hydroxycinnamic acid concentrations. These results 
indicated that this agronomic technique could increase 
the concentration of compounds (catechin, quercetin 
and coumaric derivatives) involved in copigmentation 

reactions, which are crucial for red wine color stability. 
Therefore, early defoliation may be suggested as a field 
practice to improve and increase phenolic composition 
and grape potential for high-quality red wine production 
and aging. The slight detrimental effects reported in a 
previous study by Risco et al. (2014) should be consi-
dered and therefore the application of the early defo-
liation technique for more premium wine production  
is suggested. 
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