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Abstract
Aim of study: To assess genotype by environment (G×E) interaction via single- and multi-trait animal models for binary traits in dairy 

cattle.
Area of study: University of Tabriz, Tabriz, Iran.
Material and methods: Phenotypic and genomic data were simulated considering a binary trait in four environments as different corre-

lated traits. Heritabilities of 0.05, 0.10, 0.15, and 0.20 were considered to mimic the genetic variation of the binary trait in different envi-
ronments. Eight scenarios resulted from combining the number of QTLs (60 or 300), LD level (high or low), and incidence of the binary 
trait (10% or 30%) were simulated to compare the accuracy of predictions. For all scenarios, 1667 markers per chromosome (depicting a 
50K SNP chip) were randomly spaced over 30 chromosomes. Multi-trait animal models were applied to take account of G×E interaction 
and to predict the genomic breeding value in different environments. Prediction accuracies obtained from the single- and multi-trait animal 
models were compared.

Main results: In the models with G×E interaction, the largest accuracy of 0.401 was obtained in high LD scenario with 60 QTLs, and 
incidence of 30% for the fourth environment. The lowest accuracy of 0.190 was achieved in low LD scenario with 300 QTLs and incidence 
of 10% for the first environment.

Research highlights: Genomic selection with high prediction accuracy can be possible by considering the G×E interaction during the 
genetic improvement programs in dairy cattle.
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Introduction
In the dairy cattle industry, phenotypic records of  

daughters from genotyped bulls are available in various 
climate conditions and countries because of the widely 
used artificial insemination. Such challenging environ-
ments might contribute to differential phenotypic expres-
sion across environments, which is known as the pheno-
menon of genotype by environment (G×E) interaction 
(Falconer & Mackay, 1996). Considering G×E interac-

tions in genetic analyses can improve the genomic predic-
tion of economically important traits (Tiezzi et al., 2015), 
and neglecting interaction effects can result in a loss of 
genetic gain (Mulder & Bijma, 2005).

 Multi-trait animal models were applied to quantify 
differences in gene expressions across different envi-
ronments (Haile-Mariam et al., 2015; Yao et al., 2017;  
Bohlouli et al., 2019). Researches on the multi-trait pro-
cedure are supposed to treat the performance of a genoty-
pe for a trait in different countries or regions as separate, 
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but potentially correlated traits (Hammami et al., 2008; 
Santana et al., 2012; Bohlouli et al., 2014). Generally, in 
quantitative genetic studies, a large genetic correlation 
(>0.80) between the same trait evaluated in different envi-
ronments indicates no evidence for remarkable G×E inte-
raction (Robertson, 1959). In the last two decades, several 
studies have reported G×E interaction for milk produc-
tion, fertility, and somatic cell score traits in dairy cattle. 
In some researches, the environment was measured as a 
continuous environmental descriptor, such as the tempe-
rature-humidity index (Brügemann et al., 2011; Bohlouli 
et al., 2013). However, in most of the researches, the en-
vironments were created as discrete scales, for instance, 
different regions (Santana et al., 2012; Hamrouni et al., 
2014) and the herd production levels (Kolmodin et al., 
2002; Hammami et al., 2009).

Genomic selection can improve genetic gain in dairy 
cattle by reducing generation intervals, increasing the ac-
curacy of genomic prediction, and early selection (König 
et al., 2009; Schefers & Weigel, 2012). The accuracy of 
genomic predictions strongly depends on several factors 
and parameters related to the genetic architecture of the 
trait of interest. The main factors are reference population 
size (VanRaden & Sullivan, 2010), the trait heritability 
(Goddard, 2009), markers density (Meuwissen, 2009), 
number of quantitative trait loci (QTLs) (Daetwyler et 
al., 2008), distributions of allele frequencies (Clark et al., 
2011), levels of linkage disequilibrium (LD) (Yin et al., 
2014), genetic correlation between traits (Hayes et al., 
2009a; Calus et al., 2013) and pedigree structure (Farah 
et al., 2018). The accuracies of various genomic models 
(single- and multi-trait models) in different scenarios have 
been reported by some researchers (Jiang et al., 2015;  
Bohlouli et al., 2017). It has been indicated that the accu-
racy of genomic prediction for milk production traits via 
a multi-trait model was larger than that from a single-trait 
model (Guo et al., 2014; Karaman et al., 2018). Jiang et 
al. (2015) showed that accuracies of genomic prediction 
were higher for a multi-trait model than for a single-trait 
model, and increased with the increasing heritability of 
the trait and LD level.

In genomic selection, data simulations permit the re-
searcher to survey the genetic architecture of the trait, 
the number of markers used for analysis, and the level of 
genetic relationships between the training and validation 
sets. Subsequently, genomic simulations suggest the pos-
sibility of evaluating different sources of variation in a 
population like drift, which cannot be assessed with most 
of the real data (Daetwyler et al., 2013). Most simulation 
studies have focused on continuous traits in dairy catt-
le (Scheper et al., 2016; de Oliveira et al., 2019) and a 
few studies have considered G×E interactions for binary 
traits such as calving ease, survival, reproductive disor-
ders, and disease resistance in dairy cattle. These traits 
are generally categorical, which are affected by more 

than one gene. In addition, such traits can show substan-
tial G×E interactions (Naderi et al., 2016). Carlén et al. 
(2006) demonstrated that the impact of G×E interactions 
on binary traits such as disease traits must be considered 
in genetic-statistical models. Therefore, the objectives of 
this study were (1) to simulate binary traits with diffe-
rent phenotypic expressions across environments, (2) to 
compare the accuracy of genomic predictions using sin-
gle- and multi-trait animal models, and (3) to assess the 
predictive ability of the models for cows with and without 
phenotypic records in different environments. 

Material and methods
Simulation of scenarios without G×E interaction

The QMSim software (Sargolzaei & Schenkel, 2009) 
was used to simulate dairy cattle populations with geno-
mic information. According to Bohlouli et al. (2017), two 
types of historical populations were simulated to produ-
ce low (LLD) or high (HLD) levels of linkage disequili-
brium. To achieve the desired LLD between a QTL and 
the markers, a constant size of 4000 was considered over 
1600 generations, and then the population size increased 
to 4040 in the next 20 generations. Afterward, the cons-
tant size of 4040 individuals was simulated until genera-
tion 1640. For HLD scenarios, we simulated a “bottleneck 
effect”. For this purpose, a constant size of 2000 indivi-
duals was simulated for 2500 generations, then during 
70 generations, the population size was decreased to 200 
individuals. Afterward, the population size increased to 
4040 in generation 2600, and the size of 4040 individuals 
remained constant till generation 2620.

In the last historical generation, 40 sires were selected 
as founders to create a plausible population structure to 
imitate artificial insemination in the dairy cattle popula-
tion with many individuals but a small effective popula-
tion size (Bohlouli et al., 2017). In the next step, animals 
from the last generation of the historical population were 
used as founders in 10 recent generations for both HLD 
and LLD scenarios. The recent population was exten-
ded for 10 generations by a random mating design. Each 
mating produced one progeny with a 50% probability of  
being each sex. The replacement rates were 50% and 25% 
for sires and dams, respectively.

Bi-allelic single nucleotide polymorphism (SNP) 
markers were randomly spaced over 30 chromosomes. 
Each chromosome was 100 cM in length. Simulation of 
1667 bi-allelic markers on each chromosome represented 
application with 50,010 (50K) SNP chips. The number of 
QTLs affecting the trait of interest was set at 2 or 10 on 
each chromosome, indicating 60 or 300 QTLs in the who-
le genome. The marker and QTL positions were randomly 
assigned on the chromosome, and equal allele frequencies 
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were considered for both of them. The QTL effects were 
generated based on a gamma distribution with a shape 
parameter of 0.4. The gamma distribution assumes that 
most QTLs have small effects, and a few QTLs have large 
effects. The number of QTL alleles per locus was 2, 3, or 
4 and was randomly assigned. Both marker and QTL mu-
tation rates were 2.5 × 10-5, whereas recurrent mutation 
was allowed for markers only. The total value of additive 
genetic variance was assigned to the QTL, indicating that 
there were no polygenic effects. The entire set of parame-
ters of the simulation process is summarized in Table 1. 

Simulation of scenarios with G×E interaction

We selected common sires having recorded daughters 
in all environments to make the genetic connection 

among them. The QMSim outputs were modified by an R 
code written by Yin et al. (2014). In this step, genotypes 
of 2000 cows in the 10th recent generation (the last ge-
neration) were used in the analysis. They were progenies 
from 40 sires, with an average of 50 daughters for each 
sire, and the pedigree contained all animals in the 10 re-
cent generations. To mimic the different gene expressions 
in different environments, 60 QTLs and 300 QTLs were 
randomly divided into 10 groups, with an even group size 
of 6 QTLs and 30 QTLs, respectively. QTLs in groups 
of 1 to 7, 2 to 8, 3 to 9, and 4 to 10 were assigned to en-
vironments 1, 2, 3, and 4, respectively. This simulation 
strategy could also create a genetic correlation between 
environments by overlapping QTL groups in the four en-
vironments. As dairy cows usually have records only in an 
environment (region, farm and, etc.), we assigned cows 
to only one environment. But the sires have daughters in 

Parameters Low linkage  
disequilibrium

High linkage  
disequilibrium

Historical population 
   No. of generations 1640 2620
   No. of animals in the first generation 4040 2000
   Bottleneck No Yes [1]

   No. of animals in the last generation 4040
Current population 
   No. of generations 10
   No. of founder males 40
   No. of founder females 4000
   No. of offspring per mate 1
   Probability for sex of the offspring 0.5
   Selection and mating designs Random
   Replacement ratio for males 50%
   Replacement ratio for females 25%
   Criteria for selection/culling Age
Genome
   No. of chromosomes 30
   Length of each chromosome (cM) 100
   No. of QTL per chromosome 2 or 10
   Effects of QTL alleles Gamma (0.4)
   No. of QTL alleles Random (2, 3, 4)
   No. of biallelic markers per chromosome 1667
   Maker and QTL mutation rate 2.5 × 10-5  (recurrent for markers)
   Maker and QTL allele frequencies Equal
   Crossover interference (cM) 25
   Position of markers and QTL Random

Table 1. Parameters of the simulation process.

[1] The population size decreased from 2000 to 200 during 70 generations (from generation 2500 
to 2570) and was 200 from generation 2570 to 2580. Then, the population size increased from 
200 to 4040 during 20 generations (from generations 2580 to 2600). 
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all environments. The true breeding value (TBV) of the 
animals in every environment was the sum of the QTL 
effects of each animal in the corresponding environments. 
Phenotypes were generated by adding residuals to the 
TBVs. Then, to produce a binary phenotype, 200 or 600 
cows (i.e. depicting 10 or 30% incidence, respectively) 
with the lowest phenotypic values received code 1 and the 
remaining cows were received code 0. 

The heritabilities were 0.05, 0.10, 0.15, and 0.20 
for the trait of interest in environments 1, 2, 3, and 4, 
respectively. We assigned 2000 cows with phenotypic 
records into the four environments (i.e. 500 cows per 
environment). Sires had at least 10 daughters in each 
environment. Such relationships could make a genetic 
connection across environments. The variance of TBVs 
was assumed as the additive genetic variance. Genetic 
correlations were calculated using correlations of TBVs 
of cows from different environments. Heritabilities and 
average genetic correlations across four environments 
from 10 replicates are listed in Table 2 for HLD and 
LLD scenarios. 

Quality control 

Quality control was carried out using the preGSf90 
program in the BLUPF90 family (Misztal et al., 2015). 
Markers with a minor allele frequency (MAF) less than 
0.01 were discarded. To test Hardy-Weinberg Equilibrium 
(HWE), SNP was excluded if the difference between ob-
served and expected genotype frequencies was greater 
than 0.15. 

Linkage disequilibrium

The statistics of LD between all marker pairs in the si-
mulated scenarios were assessed by calculating the squa-
red correlation coefficient (r2) value between all pairs of 
markers according to Hill & Robertson (1968):

r2 = D2

f(A)f(a)f(B)f(b) 
                     (1)

where D = f(AB)-f(A)f(B), and f(AB), f(A), f(a), f(B), 
f(b) are observed frequencies of haplotypes AB and of 
alleles A, a, B, b in the population, respectively.

The PLINK software (Purcell et al., 2007) was used to 
estimate LD between all marker pairs of 2000 cows in the 
last generation.

Statistical analysis

To take account of G×E interaction, a multi-trait ani-
mal model was applied, assuming a trait in different en-
vironments as different, but genetically correlated traits 
(Hammami et al., 2009; Bohlouli et al., 2017). The model 
was as follows:

[
𝒚𝒚𝟏𝟏
⋮
𝒚𝒚𝟒𝟒
] = [

𝟏𝟏𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 ⋱ 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟏𝟏𝟒𝟒

] [
𝜇𝜇1
⋮
𝜇𝜇4
] + [

𝒁𝒁𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 ⋱ 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝒁𝒁𝟒𝟒

] [
𝒈𝒈𝟏𝟏
⋮
𝒈𝒈𝟒𝟒
] + [

𝒆𝒆𝟏𝟏
⋮
𝒆𝒆𝟒𝟒
]       (2)

where yi is record for the ith trait (i is 1 to 4 for the same trait 
in four different environments), 1i is the vector of 1, μi is 
the mean for the ith trait, Zi is the design matrix that relates 
genomic breeding values with response variables (gi), gi is 
the vector of genomic estimated breeding values GEBVs) 
of animals (cows with the phenotype and their relatives) in 
the ith environment, and ei is the vector of random residual 
effects. For the ith trait with n phenotype records, the dimen-
sions of 1i and Zi are n × 1 and n × number of animals in the 
pedigree, respectively. The distributions are assumed to be 
𝒈𝒈𝒊𝒊~N(0,𝐇𝐇⊗ 𝐓𝐓), 𝒆𝒆𝒊𝒊~N(0, 𝐈𝐈 ⊗ 𝐑𝐑)  where:

            𝐓𝐓 = [
𝜎𝜎𝑔𝑔1

2 ⋯ 𝜎𝜎𝑔𝑔14
⋮ ⋱ ⋮

𝜎𝜎𝑔𝑔41 ⋯ 𝜎𝜎𝑔𝑔4
2

]  and  𝐑𝐑 = [
𝜎𝜎𝑒𝑒1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝜎𝑒𝑒4

2
]     

       (3)

In the single-step genomic best linear unbiased pre-
diction (ssGBLUP) model as developed by Aguilar et al. 
(2010), matrix H combines the pedigree-based numerator 
relationship matrix (A) with the genomic relationship ma-

Environment 1 2 3 4
1 0.04 (0.016) 

0.04 (0.013)
0.860

(0.081)
0.746

(0.091)
0.578

(0.192)
2 0.880

(0.042)
0.08 (0.023)
0.09 (0.019)

0.884
(0.089)

0.732
(0.168)

3 0.762
(0.144)

0.879
(0.109)

0.16 (0.029)
0.14 (0.025)

0.860
(0.095)

4 0.601
(0.154)

0.705
(0.147)

0.814
(0.120)

0.25 (0.031)
0.23 (0.029)

Table 2. Heritabilities (above and below bold rows in diagonal for HLD and 
LLD scenarios, respectively) and genetic correlations (above and below dia-
gonal for HLD and LLD scenarios, respectively) between different environ-
ments (the values in parentheses show the standard deviations).
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trix (G) to consider animals with and without genomic 
information simultaneously. The T and R are the (co)va-
riance matrices of additive genetic effect and residual for 
the four traits, respectively. The inverse of H was expres-
sed as:

𝐇𝐇−𝟏𝟏 = 𝐀𝐀−𝟏𝟏 + [𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐆𝐆−𝟏𝟏 − 𝐀𝐀𝟐𝟐𝟐𝟐−𝟏𝟏]

  

 

            (4)

The G matrix was constructed according to the 
approach of VanRaden (2008):

G∗ =  (𝐌𝐌–𝐏𝐏)(𝐌𝐌–𝐏𝐏)′
2 ∑ p𝑗𝑗(1−p𝑗𝑗)𝑚𝑚

𝑗𝑗=1
   

 

                     (5)

where M is a matrix of marker alleles with dimensions of the 
total number of genotyped individuals by the total number 
of markers (m) and coded -1, 0, and 1 for the homozygote, 
heterozygote, and another homozygote, respectively, and P 
contain allele frequencies expressed as a difference from 0.5 
and multiplied by 2, such that column i of P is 2(pi-0.5).

The genomic matrix is positive semi-definite but can be 
singular when the number of loci is restricted, or two animals 
have identical genotypes across all markers. Also, it will be 
singular if the number of genotyped animals exceeds the 
number of markers (VanRaden, 2008). To avoid singularity 
problems and make invertible matrices, G was obtained as 
G = wG*+ (1 - w)A22, where w = 0.95, G* is a genomic ma-
trix before weighting, and A22 matrix is sub-matrix of A for 
genotyped animals. The Bayesian approach was performed 
using the THRIGIBBS3F90 program (Misztal et al., 2015) 
for the threshold distribution of data. For each analysis, a to-
tal of 100000 iterations were run, with the first 30000 itera-
tions were discarded as burn-in. From the remaining 70000 
iterations, every 50th iteration was considered for analysis of 
the posterior distribution.

Results obtained from the single- and multi-trait 
animal models were compared to each other. In the  
single-trait models, the phenotypic records from different 
environments were considered as a trait. In addition, one 
more fixed effect was included in the single-trait models, 
indicating the environment. 

 In this study, we performed 10 replicates for each scena-
rio, and results were averaged across replicates to evaluate 
the models, and the ANOVA procedure was used to compare 
the means of different scenarios by the Duncan test at a signi-
ficance level of 5% (p<0.05) in SAS software (SAS, 2004). 

Results obtained from the single- and multi-trait 
animal models were compared to each other. In the  
single-trait models, the phenotypic records from different 
environments were considered as a trait. In addition, one 
more fixed effect was included in the single-trait models, 
indicating the environment.

In this study, we performed 10 replicates for each scena-
rio, and results were averaged across replicates to evaluate 
the models, and the ANOVA procedure was used to compare 

the means of different scenarios by the Duncan test at a signi-
ficance level of 5% (p<0.05) in SAS software (SAS, 2004).

Accuracy of genomic prediction 

The correlation between TBV and GEBV estimated 
from the single- and multi-trait animal models was conside-
red as the evaluation criterion. Two strategies were used to 
evaluate the accuracy of genomic prediction for genotyped 
cows without phenotype (validation set). It is necessary for 
practical breeding programs because all the animals do not 
have phenotype information for all traits. In the first strate-
gy, complete information (genotypes and phenotypes) for 
1500 animals in three environments was available as a tra-
ining set, and phenotypes from 500 genotyped cows in the 
fourth environment were excluded (validation set). Then 
GEBVs for all 2000 animals were estimated via a three-
trait model. In other words, three GEBVs were estimated 
for each animal in the validation set. Afterward, for the 
environment without phenotypic records, accuracies of ge-
nomic prediction were calculated using TBVs of 500 cows 
in the validation set and their GEBVs in the other three 
environments. In the second strategy, phenotypic records 
from 25, 50, or 75% of cows in the extreme environment 
(the first or the fourth environment) were randomly masked 
and were used as the validation set. The remaining cows 
(i.e. with phenotypic records in the respective extreme en-
vironment and the other three environments) were used as 
the training set. Then, the accuracies of genomic prediction 
were calculated. For the single-trait models, the accuracy 
of genomic prediction was the correlation between GEBV 
of animals in the validation set (i.e. only one GEBV per 
animal) and their TBV in a specific environment.  

Hypothesis testing 

To test for the effect of G×E interaction on the accura-
cy of genomic prediction in binary traits, the null and al-
ternative hypotheses are simply given as: (H0): no gain in 
the accuracy of genomic prediction by considering G×E 
interaction in binary traits; (HA): gain is present in the 
accuracy of genomic prediction by considering G×E inte-
raction in binary traits.

Results
Linkage disequilibrium

The average r2 value across 10 replicates between 
SNP pairs for both the low LD and high LD scenarios 
with 50K SNP chip applications were plotted against a 
marker distance of up to 2 megabase pairs (Mbp) on the 
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first chromosome (Figure 1). The average r2 for all scena-
rios decreased with an increase in marker distances. The 
average r2 for HLD scenarios was larger than for the res-
pective values for LLD scenarios, especially for a small 
distance between 2 SNPs. We found substantial declines 
in average r2 for distances in the range from 0 to 0.8 Mb. 
But the declines were low to moderate for distances ran-
ging between 0.8 and 2.0 Mb. When the distance between 
markers was larger than 5.0 Mb, no difference in r2 was 
observed between HLD and LLD scenarios. The average 
r2 was 0.005 when distances were 100 Mb.

Genomic prediction accuracies 

A: Single-trait animal model

Accuracies of genomic prediction using eight scena-
rios (HLD or LLD; 60QTL or 300QTL; 10% or 30% in-
cidence) obtained from the single-trait model are listed 
in Table 3. This model considers only animals in the en-
vironment that have phenotypic records. There are four 
TBVs and four GEBVs per cow. In general, the accuracies 
of prediction increased with increasing heritabilities. The 
accuracies of genomic prediction for the scenarios with 
HLD were significantly larger compared to those with 
LLD. Accordingly, the largest accuracies were achieved 
when the scenario with HLD, 300 QTLs, and 30% inci-
dence (HLD_300QTL_0.3) was used. Generally, accura-
cies for scenarios with 30% incidence were significantly 
larger than those with 10% incidence (p<0.05). For LLD 
scenarios considering the incidence, there was no signifi-
cant difference between the accuracies of scenarios with 

60 QTLs and 300 QTLs. However, significant differences 
between the accuracies were observed when HLD scena-
rios were simulated. For instance, the accuracy obtained 
for the HLD_60QTL_0.1 scenario (0.143) was signifi-
cantly (p<0.05) lower than that for the HLD_300QTL_0.1 
scenario (0.210). The differences between accuracies for 
scenarios with 10% and 30% incidences were remarkable 
when heritability was high. For instance, the accuracies 
of genomic prediction were 0.102 and 0.145 for the sce-
nario with low incidence (LLD_300QTL_0.1) and the ac-
curacies were 0.135 and 0.200 for the scenario with high 
incidence (LLD_300QTL_0.3) when heritabilities were 
0.05 and 0.20, respectively. In most cases, increasing the 
number of QTL from 60 to 300 had no significant effect 
on the accuracy of genomic prediction. 

B: Multiple-trait animal model

—	 Cows with phenotypes. The four-trait animal 
model was applied when considering the traits in four 
environments as four different traits and the accuracies 
of genomic predictions are presented in Table 3. For all 
scenarios and all environments, the accuracies obtained 
from the four-trait model were larger in comparison to 
the respective values obtained from the single-trait mo-
del (Table 3). Like the single-trait models, accuracies of 
genomic prediction increased with increasing heritabili-
ties when using muti-trait models. The largest accuracy 
(0.401) was achieved in the fourth environment for the 
scenario HLD_60QTL_0.3. Accuracies for scenarios 
with HLD were non-significantly larger than those for 
scenarios with LLD. Prediction accuracies decreased 
non-significantly when using 300 QTLs instead of 60 
QTLs. Generally, accuracies for scenarios with 30% in-
cidence were significantly larger than those for 10% sce-
narios (p<0.05). For the first environment, no significant 
difference was found between the scenarios. The scena-
rio with LLD, with 300 QTLs and with 10% incidence 
(LLD_300QTL_0.1) had the lowest accuracy across all 
environments.

—	 Cows without phenotypes. The accuracies of 
genomic predictions obtained from the three-trait animal 
models (Table S1 [suppl]) are lower than those obtained 
from the four-trait animal models (Table 3). The accu-
racies increased non-significantly when scenarios with 
HLD were used instead of the scenarios with LLD. In 
comparison to the accuracies for animals (i.e. as the va-
lidation set) in the extreme environments, the accuracies 
were larger when animals in the second or in the third 
environment were used as the validation set. There was 
no significant difference between the accuracies from sce-
narios with 60 and 300 QTLs. Generally, accuracies for 
the scenarios with 30% incidence were larger than those 
for 10% scenarios. Among all scenarios, higher prediction 
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Figure 1. Average linkage disequilibrium (LD) measured by 
squared correlation coefficient (r2) between SNP markers de-
pendent on their marker distance for different scenarios. Sce-
narios consist of high or low linkage disequilibrium (HLD or 
LLD), different numbers of QTL (60QTL or 300QTL), and  
different incidences of the binary trait (10% or 30%).
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accuracies were obtained using the HLD scenario with 60 
QTLs, and 30% incidence (HLD_60QTL_0.3).

Accuracies of genomic prediction for non-phenotyped 
cows with 25, 50, and 75% of phenotyped cows in the first 
and in the fourth environments are given in Table 4. In all 
scenarios, the accuracies of genomic prediction increased 
with increasing the percentage of phenotyped cows. With 
regard to the training sets with different percentages of 
phenotyped cows, no significant differences were found 
in the first environment. But accuracies significantly in-
creased with the increasing number of phenotyped cows 
in the fourth environment. For the validation set from the 
fourth environment, accuracies of genomic prediction 
for HLD scenarios were non-significantly higher than 
those for scenarios with LLD. However, scenarios with 
30% incidence had significantly higher accuracies com-
pared with 10% scenarios. Increasing the QTL numbers 
from 60 to 300 had no significant effect on the accuracy. 
For the fourth environment that had phenotypic records, 
the lowest accuracy of 0.151 was realized for the scena-
rio LLD_60QTL_0.1 and the largest value of 0.399 was 
found using the scenario HLD_60QTL_0.3 when consi-
dering 0.25% and 75% of cows with phenotypic records, 
respectively. 

Discussion
The extent of LD, trait heritability, and incidence of the 

binary trait affected the accuracy of genomic prediction. 
The accuracies of genomic prediction were almost equal 
among scenarios with different numbers of QTL. Gon-
zález-Recio & Forni (2011) also indicated no significant  
difference among scenarios with different numbers of 
QTL (i.e. scenarios with 90 and 1000 QTLs had 0.33 and 
0.35 accuracies of prediction, respectively). Our result 
also agreed with some other studies (González-Recio & 
Forni, 2011; Honarvar & Rostami, 2013), who applied 
a Bayesian approach. The higher accuracies were achie-
ved for scenarios with HLD than scenarios with LLD, 
which is consistent with those results reported by Yin et 
al. (2014), Naderi et al. (2016), and Naderi & Sadeghi 
(2020). The level of LD has a substantial effect on the 
accuracy of genomic predictions in dairy cattle (Hayes et 
al., 2009a). For scenarios with HLD, more SNP markers 
and QTLs are in linkage. Accordingly, the SNP markers 
can capture a larger proportion of the genetic variance of 
the trait (Goddard, 2009). 

The heritability of the trait, as an important parameter 
of the genetic architecture of the trait, has a remarkable 

Scenarios Model
Environment (Heritability)

1 (0.05) 2 (0.10) 3 (0.15) 4 (0.20)
HLD_60QTL_0.1 1

2
0.117cd,A (0.063)
0.252a,A (0.164)

0.131b,A (0.072)
0.270abc,A (0.093)

0.143c,A (0.064)
0.279bc,A (0.091)

0.135d,A (0.069)
0.286bc,A(0.097)

HLD_60QTL_0.3 1
2

0.187ab,A (0.074)
0.292a,B (0.155)

0.208a,A (0.043)
0.362a,AB (0.075)   

0.226ab,A (0.040)
0.372a,AB (0.061)

0.228ab,A (0.069)
0.401a,A (0.065)

HLD_300QTL_0.1 1
2

0.184abc,A (0.063)
0.238a,A (0.100)

0.199a,A (0.060)
0.246bc,A (0.080)

0.210ab,A (0.048)
0.269bc,A (0.106)

0.162cd,A (0.043)
0.273bc,A (0.074)

HLD_300QTL_0.3 1
2

0.208a,A (0.079)
0.290a,A (0.147)

0.245a,A (0.071)
0.318ab,A (0.126)

0.262a,A (0.067)
0.348ab,A (0.091)

0.243a,A (0.059)
0.354ab,A (0.098)

LLD_60QTL_0.1 1
2

0.101d,A (0.061)
0.197a,A (0.181)

0.114b,A (0.078)
0.206c,A (0.090)

0.127c,A (0.091)
0.232c,A (0.088)

0.113d,A (0.086)
0.239c,A (0.075)

LLD_60QTL_0.3 1
2

0.159abcd,B (0.070)
0.289a,A (0.146)

0.198a,AB (0.063)
0.329ab,A (0.096)

0.220ab,A (0.046)
0.370a,A (0.049)

0.170bcd,AB (0.044)
0.383a,A (0.079)

LLD_300QTL_0.1 1
2

0.102d,A (0.076)
0.190a,A (0.070

0.130b,A (0.069)
0.198c,A (0.155)

0.143c,A (0.057)
0.208c,A (0.094)

 0.145cd,A(0.058)
0.227c,A (0.115)

LLD_300QTL_0.3 1
2

0.135bcd,B (0.064)
0.281a,A (0.138)

0.192a,A (0.039)
0.309ab,A (0.106)

0.199b,A (0.040)
0.319ab,A (0.085)

0.200abc,A (0.057)
0.347ab,A (0.065)

Table 3.  Accuracy of genomic predictions and standard deviations (in parenthesis) for animals in four environments using  
single- and four-trait animal models over different scenarios. Scenarios consist of high or low linkage disequilibrium (HLD or 
LLD), different numbers of QTL (60QTL or 300QTL), and different incidences of the binary trait (10% or 30%).

[1]  Models 1 and 2 are single- and four-trait animal models, respectively. Means followed by the different letters (lowercase letters for com-
parison within column and uppercase letters for comparison within row) are significantly different (p<0.05). 
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effect on the accuracy of genomic prediction (Goddard, 
2009; Hayes et al., 2009a). Accuracies of genomic pre-
diction were larger in the fourth environment than the co-
rresponding values in other environments (Table 3). Wang 
et al. (2013), Naderi et al. (2016), and Naderi & Sadeghi 
(2020) reported high accuracies for traits with larger heri-
tabilities. For traits with low heritability, such as fertility 
and health traits, accuracies of genomic prediction were 
lower than that for traits like milk production traits with 
moderate to high heritabilities (Daetwyler et al., 2008; 
Goddard, 2009; Tiezzi et al., 2018). Sun et al. (2014)  
reported accuracies of 0.16 and 0.09 for daughter preg-
nancy rate in Holstein and Jersey cattle breeds, respecti-
vely. In a simulation study, Hayes et al. (2009b) reported 
an increase in accuracy of genomic prediction from 0.3 
to 0.7 by increasing heritability from 0.1 to 0.9. For traits 
with high heritability (i.e. phenotypic records in the fourth 
environment), the contribution of gene effects in pheno-
typic variation is high, resulting in accurate genomic bre-
eding values (Hayes et al., 2009b). 

Considering the heritability of simulated traits,  
Bohlouli et al. (2017) reported quite larger accuracies 
compared to the results obtained from the present study. 

For a continuous trait with the heritability of 0.2, Bo-
hlouli et al. (2017) reported accuracies between 0.46 
and 0.58 using both single- and multi-trait models. 
But in the present study, for the same heritability, the 
accuracies ranged from 0.11 to 0.24 using single-trait 
models and ranged from 0.23 to 0.40 using multi-trait 
models. In a simulation study by Wang et al. (2017), ac-
curacies of 0.71 and 0.40 were obtained for continuous 
and binary traits, respectively. Because of the binary 
nature (0 or 1) of traits like mastitis, calving ease, survi-
val, and reproductive disorders, phenotypic information 
does not follow the same distribution as breeding values 
which results in smaller accuracies of genomic predic-
tion and larger bias (Silva et al., 2019). Hence, using 
continuous traits as suitable indirect measurements of 
binary traits may be promising alternatives. For instan-
ce, somatic cell count is the most appropriate indica-
tor trait for mastitis in a view of its larger heritability 
than mastitis and its high genetic correlation with mas-
titis (Bloemhof et al., 2009). The difference between 
the accuracies from this study and those from the pre-
vious study (Bohlouli et al., 2017) was more remarka-
ble when the incidence was 10%. In a study by Wang 

Scenarios Environment
Percentage of phenotyped cows      

25 50 75
HLD_60QTL_0.1 First

Fourth
0.160a,A (0.099)
0.167b,A (0.074)

0.175a,A (0.122)
0.184b,A (0.119)

0.188a,A (0.090) 
0.213b,A (0.105)

HLD_60QTL_0.3 First
Fourth

0.210a,A (0.113)
0.259a,C (0.057)

0.226a,A (0.132)
0.342a,B (0.071)

0.256a,A (0.124)
0.399a,A (0.051)

HLD_300QTL_0.1 First
Fourth

0.189a,A (0.149)
0.170b,A (0.124)

0.195a,A (0.140)
0.191b,A (0.091)

0.208a,A (0.082)
0.202b,A (0.078)

HLD_300QTL_0.3 First
Fourth

0.213a,A (0.133)
0.264a,B (0.085)

0.216a,A (0.058)
0.346a,A (0.068)

0.238a,A (0.098)
0.351a,A (0.050)

LLD_60QTL_0.1 First
Fourth

0.112a,A (0.104)
0.151b,A (0.117)

0.128a,A (0.158)
0.175b,A (0.140)

0.154a,A (0.127)
0.206b,A (0.097)

LLD_60QTL_0.3 First
Fourth

0.164a,A (0.114)
0.250b,A (0.072)

0.167a,A (0.119)
0.281b,A (0.097)

0.189a,A (0.090)
0.334b,A (0.095)

LLD_300QTL_0.1 First
Fourth

0.146a,A (0.108)
0.149a,B (0.055)

0.165a,A (0.154)
0.183a,AB (0.081)

0.178a,A (0.132)
0.195a,A (0.067)

LLD_300QTL_0.3 First
Fourth

0.179a,A (0.108)
0.263a,B (0.055)

0.196a,A (0.154)
0.297a,AB (0.081)

0.221a,A (0.132)
0.337a,A (0.067)

Table 4. Accuracy of genomic predictions and standard deviations (in parenthesis) for non-phenotyped cows 
in the first and fourth environments with 25, 50, and 75% of phenotyped cows using a four-trait animal model 
over different scenarios. Scenarios consist of high or low linkage disequilibrium (HLD or LLD), different 
numbers of QTL (60QTL or 300QTL), and different incidences of the binary trait (10% or 30%).

Means followed by the different letters (lowercase letters for comparison within column and uppercase letters for 
comparison within row) are significantly different (p<0.05). 
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et al. (2017), the accuracies of genomic prediction  
decreased consistently with decreased incidence from 
50% to 5%. Naderi et al. (2016) investigated the effect 
of disease incidence on the accuracy of genomic pre-
diction in cow training sets. Naderi et al. (2016) figured 
out that the prediction accuracy decreases when a lower 
number of sick animals are assigned to training sets. For 
instance, the accuracy of genomic prediction decreased 
from 0.47 to 0.25 with decreasing the disease incidence 
from 60% to 10% (Naderi et al., 2016). Low accuracies 
for the scenarios with low incidence imply that a lar-
ger training population is needed to estimate variance 
components and thus to achieve sufficient accuracies of 
genomic prediction (Wang et al., 2017). 

In comparison to single-trait models, larger accuracies 
obtained via multi-trait animal models were consistent 
with the findings reported by Tsuruta et al. (2011), Guo 
et al. (2014), Ayalew et al. (2017), and Budhlakoti et al. 
(2019). This leads to the rejection of the null hypothesis 
and the acceptance of the alternative hypothesis that the 
accuracy of genomic predictions increases in the presence 
of G×E interactions. Guo et al. (2014), Jiang et al. (2015), 
and Bohlouli et al. (2017) demonstrated that a multi-trait 
model can lead to a more accurate genomic prediction 
by considering additional information from genetically  
correlated traits or from the same traits in different envi-
ronments. The use of multi-trait models is more beneficial 
for traits with low heritability and with a small number of 
phenotypic records (Guo et al., 2014). Hayashi & Iwa-
ta (2013) compared accuracies of single-and multi-trait 
models for traits with a genetic correlation of 0.7. They 
showed that the accuracy of GEBV from the multi-trait 
model was 20% larger than that from the single-trait mo-
del for a low heritability trait (h2= 0.1). In this study, the 
accuracies of genomic prediction for both incidences of 
the binary trait (10% or 30%) via multi-trait model were 
almost two times larger than the corresponding accuracies 
obtained via the single-trait model.

Genetic correlations between traits have been used to 
improve the accuracy of genomic predictions in multi-trait 
(Jia & Jannink, 2012; Hayashi & Iwata, 2013; Bohlouli et 
al., 2017). There were lower genetic correlations between 
the first and the fourth environments by low overlapping 
QTL groups between these two environments (Table 2). 
Accordingly, the accuracies of genomic prediction were 
lower when using animals located in the first environment 
as the training set and the fourth environment as the va-
lidation set and vice versa. The largest accuracy of 0.291 
was achieved for cows without phenotype in the second 
environment when the fourth environment was used as 
the training set (Table S1 [suppl]). Reasons for this could 
be the high genetic correlation between the traits in the 
second and fourth environments, and the heritability 
of the fourth environment that was the greatest among  
the environments. 

The number of phenotypic records to estimate GEBV 
affects the accuracy of genomic prediction (Calus & Veer-
kamp, 2007; Saatchi et al., 2010; Bohlouli et al., 2019). 
Applying four-trait models using datasets including 
25% of the cows with phenotypic records in the first and  
fourth environments (Table 4) resulted in larger accu-
racies than three-trait models without any record in the 
first and fourth environments (Table S1 [suppl]). Since 
cows in the validation set were genetically related to 
their half-sibs in the same and other environments, these 
close relatives might increase the accuracy of genomic 
prediction (Habier et al., 2010; Yin et al., 2014; Bohlouli 
et al., 2017). Accuracies of genomic prediction increa-
sed when 75% of cows had phenotypic records in the 
extreme environment. Because of increasing phenotypic 
records, the number of observations per SNP allele was 
increased and resulted in larger accuracies (Hayes et al., 
2009a). 

In conclusion, more phenotypes are needed to analyze 
binary traits compared with continuous traits to achieve 
a desirable level of accuracy, especially when the inci-
dence of binary traits deviates significantly from 50%. 
Finally, from a practical perspective, multi-trait models 
can provide more accurate genomic predictions for binary 
traits in the presence of G×E interactions and improve the 
practical breeding programs in dairy cattle. Furthermore, 
the genomic selection that includes G×E interaction can 
improve genetic gains. 
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