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Abstract
Aim of study: To use artificial neural networks (ANN) to predict the values and spatial distribution of soil chemical attributes from appa-

rent soil electrical conductivity (ECa) and soil clay contents.
Area of study: The study was carried out in an area of 1.2-ha cultivated with cocoa, located in the state of Bahia, Brazil.
Material and methods: Data collections were performed on a sampling grid containing 120 points. Soil samples were collected to 

determine the attributes: clay, silt, sand, P, K+, Ca2+, Mg2+, S, pH, H+Al, SB, CTC, V, OM and P-rem. ECa was measured using the 
electrical resistivity method in three different periods related to soil sampling: 60 days before (60ECa), 30 days before (30ECa) and 
when collecting soil samples (0ECa). For the prediction of chemical and physical-chemical attributes of the soil, models based on 
ANN were used. As input variables, the ECa and the clay contents were used. The quality of ANN predictions was determined using 
different statistical indicators. Thematic maps were constructed for the attributes determined in the laboratory and those predicted by 
the ANNs and the values were grouped using the fuzzy k-means algorithm. The agreement between classes was performed using the 
kappa coefficient.

Main results: Only P and K+ attributes correlated with all ANN input variables. ECa and clay contents in the soil proved to be good 
variables for predicting soil attributes.

Research highlights: The best results in the prediction process of the P and K+ attributes were obtained with the combination of ECa and 
the clay content.

Additional key words: precision agriculture; computational intelligence; remote sensing; predictive models; digital soil mapping.
Abbreviations used: ANN (artificial neural networks); CEC (cation exchange capacity); CV (coefficient of variation); ECa (apparent soil 

electrical conductivity); MPE (modified partition entropy); PA (precision agriculture); RME (mean relative error); SB (sum of exchangeable 
bases).
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Introduction
The soil is a dynamic and highly variable system and 

its surface layers are more delicate and dynamic when 
compared to the rest of its matrix (Daniel et al., 2003). 
Soil properties, like any dynamic and complex process, 
present a wide spatio-temporal variation (Santos et al., 
2017), which requires special attention in the adoption of 
management practices aimed at reaching the productive 
potentials of agricultural areas. 

In precision agriculture (PA), the description of the 
variables that characterize soil fertility must be carried 
out from different attributes and, mainly, from a high 
number of samples for the same attribute (Silva & Lima, 
2012). The use of a large sample density puts a burden 
on the PA system, making it unfeasible in some cases 
depending on the availability of financial resources to 
be contributed at this stage, especially for those attri-
butes whose determination requires complex laboratory 
analyses. 
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The use of sensors has grown in application and im-
portance as it allows cost reduction in PA systems and 
for reducing the time required for decision-making. In 
some cases, the information from the sensing is available 
in real time and or in a short time (Medauar et al., 2020). 
Among the sensors used in PA, the ones used to measure 
the apparent electrical conductivity (ECa) of the soil stand 
out, whose spatial variability is highly correlated with that 
of different soil attributes (Grubbs et al., 2019). 

ECa is a minimally invasive property capable of des-
cribing the spatial distribution patterns of different soil 
properties important for the management of agricultural 
cultivation (Serrano et al., 2017; Grubbs et al., 2019). Be-
cause it is capable of measuring the capacity of the soil to 
conduct electricity through solid particles and exchangea-
ble cations at the solid-liquid interface of clay minerals, 
in addition to the soil solution (Corwin & Lesch, 2003; 
Stadler et al., 2015), it can be used to predict the values 
and distribution of different soil attributes, guiding deci-
sion-making for supplementary fertilization. 

The use of methodologies for predicting variables is a 
common practice in several areas of knowledge and has 
grown in recent years for the most different applications. 
Among the prediction methods, artificial neural networks 
(ANN) have been used by several authors to predict soil 
attributes from different variables (Daniel et al., 2003; 
Guo et al., 2013; Kolassa et al., 2018; Ng et al., 2019). 
Jafarzadeh et al. (2016), evaluating different methods for 
the prediction of the cation exchange capacity (CEC) in 
an agricultural soil and Aitkenhead & Coull (2016), pre-
dicting the carbon stock in the soils of Scotland, conclu-
ded that the ANN present low deviations in the prediction 
process of the attributes of the soil and faithfully represent 
the phenomena under study. 

Despite the potential of ECa to describe physical and 
chemical attributes of the soil, few studies have investi-
gated the potential of this variable for the prediction of 
attributes that describe its fertility, especially using com-
putational intelligence models. ECa has been widely used 
in PA, mainly for the description of the spatial variabili-
ty of soil attributes and or for the design of management 
zones for different agricultural crops. Uribeetxebarria et 
al. (2018) used ECa and multivariate analysis of variance 
as diagnostic tools for the physical-chemical composition 
of soils and the variability of attributes in areas of fruit 
growing. Sanches et al. (2018) described the soil pH and 
built, through spatial analysis, models for the recommen-
dation of lime, using ECa as a predictor variable. Bottega 
et al. (2017) outlined management zones for soybean cul-
ture using ECa as an input variable, associated or not with 
soil texture.

The association between soil sensors and models based 
on computational intelligence such as ANN, is an impor-
tant tool for predicting soil attributes that control the fertili-
ty of agricultural areas, reducing costs in PA without losing 

precision in decision-making on management practices. 
Given this context, the aim of this work was to use ANNs 
to predict the values and spatial distribution of chemical 
attributes of the soil from the ECa and soil clay contents.

Material and methods
The study was carried out in an area of approximately 

1.2 ha located in the southern region of the state of Ba-
hia (Brazil), under the central coordinates of 14°47' S and 
39°16' W. The cocoa tree (Theobroma cacao L.) is being 
cultivated in the 3.0 × 1.5 m spacing and Erythrina sp. in 
the 24 × 24 m spacing. 

The region's climate is classified as Af-type, tropi-
cal-humid, with an average annual precipitation of 1830 
mm, relative air humidity of around 80% and the avera-
ge annual temperature ranging between 21.5 and 25.5°C 
(Köppen & Geiger, 1928). The soil is classified, according 
to the Brazilian Soil Classification System, as Eutroferric 
Haplic Nitisol (Santos et al., 2017).

For data collection in the area, an irregular sampling 
grid was constructed, totaling 120 sample points spa-
ced 9.5 m on the x axis and 6.6 m on the y axis. The 
sampling point was composed of a cocoa plant and the 
coordinates were defined using a local referencing sys-
tem (local coordinates), fixing a point and defining the 
position of the others through the distance in relation to 
it in a Cartesian plane. 

Soil ECa was measured and soil samples were collec-
ted in the projection of the cocoa canopy at each of the 
120 sampling points in the grid. The projection of the 
crown was considered, an area delimited by a radius of 
0.40 m from the stem of the cacao trees. 

The soil samples were collected with the aid of a Dutch 
type auger, in the 0-0.20 m layer, using 4 sub-samples (01 
sample per quadrant) to compose a composite sample. The 
soil of the composite sample was homogenized in a plas-
tic bucket, from which approx. 0.5 kg was removed and 
packed in plastic bags. The soil samples were air dried, 
removed with the aid of a roller and passed through a 2 
mm mesh sieve to obtain air-dried fine soil. Afterwards, 
the samples were sent to a commercial laboratory to de-
termine some physical, physical-chemical and chemical 
attributes of the soil. 

The measurement of the ECa was performed using the 
electrical resistivity method, using the Wenner Matrix 
(Corwin & Hedrickx, 2002; Corwin & Lesh, 2003). This 
method is based on the introduction of four electrodes 
equally spaced on the soil surface. An electric current is 
applied between the external electrodes and the potential 
difference is measured at the internal electrodes. For the 
measurement, a portable conductivity meter ERM-02 ma-
nufactured by Landviser with electrodes spaced at 0.20 m 
was used, representing a measurement at an equal depth.
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The physical attributes analyzed were the granulo-
metric fractions of the soil, clay, silt and total sand. The  
following chemical and physicochemical attributes of the 
soil were also analyzed: P, K+, Ca2+, Mg2+, S, active acidity 
(pH in water), potential acidity (H+Al), sum of exchangeable 
bases (SB), CEC, base saturation (V), organic matter (OM), 
and remaining P (P-rem). The methods of laboratory analy-
sis, as well as the extractors for the determination of soil at-
tributes, were used as recommended by EMBRAPA (2017). 

Soil samples were collected in December, immediate-
ly after the completion of cocoa harvest referring to crop 
production (higher cocoa production throughout the year). 
The ECa was measured at three distant times in relation 
to the soil sampling period, namely: a) sixty days before 
soil sampling - 60ECa; b) thirty days before soil sampling 
- 30ECa, and; c) on the same day of soil sampling - 0ECa. 

At each moment of measurement of the ECa, 30 soil 
samples were collected to determine the gravimetric soil 
water content. The samples were packed in plastic and 
dry packages, weighed and dried in a forced-air oven at a 
temperature of 105ºC until they reached a constant mass, 
and the soil water content was determined. 

Soil and ECa attribute data measured in different pe-
riods were submitted to exploratory statistical analyses to 
verify the presence of discrepant values. The interquartile 
range was used for this evaluation and, when values that 
deviated from the frequency distribution of the data were 
observed, they were removed. The values of ECa and gra-
nulometric fractions were also submitted to descriptive 
statistical analysis to determine the measurements of po-
sition, dispersion and shape of dispersion. Normality was 
tested using the Kolmogorov-Smirnov test at the level of 
5% probability. 

After the removal of the outliers, the data were nor-
malized to mean zero and standard deviation equal to one 
(Leal et al., 2015). This normalization was performed to 
equalize the scales, since the absolute differences between 
the scales of the variables could compromise the analyses 
used to achieve the proposed objectives.

The normalized results of ECa and soil water contents 
were correlated using Pearson's linear model at the 5% pro-
bability level. The absolute values and, mainly, the spatial 
distribution of ECa are influenced by soil water content, and 
this relationship should be considered in studies that intend to 
use conductivity to predict soil fertility (Brevik et al., 2006). 

To evaluate the relationship between the different 
sets of variables, a correlation analysis was performed  
between the normalized values of ECa and textural frac-
tions with the chemical and physicochemical attributes of 
the soil. Pearson's linear correlation was used at the 5% 
probability level. This analysis was performed with the 
main intention of selecting the most appropriate variables 
for the prediction models, and those that correlated with 
the ECa and the clay content of the soil were selected si-
multaneously. 

For the prediction of chemical and physicochemical 
attributes of the soil, models based on ANN of the percep-
tron type were used. Perceptron networks are simple neu-
ral networks that comprise the existence of an input and 
output layer (target), being assigned weights to each input 
and the output values obtained as a sum of the input pro-
ducts by their respective weights (Silva IN et al., 2010). 
The back-propagation learning rule was used, where 
iteratively seeks the minimum variance between the ex-
pected outputs and those predicted by the neural network 
(Haykin, 1999). 

ECa measured values were used as input variables in the 
different periods (60, 30 and 0 days before soil sampling) 
and the clay contents. The choice of clay content as input va-
riable is due to the fact that this mineral is directly related to 
the availability of all attributes that account for fertility, offe-
ring chemical stabilization of the soil. These variables were 
used individually and in association, as described in Table 1. 

The output variables (target) were selected from the re-
sults of Pearson's linear correlation analysis between the 
input variables (considered individually) and the normalized 
values of the chemical and physicochemical attributes of the 
soil. Only those that correlated significantly with all input 
variables were used in ANN analysis as output variables. 

After predicting the values of chemical and physico-
chemical attributes by the ANNs they were "denormali-
zed" to assume again their absolute values, respecting the 
unit of measurement of each output variable. The results 
were submitted to descriptive statistical analysis to eva-
luate the measures of position, dispersion and shape of 
dispersion of the real variables and those predicted by 
the ANNs. Data normality was tested by the Kolmogo-
rov-Smirnov test at the 5% probability level. 

For the construction of thematic maps for the chemical 
and physicochemical attributes of the soil determined in 
laboratory analyses and those predicted by the ANNs, the 
values for each sampling point were submitted to geos-
tatistical analysis, in order to verify the existence and, in 
this case, to quantify the degree of spatial dependence, 
from the adjustment of theoretical functions to the models 
of classic Matheron’s experimental variograms, based on 
the assumption of stationarity of the intrinsic hypothesis. 

Once spatial dependence was proven, the data were in-
terpolated to estimate values for non-sampled locations. 
Interpolations were performed using the geostatistical 
method of ordinary kriging. The values were interpola-
ted in order to generate matrices of the same order for 
all variables, where each term independent of each matrix 
represented one pixel of a map. 

To evaluate the efficiency of the estimates obtained 
from the values of the data determined in laboratory 
analyses and those predicted by the ANNs, some statisti-
cal indicators of efficiency were calculated: 
— Mean relative error (RME, %): this indicator eva-
luates the relationship between the value measured in  
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laboratory analysis for the xi position and the value pre-
dicted by ANN in the same xi position and is determined 
according to equation:

                    
 

in which y = value measured in laboratory analysis; ŷ = 
value predicted by ANN, and n = number of observations.
— Willmott's index of agreement (d): this index relates 
the difference between the value measured in laboratory 
analysis at the xi position in relation to the value predicted 
by ANN in the same xi position and it is determined ac-
cording to equation:

               

( )



=

=

−+−

−
−= n

i

n

i

yyyy

yy
d

1

2

1

2

ˆ

)ˆ(
1

 
in which y = value measured in laboratory analysis; ŷ = 
value predicted by ANN; ӯ = mean of the measured va-
lues in laboratory analysis, and n = number of observa-
tions. The index d varies between 0 and 1, and the greater 
the better the agreement between the measured and the 
predicted (Willmott et al., 1985).
— Linear correlation coefficient (r): Pearson's linear  
correlation was used at the level of 5% probability among 
the values measured in laboratory analysis and the values 
predicted by ANN. The coefficient varies between -1 and 
1 and the higher the absolute value, the greater the rela-
tionship between the databases. 

— Performance index (PI): calculated as:

                                      PI = r · d 

 To evaluate the agreement between the maps for the 
data measured in laboratory analysis and those of the data 
predicted by ANN, the interpolated values were submitted 
to a cluster analysis using the fuzzy c-means hierarchical 
model, which uses the Euclidean distance to calculate the 
proximity between the samples. This method is based on 
the minimization of equation, according to Guastaferro et 
al. (2010):
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where N is the number of data; m is the fuzzy weighting 
exponent; k is the number of classes; and dij is the squared 
Euclidean distance between the xi sample points and the 
centroid of class Cj. The fuzzy uij element is conditioned 
to the restrictions for all i=1 to N and all j=1 to k, accor-
ding to equation:

                          
 

 

The numbers of classes were tested and defined for the 
groupings for interpolated values from the data measured 
in laboratory analysis. After choosing the best number of 
classes, these were replicated to all values predicted by 
the ANNs.

Groupings with two, three, four and five classes were 
tested for interpolated values from the data measured in 

Combinations Description
0ECa 0ECa individually
0ECaCLAY 0ECa + soil clay contents
30ECa 30ECa individually
30ECaCLAY 30ECa + soil clay contents
60ECa 60ECa individually
60ECaCLAY 60ECa + soil clay contents
0_30ECa 0ECa + 30ECa
0_30ECaCLAY 0ECa + 30ECa + soil clay contents
0_60ECa 0ECa + 60ECa
0_60ECaCLAY 0ECa + 60ECa + soil clay contents
30_60ECa 30ECa + 60ECa
30_60ECaCLAY 30ECa + 60ECa + soil clay contents
0_30_60ECa 0ECa + 30ECa + 60ECa
0_30_60ECaCLAY 0ECa + 30ECa + 60ECa + soil clay contents
0ECa: measurement on the same day as the soil sample collection; 
30ECa: measurement 30 days before soil sample collection; 60ECa: 
measurement 60 days before soil sample collection.

Table 1. Combinations and description of the variable of entrance in 
the models of prediction of chemical and physicochemical attributes 
of the soil from artificial neural networks. 
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laboratory analysis. The ideal number of classes was de-
termined by calculating the fuzziness performance index 
(FPI) and the modified partition entropy (MPE), accor-
ding to equations:
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The FPI index describes the shared association between 

any pair of fuzzy sets (FPI=1 corresponds to maximum 
inaccuracy and FPI=0 means non-inaccuracy). The MPE 
describes the certainty (or uncertainty) of fuzzy k-parti-
tions (MPE=1 corresponds to maximum uncertainty and 
MPE=0 maximum certainty). The ideal number of mana-
gement zones is obtained when both indices are minimal.

To analyze the agreement among the maps classified 
for the data measured in laboratory analyses and those 
predicted by the ANNs, cross-validation was performed 
two by two (observed × predicted) between each map 
grouped with the same number of classes. The agreement 
was analyzed through the kappa coefficient according to 
Kitchen et al. (2005) and Valckx et al. (2009). The kappa 
coefficient indicates the superiority of the reclassification 
over a random classification and presents the agreement 
between clusters and, for interpolated data, between spa-
tial distributions.

Results and discussion
The mean values for ECa (Table 2) were close for the 

three evaluation periods, with an average amplitude of 
0.64 Ms m-1. The lowest mean value was observed for the 
ECa measured on the same day of soil sample collection 

(0ECa) and the highest value for ECa measured 60 days 
before (60ECa).

For the granulometric fractions, the highest mean va-
lues are observed for the total sand. The clay contents pre-
sented the lowest mean values, with an expressive mean 
for silt contents (38.73 %). Based on the averages of the 
granulometric fractions, the area's soil can be classified as 
having a frank texture, according to the textural classifi-
cation proposed by EMBRAPA (2018). The high silt con-
tents are usually associated with the lower degree of pe-
dogenetic development of soils (Grego et al., 2011) and, 
consequently, with the degree of weathering of the soil.

Generally speaking, the ECa averages observed for 
the different evaluated periods are within the expected 
values, due to the textural composition of the soil. The 
highest values of ECa are generally found in soils with 
higher clay contents, with a high and positive correlation 
between these two variables (Moral et al., 2010). In soils 
with higher sand content, the ECa values tend to be lower, 
since the electrical resistivity decreases as the availability 
of electrical loads in the soil physical matrix is reduced. 

Similar behavior to that of the mean values was ob-
served for the variability of the ECa measured by the CV. 
The values for this statistic were medium to low, indi-
cating reduced variation of the values around the mean. 
For soil texture, however, CV values were very different 
among different fractions. The silt presented the lowest 
variation, while the clay content the highest. 

The results of the linear correlation analysis between 
ECa and soil water content in the different evaluation pe-
riods are presented in Table 3. The mean values of soil 
water content were very close for the evaluated periods. 
The same behavior is observed for CV values, which, in 
addition to being close, are low. Table 3 shows the ab-
sence of a linear correlation between ECa and soil water 
content. These results, added to the low variation of the 

Variables[1] Mean Median Minimum Maximum CV[2] Sc[3] Kc[4] K-S[5]

ECa (mS m-1)
0ECa 3.84 3.71 2.46 5.94 17.30 0.60 0.22 0.09
30ECa 4.25 4.07 2.59 6.99 19.34 0.69 0.37 0.09
60ECa 4.48 4.34 2.56 7.55 18.95 0.40 0.11 0.08

Granulometric (%)
Clay 17.66 15.36 7.83 35.20 31.15 0.91 0.40 0.11
Silt 38.73 39.10 19.92 48.31 6.62 -0.15 -0.17 0.08
Total Sand 43.61 45.04 16.49 61.79 21.13 -0.65 -0.53 0.21

Textural Class (USDA)
Loam

[1] 0ECa: measurement on the same day as the soil sample collection; 30ECa: measurement 30 days before soil sample collection; 60ECa: 
measurement 60 days before soil sample collection.  [2] CV: coefficient of variation.  [3] Sc: assimetric coefficient.  [4] Kc: kurtosis coeffi-
cient.  [5] K-S: Kolmogorov-Smirnov index.

Table 2. Descriptive statistics of apparent electrical conductivity (ECa) measured in different periods and soil granulometric  
fractions. 
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water content, indicate that the variation of the ECa is not 
influenced by the variation of the water content in the soil, 
and there is no cause and effect relationship between these 
variables for the study. A low variability for soil water 
content values at the time of ECa measurement points to 
a greater correlation of this variable with soil attributes 
(Lück et al., 2009). 

For the correlation between ECa, soil chemical, phy-
sical and physicochemical attributes (Table 4), the va-
lues for Pearson’s coefficient were significant only for 
P, K+, Mg2+ and silt. The correlations were positive and 
very similar between periods for P, K+ and silt, while 
for Mg2+ the correlation was negative. ECa is an indirect 
measure capable of describing the physical and chemi-
cal condition of soils, mainly because it correlates with 

the attributes that determine these conditions (Moral &  
Serrano, 2019). Several authors have studied these  
correlations and verified, in different soil types, the pos-
sibility of using ECa to infer about the variability of soil 
properties (Serrano et al., 2017; Grubbs et al., 2019; 
Sanches et al., 2019). 

In a study conducted in different topographic positions, 
Singh et al. (2016) found a linear correlation between sig-
nificant and positive between ECa and exchangeable le-
vels of P and Mg, however, there was no correlation with 
K. In a study in the sugarcane area, Sanches et al. (2019) 
observed correlation of ECa with the exchangeable levels 
of K. These authors, also like in this study, did not find a 
significant correlation between ECa and all soil chemical 
attributes. 

Measurement[1] Mean ECa
(mS m-1)

Soil water content[2]

r[3]

Mean (%) CV (%)

60ECa 3.84 24.78 8.20 0.18*

30ECa 4.25 23.28 7.50 0.12*

0ECa 4.48 22.16 8.33 0.16*
[1] 0ECa: measurement on the same day as the soil sample collection; 
30ECa: measurement 30 days before soil sample collection; 60ECa: mea-
surement 60 days before soil sample collection.  [2] Gravimetric soil water 
content.  [3] r: Pearson's linear correlation coefficient; * significant at the 5% 
probability level.

Table 3. Mean and linear correlation between ECa and soil water content 
at different measurement times. 

Attributes[1] 60ECa 30ECa 0ECa Total sand Clay Silt
pH -0.16 -0.12 -0.12 -0.09 0.21* -0.06
P 0.46* 0.49* 0.50* 0.56* -0.48* -0.41*
K+ 0.30* 0.33* 0.34* 0.82* -0.78* -0.61*
Ca2+ 0.15 0.17 0.18 0.48* -0.40* -0.41*
Mg2+ -0.38* -0.38* -0.37* -0.09 0.06 0.07
S 0.15 0.15 0.15 -0.08 -0.01 0.11
P-rem 0.13 0.17 0.20 0.39* -0.36* -0.25
H+Al -0.01 -0.06 -0.07 0.22* -0.24* -0.11
OM 0.07 0.04 0.04 0.47* -0.42* -0.32*
SB 0.13 0.15 0.16 0.46* -0.38* -0.38*
CEC 0.10 0.07 0.06 0.50* -0.46* -0.35*
V 0.00 0.06 0.08 -0.05 0.08 0.02
60ECa - 0.91* 0.89* -0.07 -0.04 0.24*
30ECa - - 0.93* -0.05 -0.06 0.23*
0ECa - - - -0.05 -0.06 0.23*
[1] P-rem: remaining P; OM: organic matter; SB: sum of exchangeable bases; CEC: cation exchan-
ge capacity; V: base saturation; 0ECa: measurement on the same day as the soil sample collection; 
30ECa: measurement 30 days before soil sample collection; 60ECa: measurement 60 days before 
soil sample collection.  * significant at the level of 5% probability.

Table 4. Linear correlation between soil attributes and apparent electrical conductivity mea-
sured in different periods. 
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ECa is mainly controlled by ions close to soil consti-
tuents, therefore, correlation values with the properties of 
this physical environment are generally observed (Moral 
et al., 2010). In this sense, ECa can be used for targeted 
soil sampling as a secondary variable to estimate the spatial 
distribution of a main variable (Fortes et al., 2015) and to 
predict soil attributes (Grubbs et al., 2019). Despite these 
possibilities, it is worth mentioning that the natural varia-
bility of soils interferes in the results of the relationships 
between ECa and soil attributes, requiring the evaluation, 
for each condition, of the practical applications of ECa. 

The granulometric fractions, unlike the ECa, correla-
ted with a high number of chemical and physicochemical 
attributes of the soil. Generally speaking, the correlation 
values were positive for the total sand ratio and the attri-
butes and negatives for the clay and silt relationships with 
soil attributes. Terrón et al. (2011), mapping the ECa in 
an agricultural soil, observed a strong correlation between 
ECa and P and K+ contents. These authors, however, warn 
that, because it is influenced by several factors, the in-
terpretation of the relationships between ECa and soil 
attributes should be performed for each production field, 
seeking those attributes that most influence it.

Correlations between physical and chemical soil attri-
butes are common and expected, given that fertility varia-
tion is a product of soil physical properties and these, in 
turn, come from pedogenetic processes and interference 
in the cation structure of soils (Silva SA et al., 2010a).

Analyzing the correlation of ECa measured in different 
periods, the values were high and significant for all com-
binations, indicating that the behavior of this variable was 
stable over time, despite differences in absolute values. 
Temporal stability is an important factor in describing the 
distribution trend of a variable (Blackmore et al., 2003), 
allowing, in the last analysis, to predict spatial patterns to 
be used for decision making regarding agronomic mana-
gement practices. 

In order to use the values of ECa and clay content in 
the soil together to predict soil attributes, only those that 
significantly correlated with both variables and periods 
were considered. From the results in Table 4, only the ex-
changeable attributes P and K showed significant correla-
tion with ECa (in the three study periods) and with the clay 
contents, with prediction models using ANN only for these. 

The real data of P and K+ (determined in laboratory 
analyzes) and those predicted by the ANNs using the 
ECa measured in different periods and their combina-
tion with the clay contents were subjected to descriptive 
statistical analyzes. The results of this analysis are pre-
sented in Table 5.

The mean values for the attributes determined in the 
laboratory (real) and those predicted by the ANNs are 
very close, with variations less than one unit for all com-
binations of input variables. Similar behavior was obser-
ved for the median and the maximum distribution values.  

For the minimum distribution values, no similarity was 
observed for all prediction scenarios in relation to the 
actual data, with emphasis on those predicted by 0ECa, 
30ECa, 30ECaCLAY, 60ECa and 60ECaCLAY for phos-
phorus and 0ECa, 30ECa and 60ECa for potassium. These 
combinations, for not being able to reproduce the ampli-
tude of variation of the soil attributes, were the ones that 
presented greater alterations in the variation coefficient 
and, consequently, in the values of asymmetry, kurtosis 
and the Kolmogov-Smirnov test statistics. 

In order to assess the effect of the prediction efficiency 
by artificial neural networks, the results, pixel-by-pixel 
were related to the values determined in the laboratory 
(Table 6). Comparatively analyzing the quality of the 
products predicted by the ANNs, it is observed that the 
results for K+ are closer to the real ones when compared 
to P. In all combinations for P prediction the RME values 
were higher than 16%, while the values for K+, only 0ECa, 
30ECa and 60ECa presented RME greater than 10%. The 
same behavior was observed for the other indexes, with 
few exceptions. 

Analyzing the efficiency indicators for the different 
combinations of inputs, for the prediction of P the lowest 
value of RME (16.40) was observed for the combination 
0_60ECa while the highest values of d (0.96), r (0.92) and 
PI (0.89) were observed in the combination 0_30_60ECa-
CLAY. For K+, the best values for all indices were ob-
served in the combination 0_30_60ECaCLAY with small 
errors and high-performance indices.

The Willmott index values presented medium to high 
concordances for all combinations for all the studied at-
tributes. The lowest value was 0.54 for the prediction of 
K+ from the conductivities assessed individually in each 
measurement period. For all other combinations and pe-
riods, d values were greater than 0.65, with 50% of the 
combinations with values above 0.9 for both attributes.

For the correlation coefficients, more than 60% of the 
combinations for the prediction of P had values above 
0.80. For K+ more than 57% of the combinations presen-
ted values above 0.80. In general, for all scenarios the 
correlation values were high (r ≥ 0.54). The correlation  
between real and predicted values by neural networks 
tend to be higher for sets of variables that are correlated 
with each other (Braga et al., 2011). 

For all attributes, the combinations that involved ECa 
and clay contents showed better results. For K+, however, 
the effect of adding clay as an input resulted in greater 
gains for the performance indexes when compared to the 
gains for the prediction of P. These results are directly re-
lated to the correlation values observed between ECa and 
clay with soil attributes, where the values for clay were 
higher when correlated with K+ (Table 4). 

The use of ECa as the only input variable resulted in 
lower prediction performance, with worse values for the 
statistical efficiency indicators. For the prediction of P, 
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however, with the exception of the scenarios using the indi-
vidualized ECa (0ECa, 30ECa and 60ECa), the use of clay 
as an auxiliary input in the network architectures, showed 
close results for all indexes when compared to those wi-
thout their presence. In this sense, it is possible to affirm 
that, in order to use ECa as the only input variable for P 
prediction, it is necessary to carry out more than one rea-
ding in time. 

In general, the use of the ECa-Clay combination al-
most always returns more reliable results for the predic-

ted attributes, with emphasis on the greater contribution 
to the architecture of the ANNs for potassium. The clay 
fraction generally presents a strong correlation with soil 
attributes, especially P and K+, due to the adsorption and 
fixation processes, respectively, indicating this attribute 
as effective for describing the spatial variability of the 
former (Silva SA et al., 2010a). 

There is a tendency to reduce errors and improve other 
indexes as the number of variables in the input model in-
creases, however, in some cases, the differences are not 

Inputs Mean Median Minimum Maximum CV (%) Sc Kc K-S
Phosphorus (mg dm-3)

Real 35.25 35.42 5.80 66.11 46.96 0.19 -1.14 0.10
0ECa 35.30 32.80 21.67 62.67 27.10 1.60 1.25 0.33
0ECaCLAY 35.31 36.09 9.36 61.98 40.20 0.23 -1.05 0.09
30ECa 35.25 32.67 22.10 64.89 26.54 1.71 1.46 0.35
30ECaCLAY 35.26 35.11 14.84 62.69 39.07 0.31 -1.02 0.09
60ECa 35.12 32.78 23.02 59.49 26.30 1.66 1.94 0.27
60ECaCLAY 35.22 34.67 11.61 61.37 38.63 0.36 -0.88 0.10
0_30ECa 35.29 33.54 8.63 64.30 35.61 0.35 -0.34 0.08
0_30ECaCLAY 35.31 35.13 7.94 64.54 42.97 0.11 -1.13 0.08
0_60ECa 35.28 33.86 6.43 60.94 34.27 0.46 -0.05 0.07
0_60ECaCLAY 35.15 36.29 7.92 64.31 42.74 0.10 -1.10 0.08
30_60ECa 35.24 33.54 7.53 64.96 32.31 0.69 0.25 0.14
30_60ECaCLAY 35.29 35.39 7.60 65.44 41.87 0.15 -0.96 0.07
0_30_60ECa 35.20 33.11 7.20 66.11 39.64 0.22 -0.80 0.06
0_30_60 ECaCLAY 35.16 35.69 5.87 66.07 44.30 0.09 -1.08 0.07

Potassium (mg dm-3)
Real 34.11 35.29 19.51 41.40 14.72 -0.60 -0.62 0.12
0ECa 34.10 33.61 30.99 40.57 6.42 1.58 1.82 0.23
0ECaCLAY 34.14 35.28 21.46 41.03 13.57 -0.46 -0.97 0.12
30ECa 34.10 33.99 30.50 40.69 6.53 1.49 1.72 0.35
30ECaCLAY 34.12 34.96 22.66 40.17 13.32 -0.37 -1.16 0.14
60ECa 34.09 33.46 31.39 40.40 6.35 1.62 1.97 0.22
60ECaCLAY 34.12 35.16 23.60 40.14 13.23 -0.40 -1.04 0.15
0_30ECa 34.21 34.68 23.17 41.40 10.15 -0.10 0.01 0.06
0_30ECaCLAY 34.12 35.30 21.32 40.96 14.27 -0.60 -0.76 0.13
0_60ECa 34.14 34.42 22.12 40.95 10.23 -0.64 1.07 0.10
0_60ECaCLAY 34.14 35.18 20.39 41.34 14.27 -0.64 -0.49 0.13
30_60ECa 34.06 34.31 20.84 41.05 9.88 -0.69 1.16 0.08
30_60ECaCLAY 34.12 35.27 21.27 41.04 14.09 -0.60 -0.60 0.13
0_30_60ECa 34.13 34.89 19.85 41.25 12.04 -0.74 0.63 0.07
0_30_60 ECaCLAY 34.11 35.18 20.33 40.75 14.33 -0.64 -0.54 0.13
0ECa: measurement on the same day as the soil sample collection; 30ECa: measurement 30 days before soil sample collection; 60ECa: 
measurement 60 days before soil sample collection; CV: coefficient of variation. Sc: assimetric coeficient. Kc: kurtosis coeficiente. K-S: 
Kolmogorov-Smirnov index.

Table 5. Descriptive statistics of phosphorus and potassium attributes determined by laboratory analysis and estimated by artificial 
neural networks. 
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large when compared to scenarios with fewer input varia-
bles. An example for what is reported is the difference for 
the indices between the combination 0_30ECaCLAY and 
0_30_60ECaCLAY (best results), where the RME values 
are very close and the other indices were very close for P 
and equal for K+.

In the maps of Fig. S1 [suppl], the relationships  
between ECa and Clay with the attributes P and K+ are 
evident. Because it is a flat area, the variability observed 
for the variables is associated with the process of soil for-
mation and management practices.

The ECa maps were very similar for all periods un-
der study, indicating that the temporal variation of this 
variable was low, with classes equally distributed over 
time. The ECa is distributed over the area with values 
of 2.4 to greater than 5.7 mS m-1, with emphasis on the 
central projection of the area where the values are redu-
ced. Medeiros et al. (2018), studying the spatio-tempo-
ral behavior of ECa in two fields cultivated with sugar 
cane, found values for this variable at wider intervals 
than those observed for this study. In an area cultivated 
with coffee, Valente et al. (2014) found similar values 
to those of this work, including for correlation with soil 
chemical attributes.

As previously discussed, the correlation values  
between ECa and the levels of P and K+ were significant, 
but average (Table 4), which is evident in the maps in Fig. 
S1 [suppl]. With the exception of the northeastern portion 
of the area, there is a similarity in the distribution of the 
exchangeable levels of the chemical attributes of the soil 

and ECa, where there is a reduction in the values in the 
east-west direction of the area.

For clay contents, the values follow an increasing gra-
dient in the east-west direction of the area, which indicates 
the inverse behavior indicated by the correlation (Table 4) 
with the exchangeable levels of P and K+. The values of P 
and K+ increase in the west-east direction of the area, with 
well-defined and continuous limits.

Almost all of the area has P values in the classes 
from 5 to 25 mg dm-3 and from 25 to 31 mg.dm-3. Only a  
small proportion of the area has values greater than 65 
mg dm-3 of P. The values of exchangeable P availability 
in the study area are within the recommended limits for 
most agricultural crops, especially for the cocoa cultiva-
tion (Chepote et al., 2013). This result can be attributed to 
the physical and mineralogical characteristics of the soil 
under study, where, the predominance of low activity clay 
and the higher concentration of sand and silt, contribute to 
a greater availability of P in solution (Ernani et al., 2007).

K+ follows spatial behavior similar to that of P, with  
higher values in the eastern region of the area and  
following an increase gradient as it moves to the western 
region. This similarity in the spatial distribution of P and 
K+ is not always observed and may be related to the ac-
tivity of clays and the mineralogical composition of the 
soil. In a mineralogical survey of the soil in the study area, 
Carvalho Filho et al. (1987) identified the predominan-
ce of the minerals: mica, feldspar, amphibole and apatite. 
Micas and feldspars are minerals that have K, which may 
partly justify the availability of this nutrient in the soil 

Inputs
Phosphorus Potassium

RME d r PI RME d r PI
0ECa 27.16 0.69 0.58 0.40 11.77 0.54 0.44 0.23
0ECaCLAY 23.54 0.92 0.85 0.78 4.72 0.95 0.91 0.87
30ECa 27.44 0.68 0.57 0.39 11.72 0.54 0.44 0.24
30ECaCLAY 26.24 0.90 0.83 0.75 5.10 0.95 0.90 0.85
60ECa 27.21 0.67 0.56 0.38 11.75 0.54 0.43 0.23
60ECaCLAY 28.15 0.89 0.81 0.72 5.19 0.94 0.90 0.85
0_30ECa 23.17 0.85 0.75 0.64 9.03 0.78 0.66 0.52
0_30ECaCLAY 18.15 0.95 0.90 0.86 2.81 0.99 0.97 0.96
0_60ECa 16.40 0.82 0.72 0.59 8.80 0.79 0.68 0.54
0_60ECaCLAY 18.75 0.95 0.90 0.85 2.99 0.98 0.96 0.95
30_60ECa 18.91 0.79 0.69 0.54 8.95 0.78 0.67 0.52
30_60ECaCLAY 22.18 0.93 0.87 0.81 3.40 0.98 0.95 0.93
0_30_60ECa 17.35 0.90 0.83 0.75 6.77 0.88 0.80 0.71
0_30_60ECaCLAY 17.45 0.96 0.92 0.89 2.69 0.99 0.97 0.96
0ECa: measurement on the same day as the soil sample collection; 30ECa: measurement 30 days before 
soil sample collection; 60ECa: measurement 60 days before soil sample collection; RME: mean relative 
error (%); d: Willmott concordance index; r: Pearson’s correlation; PI: performance index.

Table 6. Statistical efficiency indicators for the estimation of artificial neural networks.
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solution. In a work to map the chemical attributes of an 
Oxisol, Silva SA et al. (2010b) observed the opposite be-
havior of P and K justified by the greater clay activity and 
the presence of minerals such as kaolinite and iron and 
aluminum oxides.

After the prediction of the exchangeable levels of P 
and K+ by the ANNs, thematic maps were constructed for 
each prediction scenario, in order to describe their spatial 
distribution and analyze concordances with the real maps. 
The results for this analysis are presented on the maps of 
Figs. S2 and S3 [suppl] for P and K+, respectively.

For the maps in Fig. S2 [suppl], which represent the 
spatial behavior of P predicted by the ANNs with the  
different input variables, it is possible to observe that the 
predictions from the ECa alone were the ones that least 
describe the spatial variation of P when compared to the 
map generated at from the values determined in labora-
tory analysis (Fig. S1 [suppl]). This behavior corroborates 
what was previously discussed about the low efficiency of 
using the individualized ECa to predict the availability P.

In the other prediction scenarios, which involve the 
combination of ECa readings and also the combination 
of ECa with the clay content, the maps show a visual si-
milarity to that generated from the values determined in 
laboratory analyzes (Fig. S1 [suppl]), highlighting the 
ECa_Clay associations. In all these prediction scenarios, 
there is a representation of the P distribution behavior dis-
cussed earlier, that is, the values increase in the west-east 
direction, with almost the entire area showing P values in 
the classes from 5 to 25 mg dm-3 and 25 to 31 mg dm-3.

For the K+ spatial distribution maps predicted by the 
ANNs (Fig. S3 [suppl]), what was previously discussed 
about the gain when using the clay content as an auxiliary 
variable in the architecture of the networks is evident. In 
all scenarios, the best results to represent the spatial beha-
vior of K+ (Fig. S1 [suppl]) were obtained when the clay 
was used together with ECa, while the use of the latter 
individualized and or associated with readings in different 
periods, did not produce satisfactory results. 

For scenarios where ECa was used individually, only 
two classes of K+ distribution were obtained using the 
fuzzy K-means algorithm. The other scenarios for the 
combination of ECa measured in different periods, pre-
sented an equal number of classes to the K+ map genera-
ted with values determined in the laboratory, but without 
describing the exact extension of each class.

The maps generated using the combination of ECa 
and clay, in all combinations pointed out the same 
number of classes, however, the best results were ob-
served for the combinations 0_30ECaCLAY, 0_60ECa-
CLAY, 30_60ECaCLAY and 0_30_60ECaCLAY. These  
scenarios were able to describe the increasing gradient 
of K+ distribution in the east-west direction and the  
highest concentration of areas with values greater than 
31 mg dm-3. Silva & Lima (2014) comment that the pre-

diction of soil attributes allows the reduction of costs 
in PA systems, making the system economically viable, 
especially when using information obtained from remo-
te sensing. Despite the advantages of the soil attribute 
prediction processes, Guo et al. (2013) warn of the need 
for prediction methods to be able to describe the spatial 
behavior of the variables to be predicted, with the risk 
of obtaining products with no practical use in the soil 
management system.

Despite the description of the spatial behavior of the 
available levels of P and K+ in the soil, as previously dis-
cussed, the maps originating from the predicted values 
using ECa and Clay as input variables for the ANNs, did 
not maintain the well-defined limits between classes ob-
served in the generated maps from laboratory determina-
tions. This behavior is confirmed in the agreement analy-
sis by the Kappa coefficient (Table 7).

The agreement values defined by the Kappa coefficient 
varied between 0.20 and 0.66 (from bad to moderate) for 
exchangeable P levels and between 0.16 and 0.78 (from 
bad to good) for the levels of K+. The lowest values were 
observed for the scenarios that consider ECa individually 
(0ECa, 30ECa and 60ECa). In all combinations for all 
attributes, the best agreement values were observed for 
those who use clay in association with ECa. 

As previously discussed, there is a tendency for 
the agreement values to increase with the increase in 
the number of input variables. For both attributes, the  
highest values for the Kappa coefficient were observed 
for the combination 0_30_60ECaCLAY followed by the 
combination 0_30ECaCLAY. As the Kappa coefficient 
indicates acceptance between the two classifications 
(Kitchen et al., 2005) it is correct to say that for these 
combinations the accuracy in the prediction of the attri-
butes was satisfactory. Guo et al. (2013) obtained good 
results using neural networks to predict soil organic  
matter, predicting both the values of the variable and the 
spatial pattern of its distribution. 

From a practical point of view, the use of a single varia-
ble and or a single measurement period of ECa would be 
more interesting for the prediction of chemical attributes 
of the soil, reducing the work of sampling and data analy-
sis. Despite this practical appeal, when jointly evaluating 
the results of this work, the need to incorporate auxiliary 
variables (in the case of clay in question) is evident for the 
use of ECa as an input in ANN architectures and, equally, 
the use of more conductivity reading to better describe the 
spatial behavior of P and K+ levels. 

Based on the thesis supported in the previous para-
graph, an alternative to better operationalize data collec-
tions and reduce the number of samples, is the use of va-
riables from the combination 0_30ECaCLAY, given that 
all efficiency indicators, as well as thematic maps and the 
Kappa coefficient indicates values very similar to the best 
scenario (0_30_60ECaCLAY). In this context, it would 
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be possible to maintain the best accuracy in prediction by 
reducing the number of ECa readings over time. 

It is worth noting that the results found in this work 
may not be applicable to all types of agricultural pro-
duction fields and soils, however, the methodology 
can be used to build prediction models adapted to each 
condition. This is possible because the results of this 
research show the plausibility of using artificial neural 
networks to predict soil chemical attributes based on 
information on physical attributes (with low temporal 
variability) and ECa, which, despite the greater tempo-
ral variability when compared to clay, presents low cost 
of determination. 

In summary, in the condition of the present study, for 
this soil class, the ANN model used was able to accurately 
predict the P and K+ values available in the soil. ECa and 
soil clay contents proved to be good input variables for 
predicting soil chemical attributes. The best results in the 
prediction process of the P and K+ attributes were obtai-
ned with the combination of ECa and the clay content, 
and the combinations of two measurement periods of ECa 
increased the accuracy of the predicted values. The fin-
dings of this research point to the feasibility of using these 
variables and methodology to predictively assess the spa-
tial behavior of chemical attributes of the soil. 
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