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Abstract
Aim of study: We analyzed and evaluated a nonlinear dynamic crop growth model called NICOLET B3, which can pre-

dict the dry and fresh matter content of lettuce in greenhouses.
Area of study: Calibration was performed using experimental data obtained from the literature. The experiment was 

carried out in Saltillo, Mexico, and in a greenhouse in Beijing, China.
Material and methods: We identified and discussed the feasibility of the studied model with multi-dimensional evalu-

ation criteria. Meanwhile, a sensitivity analysis of input variables was conducted. After that, the least square identification 
method was used to calibrate the most sensitive parameter values to improve the robustness of the model.

Main results: Results demonstrate that: i) the NICOLET B3 model is able to predict the fresh and dry matter production 
of lettuce with satisfactory accuracy verified (R2 = 0.9939 for fresh matter and R2 = 0.9858 for dry matter); ii) temperature 
has the most obvious impact on the model performance, compared with photosynthetically active radiation and CO2 con-
centration; iii) the model could perform well with only two inputs.

Research highlights: Simulation results of evaluated NICOLET B3 model have a perfect goodness-of-fit. A method of 
calibrating parameters of the model and sensitivity analysis of three input variables of the model can facilitate its application.

Additional key words: NICOLET B3 model; Lactuca sativa L.; dynamic simulation.
Abbreviation used: DFR (Dry Matter to Fresh Matter Ratio); DFT (Deep Flow Technique); DW (dry weight); FW 

(fresh weight); HORTISIM (HORTIcultural SIMulation); NICOLET (NItrate COntrol in LETtuce); PAR (Photosyntheti-
cally active radiation); RMSE (Root Mean Squared Error); SSR (Sum of Squared Regression); SSE (Sum of Squared Er-
ror); SST (Sum of Squared Total); TOMGRO (TOMato GROwth).
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Introduction 

Crop models are logical or quantificational algorithms 
which capture quantitative information on how a crop in-
teracts with its environment during growth (Asseng et al., 
2014). They simulate the behavior of a real crop by pre-
dicting its growth and development as influenced by en-
vironmental conditions and crop management (Li et al., 
2012). Many crop models have been developed to predict 
growth changes and to assist in controlling the crop grow-
ing environment, particularly for the crop in greenhouses. 
This is because it´s easy to improve the quality of crop 
growth and yield by controlling the greenhouse environ-
ment (van Henten, 1994).

Many published studies in crop modeling (Ehret et al., 
2011; Ramírez-Pérez et al., 2018; Gong et al., 2019; Wang 
et al., 2021) have been carried out in the field of green-
house crops, which have accelerated the development of 
crop production’s automation and management. There 
are several greenhouse crop growth models. Jones et al. 
(1991) developed a physiological model of tomato devel-
opment and growth called TOMGRO (TOMato GROwth), 
which accurately describes the differences between growth 
and yield of tomatoes, using a source-sink approach for 
the distribution of carbohydrate to different organs. TOM-
GRO was evaluated using boundary data (Shamshiri et al., 
2016), and applied to predict the tomato yield in green-
houses based on controllable greenhouse environmental 
parameters (Lin et al., 2019). HORTISIM (HORTIcultural 
SIMulation) is a combined model for a variety of crops in 
greenhouses, and it is designed to predict the yields and 
timing of production related to crops, greenhouse charac-
teristics and climate control (Gijzen et al., 1998). Körner 
& Holst (2017) developed an open-source modelling plat-
form based on HORTISIM model. Marcelis (1994) studied 
a dynamic growth and development model of cucumber 
in greenhouses, which presents the accumulation and dis-
tribution of dry matter in various organs during the period 
from flowering to fruiting. The NICOLET (NItrate COntrol 
in LETtuce) model is a well-known and well-researched 
crop growth model. It is similar to the TOMGRO model in 
that it represents quantitative relationships between major 
environmental variables and the growth and development 
of specific crops, namely lettuce (Lactuca sativa L.) and 
tomato (Solanum lycopersicum L.). The HORTISIM mod-
el is a combined model of seven sub-models including the 
growth model. The initial NICOLET model was originally 
designed to predict the nitrate levels of greenhouse lettuce, 
to combat the health hazard of high nitrates to the popula-
tion (Seginer et al., 1998). Among these crop models, the 
NICOLET model, having fewer equations and parameters, 
is relatively easy to be applied and has been studied by 
several researchers (Stigter & van Straten, 2000; Mathieu 
et al., 2006; López-Cruz et al., 2012). Many investiga-
tions focused on lettuce models (van Henten, 1994; Es-
cobar-Gutiérrez & Burns, 2002; Zhang et al., 2004, 2008; 

Shimizu et al., 2008), such as NICOLET, due to the fact 
that this type of crop has a fast development characteristic 
and is easy to be managed in greenhouses (Juárez-Mal-
donado et al., 2012). It can also be calibrated to be applied 
in other crops, such as cauliflower (Seginer & Stützel, 
2006). The NICOLET model has been then calibrated and 
developed by several researchers since 1990s (Seginer et 
al., 1999; van Straten et al., 1999; Seginer, 2003, 2004). 
What’s more, in subsequent researches, it was found that 
the NICOLET model was also accurate as a tool in pre-
dicting the dry and fresh weight of lettuce and had a good 
application prospect. 

In general, the objectives of agricultural crop produc-
tion are to maximize crop yields and obtain higher quality 
in order to increase profitability. It requires an appropri-
ate model as a function of the environmental conditions 
to describe the growth of crops over time, such as solar 
radiation, maximum and minimum temperatures, relative 
humidity, carbon dioxide, and cultivar characteristics (As-
seng et al., 2014). The NICOLET model is a suitable crop 
model, whose formulation was intended to satisfy the main 
experimental observations of general vegetative plants and 
especially for lettuce (Seginer et al., 2004). The study of 
such models requires an in-depth understanding of the bi-
ological process, and appropriate evaluation is necessary 
before a model can be successfully applied. Compared 
with other versions (Seginer et al., 2004) of the NICOLET 
model which have been studied in different periods, the 
NICOLET B3 (López-Cruz et al., 2004) contains fewer 
parameters and formulas, being then simpler to be analyz-
ed and applied. What’s more, most of the studies on the 
NICOLET have focused on sensitivity analysis and opti-
mal control. However, there are few researches, such as 
analysis and evaluation of model, on the NICOLET B3 
than on other previous versions.

The aim of present study was to evaluate and calibrate 
a simple dynamic lettuce model, i.e., NICOLET B3, which 
is capable of predicting the fresh and dry matter of lettuce 
during its growth period. The novelty of this research is to 
discuss and identify the feasibility of the studied model ap-
plied in predicting lettuce growth with multi-dimensional 
evaluation criteria. Moreover, the study of the model ro-
bustness based on the optimal values of main parameters 
has been performed with parameter estimation. The possi-
bility of reducing the measuring cost for the application of 
the NICOLET B3 model was also discussed.

Material and methods

Description of model

The original NICOLET model (Seginer et al., 1998) is 
schematically shown in Fig. 1, where the compartments 
and the carbon fluxes are indicated. The two compartments 
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are designated vacuoles (v), where soluble, non-structural 
material is stored, and structure (S), which is composed 
of structural material, including proteins. The various 
processes are affected by different factors in the environ-
ment: Photosynthesis by light and CO2 concentration, and 
growth and respiration by temperature. A central element 
of the model is that a negative linear correlation between 
primary carbon compounds and nitrate in vacuole which 
maintain a constant osmotic pressure (Behr & Wiebe, 
1992). The NICOLET model has two state variables: MCv 
and MCs, which represent carbon content in the vacuoles 
and cell structure, respectively.

The NICOLET B3 model is based on first principles 
of plant physiology and has been described in detail by 
López-Cruz et al. (2004), and only a brief introduction 
is given here. The core of this model is carbon balance, 
which is illustrated below:

Carbon in vacuoles

(1)

Carbon in structure

(2)

The term MCv[mol(C)m-2] originates from assimilation 
by photosynthesis (FCav [mol(C)m-2s-1]) which is driven by 
light (I[μmol/m2/s]) and CO2 (CC[ppm]). The production of 
MCs[mol(C)m-2] is driven by growth (FCvs[mol(C)m-2s-1]). 
The terms FCm[mol(C)m-2s-1] and FCg[mol(C)m-2s-1] denote 
maintenance respiration and growth respiration, respective-

Figure 1. Schematic description of the original NICOLET 
model. MCv and MCs are the mass of carbon in the vacuole 
and structure compartment, respectively. FCav and FCvs are 
the photosynthesis assimilation and growth fluxes, respec-
tively. FCm and FCg are the maintenance-respiration and 
growth-respiration fluxes, respectively. CCa and I represent 
carbon dioxide concentration and photosynthetically ac-
tive radiation, respectively

ly. FCm and FCvs are controlled by temperature (T[℃]). The 
term hg[dimensionless] is a growth inhibition function. It 
approaches 0 when vacuolar carbon content depletes, and 
increases asymptotically to 1 with the increase of vacuolar 
carbon content. There is another function  called photosyn-
thesis inhibition, whose behavior is qualitatively a mirror 
image of the behavior of . Detailed equations for the NICO-
LET B3 are summarized in Appendix A [suppl].

The difference, between the NICOLET B3 model and 
the original NICOLET model, is that there is an extra term  
(hg×FCm) in balance equations for NICOLET B3 model. 
This term accounts for the structural carbon in accordance 
to maintenance respiration, when the level of carbon con-
tent in the vacuoles is very low (López-Cruz et al., 2003). 
Another important difference is that the inhibition func-
tions (hg and hp) are not calculated by an exponential func-
tion, but are equal to 1 when the concentration of carbon 
levels is non-inhibiting, that is, the functions have no in-
hibitory effect. And the reason for the NICOLET B3 mod-
ified two original inhibition functions is that they did not 
completely avoid growth when the level of carbon in the 
vacuoles is very low (López-Cruz et al., 2003). 

Model evaluation method

In this study, three types of evaluation criteria, adopted 
to evaluate the goodness of fit between real measurement 
data of lettuce and those predicted by the studied mod-
el, are i) coefficient of determination (R2), ii) root mean 
squared error (RMSE) and iii) relative error.

˗ R2 measures how successful the fit is between the ob-
servations and predictions (Neter et al., 1996). It is a prop-
erty of the fitted model, defined as:

(3)

where SSR is the sum of squares due to regressions, SST 
is the sum of squares of total, SSE is the sum of squares 
for error.

˗ RMSE is a widely used goodness-of-fit measure 
which can assess bias and estimation accuracy (Harwell, 
2018), defined as:

(4)

where yi is the measured value, ŷi is the corresponding 
simulated value, and n is the number of measurements.

˗ Relative error is a measure of the uncertainty of meas-
urement compared to the size of the measurement (Hel-
menstine, 2020), defined as:

(5)

where ER is relative error, V is the measured value, V' is 
the corresponding simulated value.

https://www.thoughtco.com/definition-of-measurement-605880
https://www.thoughtco.com/definition-of-measurement-605880
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R2 approaches 1 (Rios-Moreno et al., 2007) and RMSE 
approaches 0, both of which are indicating a perfect match 
between the values observed and predicted by the model.

Methodology for the sensitivity analysis of 
model inputs

The objective of the sensitivity analysis in this study 
was to evaluate the relative importance of the input varia-
bles of the NICOLET B3. One way to evaluate the studied 
model sensitivity is calculating the normalized deviation 
ratio for three input variables of the model, whose influ-
ence on the model output is reflected. The normalized de-
viation ratio (%D) is defined as

(6)

where yk is the original output of the model; ŷk is the out-
put of the model with a changed input variable; N is the 
total number of the data.

Another way to evaluate the model sensitivity to chang-
es in the input variables is the sensitivity function accord-
ing to France & Thornley (1984).

Figure 2. Environment inside the greenhouse.

Figure 3. Sensors monitoring in the greenhouse located in Tongzhou, Beijing: (a) carbon 
dioxide concentration sensor; (b) photosynthetically active radiation sensor; and (c) air 
temperature and relative humidity sensors

(a) (b) (c)

(7)

where Si is the value of the sensitivity function for a varia-
tion of input variable i; Ydw(T) is the simulated dry or fresh 
matter at the time T using original inputs; pi is the original 
input value; ∂pi is a small variation in input i while keep-
ing the other inputs constant; pi and ∂pi are all normalized; 
and ∂Ydw(T) is the difference between the simulated dry or 
fresh matter at the time T with and without the variation in 
input i. The larger the Si of the parameter, the greater the 
effect of the parameter on Ydw(T). 

Simulation

The simulation was carried out using MATLAB/Sim-
ulink R2020b (MathWorks, Inc., 2020), with a variable 
step-size solver (function ode45). The NICOLET B3 mod-
el was programmed in Simulink using photosynthetically 
active radiation (PAR), air temperature (T) and CO2 con-
centration (CCa) as model inputs. The experimental data 
used for this work were obtained from Juárez-Maldona-
do et al. (2010). The article explains the conditions under 
which such an experiment was carried out, in which cli-
mate and lettuce fresh and dry data were sampled, showing 
the concentration of CO2, PAR, air temperature and fresh 
and dry mass of lettuce. The parameter values of the model 
were collected from the literature (van Straten et al., 1999; 
Juárez-Maldonado et al., 2010), and are presented in Ap-
pendix B [suppl]. 

Case study description

The NICOLET B3 model has been used for a case study 
to predict the lettuce growth trend and its yield. The exper-
iment was carried out at Beijing International Urban Agri-
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cultural Science and Technology Park, Tongzhou, Beijing, 
China, coordinates 116° 48’ N, 39° 52’ W, in a greenhouse 
of 200 m2. Lettuce was cultivated from July 13th 2020 to 
August 20th 2020. The crops were cultivated in Deep Flow 
Technique (DFT) hydroponic system. The cultivar of let-
tuce was cream green (´Boston´ lettuce), and each plant 
was 2 cm apart. There were four planting frames, and each 
frame could grow 81 lettuces. A water-soluble fertilizer was 
used to provide the following (in mmol L-1): NO3

-, 13.5; 
NH4

+, 1.8; P, 1.3; K, 8.0; Ca, 2.5; Mg, 2.0. The internal en-
vironment of the greenhouse is demonstrated in Fig. 2. 

With a data logger system connected to a real-time meas-
urement and control management platform in the green-
house, indoor climate data were recorded every two hours. 
There were four CO2 sensors VMS-3002-GZ (Fig. 3a), 
which were used to measure CO2 concentration, a sensor 
LightScout 3415FQF (Spectrum Technologies, Inc., Aurora, 
USA) PAR (Fig. 3b) and a sensor MZIOT-WS01-W of air 
temperature with relative humidity (Fig. 3c). The abovemen-
tioned sensors were installed inside the greenhouse (Fig. 4). 
Three lettuce plants were randomly picked every three days 
to measure the total dry matter. The average values of these 
measurements were used in the numerical simulation.

Optimization of model

Lopez-Cruz et al. (2004) proposed that only three pa-
rameters, maintenance respiration coefficient (k), leaf area 
closure (a) and growth rate coefficient (v), have a major 

impact on both state variables and outputs of the NICO-
LET B3 model. This is the result of a sensitivity analysis 
which was used to evaluate the effects of the parameters of 
the model on outputs. It is essential to evaluate and demon-
strate model robustness, that is, the sensitivity of empirical 
results of model parameters to some changes in the model 
(Young & Holsteen, 2017). And it should be pointed out 
that each new source of simulation data for the NICOLET 
model requires a re-adjustment of two or three parameters 
(Seginer et al., 2004). An accurate crop model could be 
built up via estimating or calibrating the main parameters 
of the model. What’s more, it can represent current state 
of the model better and make the model satisfy different 
operating conditions more suitable for simulation under di-
verse experimental environment. So, a calibration process 
for the main parameters is required.

Parameter estimation can be regarded as an optimiza-
tion problem. The optimization problem solution is the es-
timated parameter values set. In this study, maintenance 
respiration coefficient (k), leaf area closure parameter (a) 
and growth rate coefficient (v) were the parameters to be 
estimated. The objective function F(x) of this optimization 
problem is defined as

(8)

where ysim(i) is the simulated response obtained on the soft-
ware by tuning the model parameters; yref(i) is measured 
response, namely the experimental measurement data; and 
n is the number of data.

Table 1. Statistical factors for the NICOLET B3 model between real data (dry and 
fresh matter) of the lettuce growth and those corresponding results predicted by 
the studied model in this article.

Dry matter Fresh matter
R2 0.9844 0.9940
Relative error 14.93% 11.84%
RMSE (kg/m2) 0.0803 0.3698

Figure 4. Scheme of the positions of the sensors used in the experimental greenhouse in the 
studied model.
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The process was performed in Simulink by means of 
least squares identification, which is a recommended 
method for parameter estimation.

Results and discussion

Evaluation of model

The ability of this model to describe the change of lettuce 
dry and fresh matter was investigated. The outputs of the 
model were affected by CO2 concentration, air temperature 
and PAR in the greenhouse. The input data have been ex-
tracted from Juárez-Maldonado et al. (2010). The dry and 
fresh matter of lettuce solved by Simulink (see Fig. 5) were 
used to evaluate the NICOLET B3 model compared with 
measurement data (Juárez-Maldonado et al., 2010). Accord-
ing to Fig. 5, the simulated dry and fresh matter followed 
quite accurately the general dynamic trend in the mean of 
the measurement data of crop growth (van Holsteijn, 1980). 
Simultaneously, the curve change trend of dry weight (DW) 
and fresh weight (FW) was basically the same, because the 
ratio of DW and FW is stable at 0.059. This ratio corresponds 
to the constant DFR in the above model formula in Eq (9),

(9)
 

where the value of DFR is 0.05 in van Straten et al. 
(1999).

The comparisons between the simulation results in this 
study, real measurement data of lettuce crop and its corre-
sponding model results from the literature (Juárez-Maldona-
do et al., 2010) are demonstrated in Figs. 6a (dry matter) and 
6b (fresh matter), respectively. It can be seen that the simu-
lation results of this study were very close to both from the 
literature (Juárez-Maldonado et al., 2010). Therefore, both 
of them could ensure that the studied model in this work has 
the credibility for the following investigation.

Figs. 7a and 7b demonstrate the values predicted by the 
studied model fit the collected data of dry and fresh matter 
(Juárez-Maldonado et al., 2010) very well, respectively. 
For dry matter weight, the coefficient R2 (0.9844) of the 
studied model in this work is better than the coefficient 
from the literature (Juárez-Maldonado et al., 2010), which 
was equal to 0.974. It indicates that the studied model has 
a better prediction accuracy for DW of lettuce growth 
compared with Juárez-Maldonado’s. Regarding fresh mat-
ter weight, the correlation coefficient R2 (0.9940) shows 
almost perfect fitting relation, which is very close to the 
result of 0.9975 in the literature (Juárez-Maldonado et al., 
2010).

For the average values of relative errors between sim-
ulation results from the studied model and real data from 
Juárez-Maldonado et al. (2010), the error for DW data was 
14.93% and for FW data 11.84%. At the same time, for the 
simulated results in Juárez-Maldonado et al. (2010) and 
real data, the average values of relative errors were 15.14% 
and 11.02%, respectively. The simulated lettuce weight 
was similar to real measurement data before harvest, with 

Table 2. Model sensitivity with respect to variations in the input variables.
Input variable S for fresh matter S for dry matter

T 2.1291 2.4174
PAR 0.0016 0.0185
CO2 0.0003 0.0047

PAR: photosynthetically active radiation. T: the temperature. S: model sensitivity

Figure 5. Dry and fresh matter of the lettuce growth predicted 
by the studied model.
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a RMSE = 0.3698 kg/m2 for FW and a RMSE = 0.0803 kg/
m2 for DW. The simulated FW and DW in 39 days (13.68 
kg/m2 and 0.82 kg/m2, respectively) were about 1:37 and 
1:10 of the values of RMSE, respectively. It’s enough to 
prove the good reliability of the model simulation.

The NICOLET B3 model has been evaluated in a mul-
ti-dimensional way using three criteria. All these statistics 
suggest a good fit for lettuce growth prediction, which 
could fully prove that the NICOLET B3 model is effective 

and accurate for predicting lettuce yield and taking deci-
sions concerning the harvest date selection. The above-
mentioned results are summarized in Table 1.

Sensitivity analysis of model inputs

After the NICOLET B3 model was evaluated and its 
credibility ensured, it was then further evaluated. The 

Table 3. Optimization of the studied model for significant correla-
tion factors on dry matter. Data in percentage.

δr-m δs-m

T DM 14.94 11.23
FM 11.86 11.83

PAR DM 22.31 10.68
FM 15.64 15.38

CO2 DM 22.33 10.69
FM 15.64 15.39

T & PAR DM 14.91 11.25
FM 11.84 11.82

T & CO2 DM 14.93 11.25
FM 11.85 11.82

PAR & CO2 DM 22.29 10.67
FM 15.37 15.91

All DM 14.93 11.24
FM 11.84 11.82

T: temperature. PAR: photosynthetically active radiation. DM: dry matter.  
FM: fresh matter. δr-m: average values of relative errors between simulation 
results from the studied model and real data from the literature (Juárez-Mal-
donado et al., 2010). δs-m: average values of relative errors between simula-
tion results from the studied model and simulation results from the literature 
(Juárez-Maldonado et al., 2010).

Figure 6. Comparison of simulated and measured results from the literature (Juárez-Maldona-
do et al., 2010) for dry matter (a) and fresh matter (b).

(a) (b)
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variation characteristics in values of lettuce fresh and dry 
matter were tested when model inputs change (Figs. 8a-c), 
where the blue line corresponds to the data measured with-
in the greenhouse, meanwhile, the red dotted line consid-
ers a constant value of the average of the input data.

Through the two methods mentioned above to measure 
the model’s input sensitivity, the calculated results are as 
follows. 

In the case of taking the average of the input temper-
ature, the deviation degree of the model output from the 
original fresh matter and dry matter reached 20.29% and 
0.93%, respectively. And the deviation degree was only 
0.01% and 0.02% for fresh matter, both 0.01% for dry mat-
ter, when PAR level and CO2 concentration were averaged. 
This difference can also be seen from the ending points of 
the polylines in Figs. 8a, 8b and 8c. The sensitivity of the 
model to the three inputs was compared using %D as an 
evaluation criterion. The analysis found that the effect of 
temperature on the model was much more obvious than 
other two inputs.

The average results of Si were calculated over the plant-
ing days for fresh and dry matter. The results (Table 2) 
indicate that temperature was the most significant factor 
determining the growth of lettuce among three inputs of 
the NICOLET B3. Taking the result of FW as an exam-

ple, compared with PAR and CO2, S of T increased by 
1329.7 ((2.1291-0.0016)/0.0016=1329.7) times and 7096 
((2.1291-0.0003)/0.0003=7096) times, respectively, which 
shows that the model sensitivity for variations in the other 
two inputs seems to be much smaller. Additionally, under 
the same input, S for fresh matter was always lower than 
S for dry matter. The S of CO2 was minimal regardless 
of the DW or FW. In other words, CO2 concentration had 
the least impact on the model. The aforementioned results 
just conform to the analysis and conclusions of normalized 
deviation ratio.

Based on both previous evaluation results for the stud-
ied model sensitivity, it can be thus concluded that tem-
perature as input variable has the most obvious influence 
on the output of the NICOLET B3 model, i.e., dry and 
fresh matter. In view of this conclusion, the following re-
search was conducted to simplify the input variables of 
the NICOLET B3 model when those input variables main-
tain within the ranges of crop growth requirement. That is, 
one or two input values were retained, and the remaining 
input values were derived from the average of the daily 
measurements to observe the error of the model outputs.

The inputs of the studied model were further optimized 
by comparing the model performance of one or two ex-
cluded input variables, respectively (Table 3). The influ-

Table 4. Parameter values before and after the calibration process by means of 
least squares identification.

Parameter Original value Value after calibration
k (s-1) 2.5e-7 3.2032e-7
a (m2mol-1[C]) 1.7 0.27258
V (mol[C]m-2) 23 20.306

Figure 7. Relationship between real measurement data, dry (a) and fresh (b) matter, of the lettuce growth and 
those predicted by the studied model in this work.

(a) (b)
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Figure 8. Fresh (left) and dry (right) matter of the lettuce growth along the growth period considering input temperature 
T (a), PAR (b), and CO2 (c), as either variable or constant.

(a)

(b)

(c)

ence of reducing different input variables in the model was 
different. It can be seen from the δr-m of both retaining two 
inputs and of all the inputs, that temperature was the most 
important input on the output of the model. Although the 

model also performed well when temperature was the only 
input of the model, however, too few input variables may 
make the outputs of the model uncertain and undermine 
the principles of plant physiology.
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A larger number of inputs requires that more couplings 
between inputs and outputs be described, which usually 
leads to more complex models. And it is more difficult for 
the model to be applied and modified for control purposes. 
So, the temperature and the PAR, or the temperature and 

(a)

(b)

(c)

Figure 9. Carbon dioxide (a), PAR (b) and air temperature 
(c) measured in the greenhouse as model inputs

CO2 concentration can be used as the inputs of the NICO-
LET B3 model to simplify the input variables when sim-
plified input maintain within the ranges of crop growth re-
quirement. The simplified model input was only replaced 
by the average of the normal value of the greenhouse, 
eliminating the need for precise measurement. What’s 
more, this simplified model could eliminate the need to 
measure an environment variable in the application, which 
helps to facilitate the application of the NICOLET B3 to 
a certain extent and decrease the measuring cost without 
affecting significantly the capability of the model.

Results of the case study

The measurement results of average CO2 concentration, 
PAR and air temperature inside the greenhouse during the 
experiment from 13 July to August 20, 2020, are shown in 
Figs. 9a, 9b and 9c, respectively.

The growth trend of lettuce under greenhouse condi-
tions in Tongzhou was established by the fresh and dry 
matter predicted by NICOLET B3 model. Fig. 10 shows 
the growth curves of FW and DW. They are consistent with 
the general trend of fresh and DW in the previous lettuce 
experiment. The ratio of DW to FW is also a fixed value, 
stable at about 0.059. Using the NICOLET B3 model, the 
growth of lettuce in the greenhouse can be well predicted, 
which is of benefit to the efficiency of the management of 
the greenhouse climate and yield maximization.

The aforementioned three main parameters were esti-
mated to fit the real data of the lettuce from the literature 
(Juárez-Maldonado et al., 2010). Table 4 shows the values 
of three parameters before and after calibration. The rea-
son for the difference between the original and the calibrat-
ed values is that the original values were calibrated using 
data from the lettuce grown in Germany (van Straten et 
al., 1999) and the Netherlands (Linker et al., 2004). How-
ever, the greenhouse experimental conditions used in this 
case study were completely different. It can be seen from 
this result that the robustness of model parameters is poor. 
Some main parameters of a nonlinear dynamic model may 
not be accurate for all scenarios due to the influence of 
environment, resulting in a mismatch problem between the 
model and specific application environment. Therefore, 
when the experimental environment and crop characteris-
tics change greatly, it is better to readjust the main param-
eters of the model, which will help to fit correctly the plant 
growth experimental data from very different treatments.

For the remaining parameters, the currently adopted 
parameter values are sufficient for the application of the 
model. From the experimental results of the NICOLET 
model applied in three different places, namely Germany 
(van Straten et al., 1999), the Netherlands (Linker et al., 
2004) and Mexico (Juárez-Maldonado et al., 2010), with 
different varieties of lettuce, it can be seen that the model 
has good performance by using the existing model param-
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eter values. Some parameters were corrected according to 
the season (van Straten et al., 1999) and the current ex-
perimental environment (Juárez-Maldonado et al., 2010). 
Then, when the NICOLET model is applied in different 
environments, some key parameters can be corrected on 
the basis of known model parameter values, which is help-
ful to improve the robustness of the model. The method of 
calibration of parameters described above is a simple and 
feasible way.

Final considerations

This study has presented that the NICOLET B3 model 
can predict the general trend in fresh and dry matter of 
the lettuce with satisfactory accuracy. However, there is 
a big discrepancy between the sim ulated results and the 
real data observed at the end of lettuce growth curve, es-
pecially on the 43rd day of lettuce growth. The reason for 
the discrepancy may be partly attributed to the limitations 
of the model simulation. The output data on 43rd day were 
estimated by interpolation through input data at other days. 
An absence of input data for the model after 43rd day would 
affect the estimation of that day. And it was also found in 
the test that the output value of this dynamic model was af-
fected by the input data before and after its corresponding 
time. For example, when the input data of the model only 
ended on the 39th day, there was also a large discrepancy 
between the simulation results and the real data of the fresh 
and DW of lettuce on that day. Therefore, in the previous 
experiment, the inputs data after the 39th day were not 
used for the model simulation, and there was also due to 
no comparison of the measured lettuce data after that day. 
Greenhouse data collection for more prolonged periods of 

time will contribute to configure more representative cli-
mate files of the study site (Bojacá et al., 2009).

The evaluation of a model’s ability to describe the dy-
namic evolution of crop is also important, and the crop dry 
and FW is determined by the model inputs (van Henten, 
1994). Temperature as a model input produced equally 
positive results, that is, the relative error between the pre-
dicted results of the simplified model inputs and the real 
data is close to that of the original model. This is because 
the other two input variables have less influence on the 
model than temperature. This behavior was similar to that 
reported by Juárez-Maldonado et al. (2012), who also ob-
tained that temperature have the greatest impact on NICO-
LET model.

A new calibration is required to obtain an accurate pre-
diction of lettuce growth when the NICOLET B3 model is 
simulated and applied in different locations and scenarios. 
The variations in parameters are mainly due to factors such 
as the area in which the experiment was carried out and the 
characteristics of the variety, as well as the species (Que-
sada-Roldán & Bertsch-Hernández, 2013). The model may 
need to be applied to different locations in the future to 
validate the parameter estimation method. In addition, the 
data assimilation method, such as unscented Kalman filter 
(UKF), can also be used to estimate parameters and im-
prove the prediction performance of the NICOLET model 
by incorporating information coming from samples of de-
structive measurements of actual crop (Ruíz-García et al., 
2014).

Despite of the limitations already mentioned, the results 
of the present work provide insight into the effectiveness 
of the NICOLET model for predicting yield of lettuce. 
The dynamic model initially applied to the tomato crop 
was calibrated and validated to adequately simulate the 

Figure 10. Dry and fresh matter of the lettuce growth in the greenhouse 
predicted by the studied model.

https://www.sciencedirect.com/science/article/pii/S1537511020301082
https://www.sciencedirect.com/science/article/pii/S0304423818301523
https://www.sciencedirect.com/science/article/pii/S0304423818301523
https://www.sciencedirect.com/science/article/pii/S0304423818301523
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