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Abstract
Aim of study: Our main objective was to take advantage of the ECa information that the EM38-MK2 sensor records simultaneously at 

two relative depths for modeling using spatial regression and the subsequent blocking of the conductivity estimate values, incorporating 
elevation.

Area of study: A 23.1-ha field located in the municipality of Puerto López (Meta, Colombia).
Material and methods: A series of georeferenced data (15438) was collected from the EM38-MK2 sensor, through which the ECa was 

obtained at two depths, a spatial aggregation was performed using a grid of 40 m × 40 m (167 grid cells), to provide data in Lattice form, 
the centroid of the cells was determined as the new representative spatial coordinates, to adjust a Spatial Autoregression Model (SAC), and 
then define the blocks from the predictions of the adjusted model.

Main results: The adjusted model has a comparative purpose with the usual proposals for delimiting management zones separately, so 
it was convenient to incorporate in the model a 3D weighting matrix relating the two relative depths recorded by the EM38MK2 sensor. By 
mapping the surface layer with the predictions of the SAC model, two distinguishable blocks were delimited in its ECa and management 
zone analyst (MZA), which can be suitable for experimentation or agricultural management.

Research highlights: These results can be adopted to define the shape and dimension of the blocks in the context of experimental design 
so that with adequate blocking, the effect of spatial dependence associated with the physicochemical properties of soils related to ECa can 
be mitigated or suppressed.
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Abbreviations used: EC (electrical conductivity); ECa (soil apparent electrical conductivity); ECa-075 (ECa at a relative depth of 75 
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Introduction
Precision agriculture involves the use of a set of tech-

niques aimed at optimizing the use of agricultural inputs 
by quantifying the spatial or spatio-temporal variabili-
ty of agricultural production as well as the variables that 
define production such as physical properties, soil che-
mistry, etc. (Chartuni et al., 2007). The values of most 
soil properties do not have a random pattern of distribu-
tion in space. They are spatially correlated with spatial 
dependence, i.e their variables are regional (Yrigoyen, 

2003). Although each property could have its own spa-
tial pattern, many of these properties are interrelated. A 
global handling of them is possible among multivaria-
te patterns or a smaller set of properties could possibly  
collect the information of the majority, like for example, 
the soil apparent electrical conductivity (ECa) (Moral et 
al., 2010). A strategy of precision agricultural management 
may have, as one of its objectives, the delimitation of areas 
of common crop management, to give specific manage-
ment to each area; for example, differentiated site-specific 
fertilization or irrigation by management zones is based on 
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the characteristic properties of the soil resulting from each 
zone. Although this is the usual way of dealing with deli-
mitation, it can also be used to define the shape and size of 
experimental blocks in the context of experimental design, 
as this can be convenient in suppressing or eliminating the 
spatial dependence found in many edaphic properties in the 
context of standard linear modeling.

ECa has been used to delimit management areas for 
several years, since it is influenced by a combination of 
physical properties of the soil that determine its fertility 
and the crop yield (Millán et al., 2019). Numerous inves-
tigations have been conducted with ECa, which report a 
relationship with different soil properties, among which 
we can mention: estimation of spatial variability of sali-
nity (Xie et al., 2021), soil water content (El-Naggar et 
al., 2021), targeted soil sampling (Saey et al., 2009), clay 
content and cation exchange capacity (Corwin & Lesch, 
2005), soil hydraulic properties (Rezaei et al., 2016), and 
site-specific management zoning (Peralta & Costa, 2013).

This same property has been used to evaluate the con-
tent of organisms (not necessarily pathogens) such as 
earthworms (indicator of soil quality), so that this same 
property can undoubtedly be used to study the physi-
co-chemical relationships of the soils but also other pro-
perties of biological interest, all most certainly related to 
crop yield (Joschko et al., 2010). Thus, blocking by ECa 
can be a very convenient strategy in data modeling becau-
se instead of involving gradients attributed to one or very 
few variables, blocking with this property would allow 
the homogenization of a great variety of physical, chemi-
cal and biological properties of soils.

ECa is a depth-weighted, average conductivity mea-
surement for a column of earthen materials to a specific 
depth (Doolittle & Brevik, 2014). Variations in ECa are 
produced by changes in the electrical conductivity of ear-
then materials. ECa will increase with increases in soluble 
salt, water, clay contents, and temperature (Pedrera et al., 
2017; Corwin & Scudiero, 2019). An increasing num-
ber of commercially available electromagnetic induction 
(EMI) sensors are available. EMI sensors commonly used 
in agriculture and soil investigations include the DUA-
LEM-1, DUALEM-2, DUALEM-21S, and DUALEM-4 
meters (Dualem, Inc., Milton, ON, Canada); the EM31, 
EM34, EM38, EM38-DD, and EM38-MK2 meters (Geo-
nics Ltd., Mississauga, ON, Canada); Veris 3100 and 
Veris 3150 (Veris Technologies Inc., Salina, KS, USA). 
These EMI sensors transmit a primary electromagnetic 
field, which induces electrical currents in the soil. The-
se currents generate a secondary electromagnetic field, 
which is read by the sensor's receiver. Under conditions 
known as “operating under low induction numbers”, 
the secondary field is proportional to the ground current 
and is used to calculate the “apparent” or “bulk” elec-
trical conductivity (ECa) for the volume of soil profiled  
(Doolittle & Brevik, 2014).

The EM38-MK2 has two receiver coils spaced at 0.5 
m and 1 m from the transmitter coil. The ECa is detected 
simultaneously at two measuring depths. The sensor pro-
vides two measurements of ECa at two relative depths, 
0.75 m and 1.50 m, on the mode vertical (Heil & Schmid-
halter, 2015). Usually when passing the sensor both ECa 
measurements are recorded, but it is also usual to model 
and map the conductivity of one of the modes for the de-
limitation of the zones. In this research ECa, as a func-
tion of relative depth, is modeled by spatial regression for 
an aggregation of 40 m × 40 m (the minimum that ful-
filled the assumptions necessary for modeling). Since the 
ECa is a function of depth, the measurements from each  
depth were used to create a spatial weights matrix with all 
the information from the R3 space corresponding to the 
data obtained with the sensor. After spatial aggregation, 
the centroid of each cell was used to represent the point 
of aggregation of the values for each cell. The objecti-
ve of the research was to obtain a single model with all 
the recorded information and make predictions for each  
depth and not as it is usually done, that is, taking the data 
of each depth and adjusting the models marginally (Dea-
kin et al., 2002; Callegary et al., 2007; Medeiros et al., 
2018). Finally, applying the fuzzy cluster analysis algori-
thm, homogeneous conductivity regions were mapped to 
delimit blocking areas that could be useful in large-scale 
experimentation (Zhang et al., 2020).

Material and methods
Study area

The study was carried out in a 23.1-ha field, located 
in the municipality of Puerto López (Meta, Colombia), in 
the Hato Grande farm, 55 km from Puerto López - Puerto 
Gaitán, with coordinates 4.2120° N 72.4900° W at an al-
titude of approximately 212 m.a.s.l. (Fig. 1a). According 
to the Köppen classification system, it belongs to the tro-
pical rainy savanna climate (Aw). The landscape is main-
ly composed of alluvial clays, forming surfaces with flat 
relief and slopes between 1% and 3%. According to the 
general study of soils and land zoning in the Department 
of Meta, the taxonomic component is a Typic hapludox 
association, with characteristics of deep to moderately 
deep, fine to medium textures, well to moderately drai-
ned, strongly to moderately acidic, low fertility, and mo-
derate aluminum toxicity (IGAC, 2005).

Sensor EM38-MK2 and field measurement 

Data collection in the ECa field was carried out with 
calibrated EM38-MK2 equipment in situ under the GEO-
NICS (2012) methodology. The ECa data were taken 
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with a mean temperature of 25.2 ºC, which were adjusted  
following the methodology of Corwin & Lesch (2005) 
with an ft = 0.9953, where ft  is a temperature conversion 
factor. Dense sampling was performed in passes approxi-
mately parallel to the study area, connecting the sensor to 
a Hemisphere GPS XF101 DGPS unit (Juniper Systems, 
Inc., Logan, UT, USA) that recorded the location of each 
measurement in World Geodetic System 1984 (WGS84) 
along with elevation. The sensor provided data with an 
effective depth of 1.50 m (ECa-150) and 0.75 m (ECa-
075). In our study the sensor reported 15438 georeferen-
ced points in the area at an average distance between pas-
ses of 30 m at an average tractor speed of 3.0 km/h, for an 
approximate sampling intensity of 668 points per hectare.

Spatial data aggregation and representative  
coordinate

A 40 m × 40 m square network was generated with 
the Create Fishnet tool of ArcGIS 10.5.1 (ESRI, 2017) to 
estimate the mean of the sampled ECa-075 and ECa-150 
points that spatially intercepted each of the cells in the 
network. The geometric centroid (xc, yc) was used as the 
representative coordinate for each cell that was different 
for each cell of the network between different layers, due 
to the weight that the ECa itself exerted on each coor-
dinate (Deakin et al., 2002). The numerical values that 
accompany the pair (xc, yc) as subscripts refer to each of 
the depths used.

For each of the cells of the network, we obtained the 
representative coordinate for each relative depth of ECa-
075 and ECa-150 (Fig. 1b). 

Spatial regression models 

Prior to modeling with spatial regression (spatial data 
for areas), the assumptions for the application of various 
geostatistical methods were explored, and it became evi-
dent that there was a very low possibility of using these 
methods that usually require strong assumptions for their 
use, and although some people ignore them because their 
interest seems to be more in the visualization that is obtai-
ned, their use without checking the assumptions certainly 
invalidates the results (Webster & Oliver, 2007; Arbia, 
2014; Christensen, 2018). Spatial regression models are 
commonly used to analyze spatial processes in a network 
(Li et al., 2007). The spatial regression model initially 
used according to the taxonomy of Elhorst (2014) was fi-
nally the spatial autocorrelation model (SAC) (Santos et 
al., 2018; Rodríguez et al., 2019) that is written as:

𝑌𝑌 = 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝛼𝛼𝜄𝜄𝑚𝑚 + 𝑋𝑋𝑋𝑋 + 𝑢𝑢
𝑢𝑢 = 𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜀𝜀      

 

                    (1)

where Y epresents the response variable associated with 
the ECa added in each cell (with vector length equal to 
m=2n, where n presents each of the measurements in one 
of the layers or depths); λ is known as the autoregressi-
ve spatial coefficient; W represents the matrix of spatial 
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weights (2n × 2n); α represents the intercept; ιm is a unit 
vector of length 2n; X is the vector corresponding to the 
terrain elevation adjusted by the relative depth reached by 
the sensor of the ECa associated with the geometric cen-
troid that in the case of this research represents the depths 
of 0.75 m (d1) and 1.50 m (d2) (X=Z-d, with dm=[d1,d2]’ 
ιn, where   is the Kronecker product and Z representing 
the elevation) (Zhang & Ding, 2013); β is the scalar asso-
ciated with the terrain elevation adjusted; u is the vector 
of residuals expected to have some spatial dependency 
structure that is decomposed in the form expressed in the 
lower part of Eq. (1), where ρ is the spatial autocorrelation 
coefficient, and ε are the residuals that are expected to be 
normal and independent with identical distribution, with 
mean 0 and variance σ2.

The term WY denotes the endogenous effect associa-
ted with the spatial lag of the response variable caused 
by the matrix of spatial weights generated from the dis-
tances between the centroids of the polygons used of the 
intra-layers and inter-layers. This is a non-negative matrix 
normalized from the dimension m × m. Usually, the W 
matrix is built for each layer separately; and in fact, it 
is modeled in the same way. However, in this case the 
mat2listw function from the R spdep library (Bivand & 
Wong, 2018) was used to configure a matrix of weights 
involving distances within and between layers. For this 
case, the evaluated weight matrix was determined with 
a function of the inverse of the distance (Longley et al., 
2015). For the model finally selected, the assumptions of 
independence of the residuals (ε), spatial dependence of 
the residuals (u), and distributional behavior of the resi-
duals were reviewed. The review used the Monte Carlo 
test of the Moran index with the moran.mc function and 
5,000 simulations, programmed in the spdep library of R 
(Bivand & Wong, 2018), and the skewness normality test 
(Shapiro et al., 1968) of the normtest library of R (Gavri-
lov & Pusev, 2014). It is important to note that, although 
results of the aggregation of 40 m × 40 m are presented, 

the modeling started from an aggregation of 5 m × 5 m 
to 150 m × 150 m at an arithmetic ratio of 5 m, with the 
aggregation of 40 m × 40 m as the minimum that met the 
assumptions for the model fit. Finally, for this aggrega-
tion, the vector of ECa (Y) was of longitude 334 and the 
dimension of W was 334×334.

Finally, when fitting model (1), the residuals u turned out 
to be independent (u=ε), so that finally the spatial model of 
the error given only by the upper part of (1) was fitted:

𝑌𝑌 = 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝛼𝛼𝜄𝜄𝑚𝑚 + 𝑋𝑋𝑋𝑋 + 𝜀𝜀 .   

 

                (2)

After the model was fitted, model predictions were 
made and subsequently separated for each depth layer so 
that the delineation of the blocking areas of the approach 
could be contrasted by fitting one model per layer with 
our approach to predictions with a single two-layer model 
using the K-means fuzzy cluster analysis algorithm in R 
software (Fridgen et al., 2004; Meyer et al., 2021). To 
determine the optimal number of zones, we estimated the 
indices of Xie-Beni (Xie & Beni, 1991), Fukuyama-Suge-
no (Fukuyama, 1989), the coefficients of entropy of clas-
sification (also known as the Fuzziness Performance In-
dex - FPI and Normalized Classification Entropy - NCE), 
which were calculated using the fclusterIndex function 
of the R e1071 library (Meyer et al., 2021). Finally, the 
blocking zones were delimited for large-scale experimen-
tation. This was done only for the upper layer because 
most of the crops have a root system that reaches only up 
to a depth of 75 cm (Fan et al., 2016; Zhang et al., 2017).

Results 
In Table 1, a descriptive statistical analysis of the ori-

ginal data, the temperature adjusted data and the spatial 
aggregation with a size of 40 × 40 for both ECa-075 and 
ECa-150 was performed. In addition, an exploratory 

Original data Data adjusted for 
temperature

Data with a spatial aggregation 
of 40 m × 40 m

Values estimated by 
the spatial model

ECa-075 ECa-150 ECa-075 ECa-150 ECa-075 ECa-150 ECa-075
Minimum 6.28 15.82 6.25 15.74 6.80 16.92 8.48
Maximum 15.74 21.86 15.66 21.76 13.20 20.66 13.65
Mean 10.10 18.59 10.05 18.50 9.96 18.51 11.69
Median 9.85 18.56 9.80 18.48 9.85 18.53 11.68
Standard deviation 1.46 0.85 1.45 0.85 1.32 0.69 0.99
Asymmetry 0.51 0.10 0.51 0.10 0.28 0.29 -0.54
Kurtosis 2.92 3.13 2.92 3.13 2.54 3.17 3.11
Coefficient of variation 14.47 4.57 14.47 4.57 13.29 3.72 8.47
No. of total data 15438 15438 15438 15438 167 167 167

Table 1. Descriptive statistics of apparent soil electrical conductivity (ECa)
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analysis of the ECa-075 data was performed on the values 
estimated by the spatial model. 

Table 2 presents the results of the fitted model. The 
results show statistical evidence against the null hypo-
thesis associated with the null effect of the implied term 
(intercept and auto-regressive coefficient). Table 3, shows 
the values of the estimated variance of the residuals, the 
Akaike's information criterion and the results of the spa-
tial autocorrelation test using Moran's index; the latter 
being of relevant importance in the selection of the final 
spatial regression model, as well as the results of the re-
sidual normality test. These results show normality and 
spatial independence of the residuals.

The adjusted model has a comparative purpose with the 
usual proposals of delimiting regions separately, thus, it 
is convenient in this case to evaluate the model with a 3D  
weight matrix with the models that use 2D weight matrices, 
so in both cases the entire data set was used. Cross-valida-
tion is more restrictive in spatial data because of the assump-
tion of non-exchangeability that must be met. Being spatial 
data, the Bootstrap or Jackknife methods for cross-validation 
require a specialized treatment in these cases and applying 
them here diverts the interest of the research in comparing 
two modalities of delimitation of regions.

After implementing the general model in Eq. (2), the 
ECa was estimated and then the data points corresponding 
to a depth of 75 cm were selected. With this portion of the 
data, the large-scale experimental blocking zones were 
delimited using K-means fuzzy cluster analysis, genera-
ting 2, 3, 4 and 5 (I2CM, I3CM, I4CM and I5CM). Once 
the zones were delimited, the optimal number of zones 
was determined using the Xie-Beni, Fukuyama-Sugeno, 
FPI and NCE indices. Table 4 shows the results of the 
indices to illustrate the mechanism for choosing the num-
ber of zones (lowest index value) proposed by Córdoba 
et al. (2014). For all the indices determined, the optimum 
number of zones was two, except for Fukuyama-Sugeno. 

Table 5 shows the areas (in ha) related to each manage-
ment zone, estimated from the methodology used. In Fig. 

2, the delimitation of management zone analyst (MZA) is 
represented in a smoothed form using the cubic convolu-
tion technique as resampling for information visualization 
in ArcGIS 10.5.1 software.

For the characterization of the zones, univariate des-
criptive statistics of ECa and elevation were obtained for 
each zone in the upper layer (Table 5). In Fig. 3, a bi-
variate analysis of ECa and elevation for both zones can 
be seen, generated with the help of RStudio by calling  
the ggpairs function of the ggplot2 library.

Clearly the ECa is discriminated in the two regions se-
lected for large-scale experimental blocking, but this is 
not the case for the elevation variable, so that zone 1 is 
typified as high ECa and zone 2 as low ECa, This defines 
the two levels of the blocking factor for the subsequent 
randomization of the treatments in these zones, either 
considering the blocks as the entire defined region or se-
lecting subplots within each block to generate replicates 
that allow the evaluation of more complex design models 
in complete, incomplete or generalized blocks, as well as 
a balanced or unbalanced structure.

Discussion
Electrical conductivity modeling is usually done  

through geostatistical procedures due to the nature of the 
data. However, spatial regression is another spatial data 
modeling technique that can yield results similar to geos-
tatistics but with greater simplicity in fulfilling assump-
tions for the adjustment of the models. Only it will depend 
on the spatial aggregation used with respect to the creation 
of the grids on the scale used. For the current case, a series 
of models with different aggregation sizes were adjusted. 
But finally, we selected the one with the smallest cell size 
(40 m × 40 m) that met the required assumptions of the 
modeling procedure. This turned out to be a routine task, 
easy to program in both ArcGIS and RStudio. Compared 
to the application of the Kriging method or the semiva-
riogram model, this was simpler due to the assumptions 
necessary for the application of geostatistical methods.

When using ECa sensors, it is possible to obtain me-
asurements of this variable at two depths for the same 
geographic coordinate. The most usual is to model each 
measurement separately (Sudduth et al., 2003; 2013) or 
by obtaining the normalized difference of the two depths 
to generate a single measurement (Martinez et al., 2009). 

Parameter Estimate Standard 
error Test Z value p value

Intercept 5.068 3.836 1.321 0.186

Elevation 0.045 0.019 2.390 0.017
Lambda (λ) -0.870 0.022a -38.868 2.2E-16

Table 2. Estimated parameters in model (a: asymptotic)

Residual variance
(ML) AIC

I moran (residual) Normality test (residual)
statistic p-value T p-value

4.690 1643.79 -0.206 0.999 -0.114 0.375

Table 3. Statistics of the residuals and the spatial autocorrelation model, Monte-Carlo of 
Moran index simulation and normality test (skewness normality test) for residual. 

ML = Maximum Likelihood; AIC = Akaike information criterion.
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However, it is unusual to incorporate the two depths 
into a single model using a matrix of 3D spatial weights  
between the points aggregated to the centroid of each 
grid cell used. This work allowed us to delineate the two 
blocking regions using the top layer ECa estimates in the 
visualization but using all the data in the spatial model 
building process. The data provided evidence against the 
null effect for both the depth-adjusted elevation variable 
and the autoregressive coefficient associated with ECa. 
The adjusted elevation refers to the fact that the 75 cm 

depth was added to the elevation value as well as the 150 
cm depth, as appropriate.

The modeling of each measure of electrical conduc-
tivity apparent by depth is somewhat usual, as shown 
in Badewa et al. (2018) and in Robinet et al. (2018).  
Although it was possible to do the same as these authors 
and many others, this time it was possible to try a different 
alternative to take advantage of the correlation that usually 
exists between conductivities of each depth but only 
to map the upper layer where the agronomic interest is  
usually (Medeiros et al., 2018).

Another important aspect in the construction of appro-
priate blocks that respond to the set of physical, chemical 
and biological properties of the soil is the effect it can 
have on statistical modeling by analysis of variance in the 
standard linear model, where the assumption of indepen-
dence of residuals is often required. Successful blocking 
can reduce or even suppress the spatial dependence of re-
siduals in the model, which can be evidenced either by 

Figure 2. Management zone analyst (MZA) delimitation using experimental blocking, 
for 2 zones, 3 zones, 4 zones and 5 zones.
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Index I2CM I3CM I4CM I5CM
Xie-Beni 5.50×10-4 8.01×10-4 8.20×10-4 7.90×10-4

Fukuyama-Sugeno -1.58×102 -1.01×102 -1.52×102 -1.64×102

FPI 1.041 1.049 1.057 1.063
NCE 6.82 ×10-2 7.91×10-2 8.93×10-2 10.00×10-2

Table 4.  Determination of the zones or blocks by means of the indices for clustering

FPI = fuzziness performance index; NCE = normalized classification entropy.

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
I2CM 11.1 12.0 — — —
I3CM 10.1 11.3 1.7 — —
I4CM 7.0 7.5 1.7 6.9 —
I5CM 6.6 6.8 0.9 5.3 3.5

Table 5.  Area (in hectares) by management zones 
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the efficiency of blocking in the comparison of the mo-
del with and without blocks using the Moran index as a 
measure of spatial dependence. It should be remembered 
that the use of the F distribution in the analysis of varian-
ce is questionable in the presence of spatial dependence  
(Gotway & Cressie, 1990), so its suppression by an ade-
quate blocking is convenient in the context of experimen-
tal design and standard linear modeling.

In conclusion, the incorporation of both proximal sen-
sor ECa measures into the spatial regression modeling 
process proved to be a reproducible strategy for genera-
ting regions for large-scale experimental blockage. The 
use of ECa as a measure related to a large number of phy-
sical, chemical and biological variables soil allowed the 
generation of blocking levels that consider the elevation 
of the ground in addition to the information of ECa at two 
depths. Spatial modeling with spatial regression incor-
porating 3D weight matrices yielded different results in 
mapping electrical conductivity to generate blocking re-
gions for large-scale experimentation in these cases when 
building a single model for each depth of conductivity, 
thus taking into account the simultaneous information can 
be crucial in the delimitation of the blocking zones. This 
has the advantage of taking into account in the modeling 
process the correlation that was evidenced between both 
conductivity measurements. Spatial regression modeling 
proved to be a flexible alternative in spatial modeling, es-
pecially when assumptions for geostatistical analysis are 

restrictive or not easily found. The use of single layer data 
and thus a spatial regression model for this same layer 
could imply a smaller amount of data which, as in our 
case, did not allow for the fitting of a model and thus the 
construction of the blocking zones. However, the infor-
mation related to the two depths gave us a larger number 
of data, which allowed the fitting of the model and thus 
the generation of the blocking zones. 
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