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Abstract
Aim of study: In precision agriculture, the definition of Application Zones (AZs) in agricultural areas consists in de-

limiting the area in subareas with similar characteristics, using soil chemical attributes. To such end, the use of clustering 
methods is common. Therefore, the AZs make up a database that can be used to target future soil sampling, thus seeking a 
possible sample reduction. The objective of this paper is to assess the acquisition of sample configurations, with reduced 
sample size, contained in application zones generated by spatial multivariate clustering. The sampling protocol proposed 
in this work evaluated five clustering methods (C-means, Fanny, K-means, Mcquitty, and Ward) for the creation of AZs, 
and, through these AZs, to obtain reduced sample configurations with 50% and 75% of the initial sampling points.

Area of study: Commercial agricultural area, Cascavel, Brazil.
Material and methods: Data of the soil chemical attributes from a commercial agricultural area were used, referring 

to three soybean harvest years (2013-2014; 2014-2015; and 2015-2016). The clustering methods considered a dissimi-
larity matrix that aggregates the information about the Euclidean distance between the sample elements and the spatial 
dependence structure of the attributes.

Main results: The results indicated division of the agricultural area into two or three AZs for the aforementioned har-
vest years, considering the K-means method. Comparing all the reduced sample configurations with the initial one, it was 
observed that the one proportionally reduced by 25% was the most effective to obtain a reduced sample configuration.

Research highlights: The sampling protocol using AZs showed that it is possible to reduce the sample size.
Additional key words: clustering; dissimilarity matrix; precision agriculture; sampling design.
Abbreviation used: AZ (Application Zone); GPS (global positioning system); Kp (Kappa); MZ (Management Zone); 

OA (overall accuracy); PA (Precision Agriculture); PCA (principal component analysis); PC1 (first principal compo-
nent); PR (proportional random); PR50, PR25 (proportional random sample configurations reduced by 50% and 25%); 
PS (proportional systematic); PS50, PS25 (proportional systematic sample configurations reduced by 50% and 25%); 
R (random); R50, R25 (random sample configurations reduced by 50% and 25%); S (systematic); S50, S25 (systematic 
sample configurations reduced by 50% and 25%) SSE (sum of squares of errors); T (Tau); UTM (Universal Transverse 
Mercator).
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Introduction

The proposal of precision agriculture (PA) aimed at lo-
calized soil management involves agronomic, technological 
and, consequently, financial changes, which hinders adop-
tion of the PA techniques, especially by small producers 
(Srinivasan, 2006). PA allows studying and analysing the 
spatial variability of crop yield and the chemical and physi-
cal attributes of the area under study. The study of this spa-
tial variability of spatially georeferenced continuous vari-
ables can be done using geostatistical techniques (Cressie, 
2015), which is crucial for the feasibility of differentiated 
and localized management practices, and allowing to meas-
ure the degree of spatial dependence between the sample 
elements in a given region and to describe the spatial de-
pendence structure of the georeferenced variable throughout 
the area, thus generating thematic maps (Cressie, 2015). 

An important part of the PA is to obtain data for the 
elaboration of maps of attributes that influence crop pro-
ductivity (Bernardi et al., 2014). There are commercially 
available equipment and sensors that can be highlighted 
for obtaining these data, as well as for collecting soil sam-
ples (Gonçalves et al., 2020).

Agricultural sensors are instruments that can be at-
tached to implements or agricultural machinery, allowing, 
for example, to analyze soil attributes or characteristics in 
real time. Scherer et al. (2018) proposed the development 
of a sensor to determine the electrical conductivity of the 
soil at low cost. Prudente et al. (2021) compared the NDVI 
(Normalized Difference Vegetation Index) spectro-tempo-
ral profiles obtained by active (GreenSeeker 505 Hand-
held) and passive (FieldSpec4 Standard-Res model) prox-
imal sensors to monitor soybeans and beans. By means of 
multispectral sensors onboard the AT120 Remotely Piloted 
Aircraft Systems, Facco & Pegoraro (2019) captured aerial 
images, and thus built digital surface models, orthoimages, 
contour lines, generated vegetation indices and performed 
the detection of planting failures. Thinking about agility 
and quality, Resende et al. (2020) used a remotely piloted 
aircraft equipped with an RGB camera and a MAPPIR 3 
camera to capture images of a corn crop, to estimate the 
leaf area index of a plot infested by Spodoptera frugiper-
da. Furthermore, the wireless sensor network can be used 
in underground and terrestrial environments to detect soil 
and climate conditions, as well as detect pests and insects 
(Bayrakdar, 2020a,b).

Another important procedure in PA is soil sampling, 
which represents a critical step in the assessment of soil 
fertility, and may be responsible for 98% of the errors 
made in the inappropriate recommendation of fertilizers 
(Mendes et al., 2001). Still, the choice and influence of the 
location of the sampled points, as well as the distance that 
separates them, are essential for the success of the sam-
pling design (Carvalho & Nicollela, 2002).

In this context, it is necessary to determine a soil sam-
pling scheme that is as efficient as possible, with the small-

est sample size to minimize operating costs and maximize 
the quality of the results of the spatial variability analysis 
(Marchant & Lark, 2010). 

For the choice of this sampling scheme, there are tra-
ditional spatial sampling designs, such as simple random 
sampling and the systematic design, which are classified 
as design-based, assuming that the values of the georef-
erenced variable are considered fixed. Traditional spatial 
sampling designs are advantageous in terms of the sim-
plicity of choice of sampling points in the area under study, 
either because of the occurrence of different spacing be-
tween pairs of sampling points (in simple random sam-
pling) or because of coverage uniformity of the area under 
study (in systematic sampling) (Haining, 2015). 

However, the spatial heterogeneity and spatial auto-
correlation perform a particular impact on the variability 
analysis accuracy, in the context of the sampling design. 
The spatial distribution of an attribute is considered heter-
ogeneous when the attribute varies in the study area, thus 
requiring division of the area into homogeneous subareas. 
On the other hand, spatial autocorrelation indicates that the 
georeferenced samples nearby have similar values. 

Characteristics of spatial variability, such as anisotropy, 
can guide a choice of the most intense number of sam-
pling points in the direction of greater spatial variability 
(Delmelle, 2009). Or the inclusion of more sampling points 
with a smaller distance radius in the systematic sampling 
design, to minimize the nugget effect problem, as proposed 
by Diggle & Lophaven (2006), in the “lattice plus close 
pairs” and “lattice plus infill” designs. 

The spatial sampling designs that consider the sample 
as a realization of a probability process are classified as 
model-based design or geostatistical design (Diggle & Lo-
phaven, 2006). The spatial sampling design that considers 
the spatial correlation makes it possible to reduce the sam-
ple size by restricting redundant spatial information, in re-
lation to traditional sampling (Haining, 2015; Dal’Canton 
et al., 2021). 

Several methodologies for spatial re-planning of the 
sample, with sample size reduction, are developed in the 
literature, such as calculation of the effective sample size 
(Dal’Canton et al., 2021) or the optimized sample re-plan-
ning (Maltauro et al., 2019; 2021). Moreover, prior knowl-
edge of the spatial autocorrelation of the variable can be 
used in the spatial stratified sampling, which provides a 
lesser loss of precision of the estimate than spatial sim-
ple random and systematic sampling. The spatial stratified 
sampling can use relevant previous historical data in the 
same area, such as prior knowledge. Associated with the 
multivariate clustering analysis, this information allows 
generating zones, which will represent the stratified space 
(Wang et al., 2013).

In the PA context, the identification of homogeneous 
Management Zones (MZs) within the cultivation areas be-
comes a more technically and economically viable strate-
gy for the implementation of localized soil management, 
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allowing a long-term that all area treatments to be carried 
out uniformly within each zone (Molin, 2006; Srinivasan, 
2006; Bernardi et al., 2014). Thus, to produce more stable 
MZs, it is recommended to use variables that do not vary 
significantly over time, such as topographic data and phys-
ical data (Aikes et al., 2021). 

On the other hand, the chemical attributes are impor-
tant and useful to generate the zones for recommendations 
of variable rate fertilizer applications (Aikes et al., 2021). 
These zones are called application zones (AZs) (Molin, 
2006). Therefore, the difference between MZs and AZs is 
related to the variables available (stables or not) and with 
the intention of generating the zones (long-term use or 
only for a future application of fertilizers). Moreover, the 
spatial statistics and the multivariate cluster analysis are 
methods commonly used by MZ and AZ. 

These MZs or AZs make up a database that can be used 
to direct, in the future, the reduction of the sample size 
in areas more homogeneous (Rodrigues Jr. et al., 2011). 
In this context, there are several ways to select samples, 
which depend on the purpose and the resources available 
for the survey (Haining, 2015). When we do not have in-
formation about the spatial variability, the sampling points 
can be selected using traditional sampling criteria (Bened-
etti et al., 2015), or multi-phase adaptive sampling schemes 
(Marchant & Lark, 2010).

Determination of the sample configurations with reduced 
size by the use of AZs as a spatial stratified sampling pro-
vide the following advantages: AZs generate more homoge-
neous regions from the point of view of spatial similarity, 
allowing the researcher to choose a smaller number of sam-
pling points in each AZ; the methodology considers the spa-
tial information redundant; there is a design-based and mod-
el-based combination; use of less computational time than 
in optimized sampling; and greater simplicity of execution.

Given the above, the objective of the paper was to assess 
the acquisition of reduced sample configurations contained 
in application zones generated by spatial multivariate clus-
tering. The sampling protocol proposed in this work is in-
tended to guide the definition of new intervention cycles in 
the study area, with a reduced sample size, but maintained 
the refined localized management in this agricultural area.

Material and methods

Agricultural area or experimental field

The data set regarding the soil chemical attributes in the 
three soybean harvest years (2013-2014, 2014-2015, and 
2015-2016) used in this research was observed in a 167.35 

Figure 1. Soil chemical attributes used in the research, indicated with an 
X (a); agricultural area and sampling scheme with locations of sampling 
points (b); methodology to obtain the reduced sample configurations by 
means of different sample configurations (c); methodological scheme to 
obtain the new matrix of variables from a dissimilarity matrix (d).
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ha commercial grain production area located at the Three 
Girls Farm in the city of Cascavel-PR, Brazil, located ap-
prox. 24.95º S 53.37º W with a mean altitude of 650 m above 
sea level. The soil is classified as Dystroferric Red Latosol, 
with a clayey texture. The region’s climate is classified as 
mesothermal and super-humid temperate, climate type Cfa 
(Köeppen), and the mean annual temperature is 21ºC (Em-
brapa, 2013). The area under study had 102 sampling points 
arranged in the lattice plus close pairs design (Chipeta et al., 
2017), with a minimum distance between the points of the 
regular grid of 141 meters and, in some places, randomly 
chosen, the sampling points were arranged at smaller dis-
tances (75 and 50 m between point pairs (Fig. 1b). 

The samples were located and georeferenced using a 
GNSS receiver (GeoExplorer, Trimble Navigation Limit-
ed, Sunnyvale, CA, USA) in a Datum WGS84 coordinate 
reference system, UTM (Universal Transverse Mercator) 
projection. Soil sampling was performed at each point in-
dicated (Fig. 1b). At these points, four soil sub-samples 
were collected, from 0.0 to 0.2 m deep, mixed and placed 
in plastic bags, with samples of approx. 500 g comprising 
the representative sample of the plot. 

Descriptive and geostatistical analyses

Each harvest year, descriptive and geostatistical analy-
ses were performed for each of the soil chemical attributes, 
in order to verify the presence of directional trend and an-
isotropy. Anisotropy was assessed through the analysis of 
the directional semivariograms (Guedes et al., 2018) and 
the non-parametric Maity & Sherman´s (2012) test, con-
sidering 5% significance. Spatial dependence was assessed 
by the nugget-to-sill radio classification (Cambardella et 
al., 1994), which is a good and consolidated method to 
assess the intensity of spatial dependence, being used in 
several works in the field of Soil Science (Siqueira et al., 
2010; Guedes et al., 2018; Maltauro et al., 2019, 2021; 
Dal’Canton et al., 2021). The soil chemical attributes that 
presented spatial dependence were studied (Cambardella 
et al., 1994), referring to each harvest years (Fig. 1a).

The following models were estimated by the maximum 
likelihood method: exponential, Gaussian, and Matérn 
family with shape parameter =2.5 (Cressie, 2015). The 
best model was chosen by means of the cross-validation 
method (Faraco et al., 2008). Subsequently, the spatial pre-
diction was carried out in non-sampled locations in the ag-
ricultural area under study, by kriging, and thematic maps 
of each attribute were prepared (Landim, 2006).

Acquisition of the spatial and multivariate 
dissimilarity matrix

Subsequently, all the locations were compared in pairs. 
For this, in each pair of i and j locations (i, j=1,…,n) in 

which the p attributes had already been measured (Fig. 
1a), the similarity coefficient proposed by Gower (1971) 
was calculated and, for quantitative attributes, the practical 
range is a form of standardizing the attributes (Eq. 1; Fig. 
1d). The dissimilarity matrix was obtained based on Oliver 
& Webster (1989).

In the principal component analysis (PCA) of the orig-
inal data (Eq. 2; Fig. 1d), the first principal component 
(pc1) was selected, as this explains most of the data vari-
ation. Considering the pc1 scores, the geostatistical mod-
els were estimated in a way analogous to the methodology 
used for the soil chemical attributes. The dissimilarity ma-
trix was obtained with the estimation of the parameters of 
the pc1 scores’ geostatistical model  (Eq. 3; Fig. 1d). In this 
way, the matrix adds information about the Euclidean dis-
tance between the sample elements, as well as the spatial 
dependence structure of the attributes.

The columns of matrix  (Eq. 10; Fig. 1d) are the new 
variables. Consequently, the number of  columns corre-
sponding to the number of original attributes was selected. 
Subsequently, a geostatistical model was estimated and 
data interpolation by kriging was made. The interpolated 
data were used to obtain the AZs (Gavioli et al., 2016).

Clustering and choice of the number of clusters 
and criteria to evaluate the clusterings

Initially for each harvest year, the best clustering method 
was chosen among the following: Fanny, Fuzzy C-means, 
McQuity, Ward, and K-means. Details about the clustering 
methods evaluated are described in Ward Jr. (1963), McQuit-
ty (1966), MacQueen (1967), Bezdek (1981), and Kaufman 
& Rousseeuw (2009). This choice was made by means of the 
following indices: Dunn, Davies Bouldin, C, SD, and vari-
ance reduction (Dunn, 1974; Hubert & Levin, 1976; Davies 
& Bouldin, 1979; Halkidi et al., 2000; Gavioli et al., 2016, 
respectively). To define the number of clusters, the scatter 
plot of the sum of squares of errors (SSE) versus the number 
of clusters (knee graph) was used, as well as the silhouette 
scatter plot versus the number of clusters (Yi et al., 2013).

Sample configuration

With the best AZ chosen for each harvest year, a sample 
reduction was performed in each AZ. Sample configuration 
was reduced considering 75% and 50% of the sampling 
points and using different sample configurations (Fig. 1c). 
Greater reductions were not possible, as the number of 
sampling points would not meet the geostatistical analysis 
criteria (at least 30 pairs for calculation of the semivari-
ances; Journel & Huijbregts, 1976).

First, sample reduction was carried out considering ran-
dom (R) and proportional random (PR) sampling, selecting, 
respectively, the sampling points randomly within each AZ 
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or proportionally to the number of hectares within each AZ. 
In the sample reduction using systematic (S) and propor-
tional systematic (PS) sampling, the sampling points were 
obtained by selecting of points from the regular sampling 
grid, to obtain 50% and 75% of the sampling points. The 
points of the agricultural area’s lattice plus close pairs were 
selected until the number of required points was completed.

With each reduced sample configuration, the explorato-
ry and geostatistical data analyses were repeated. Finally, 
the initial and the reduced sample configurations were com-
pared using the overall accuracy (Anderson et al., 2001) and 
the Kappa and Tau agreement indices (Krippendorff, 2013).

Computational resources

All statistical and geostatistical analyses were devel-
oped using the R software (R Development Core Team, 
2021), or its geoR package (Ribeiro Jr. & Diggle, 2001). 

Results

Descriptive and geostatistical statistics

Regarding all the soil’s chemical attributes for the 
2013-2014 and 2014-2015 harvest years, there was a 

wide variation in the coefficient of variation (CV), from 
22.41 to 60.18 and from 25.11 to 126.28 respectively, 
what indicates high dispersion (20 < CV ≤ 30) or 
heterogeneity of the soil chemical attributes (CV > 30). 
The 2015-2016 harvest year presented a CV between 
10.58 and 40.92, ranging from average (10 ≤ CV ≤ 20) 
to high (20 < CV ≤ 30) dispersion of the soil chemical 
attributes (Table 1).

Soil chemical attributes Ca, C, Cu, Fe, H+Al3, Mn, and 
SB had mean values considered average or high, whereas 
the mean value of Zn can be classified as low or average, 
and that of Al can be classified as low regarding the need 
for the soil (Table 1). The Zn content of the 2014-2015 
harvest year presented a moderate linear association of 
its respective values with the X-axis coordinates, that is, 
showing a mean linear trend of the deterministic term in 
relation to the East-West direction (Table 1) (r ≥ 0.30).

For all the soil’s chemical attributes of the 2013-2014 
harvest year, an estimated value for the spatial dependence 
radius (range) from 157.70 m to 707.86 m was observed 
(Table 1). For the 2014-2015 harvest year, the practical 
range varied from 128.61 m to 453.07 m. The 2015-2016 
harvest year presented greater variation in the practical 
range, between 149.73 m to 855.10 m. Regarding spatial 
dependence intensity, and according to the criteria used, it 
is observed that, for all the harvest years, the soil chemical 
attributes presented moderate or strong spatial dependence 
(Table 1). 

Table 1. Descriptive statistics and estimated values of the geostatistical model parameters for the soil chemical attri-
butes, referring to each harvest year and considering the initial sample configuration.

Harvest 
year Attribute[1]

Descriptive statistics[2] Estimated parameters of the geostatistical model[3]

Mean CV Coef.X Coef.Y Model μ̂ φ̂1 φ̂2 â
2013-2014 Ca 6.22 22.46 -0.08 -0.04 Gaus. 6.19 1.08 0.87 179.00

Cu 1.21 60.18 0.05 -0.29 Gaus. 1.26 0.28 0.25 707.86
Fe 37.10 22.41 -0.07 -0.07 Gaus. 37.37 35.93 33.06 217.86

H+Al3 8.60 22.55 0.15 0.02 Exp. 8.62 2.62 2.18 157.70
Mn 60.96 33.69 -0.11 -0.11 Gaus. 60.31 171.59 225.55 203.98

2014-2015 Al 0.28 126.28 -0.15 0.09 M. κ=2.5 0.28 0.02 0.10 128.61
Ca 5.38 25.11 0.22 0.03 Exp. 5.40 1.05 0.75 231.56
Mn 76.54 27.43 0.07 -0.02 Gaus. 77.30 233.70 209.80 453.07
Zn 2.81 61.61 0.30 0.01 Gaus. -326.7; 

0.001
0.54 2.28 162.73

2015-2016 C 32.01 10.58 0.11 -0.23 Exp. 31.80 5.97 5.37 576.28
Ca 5.50 24.12 -0.01 0.05 Gaus. 5.53 1.29 0.48 284.08
Cu 3.82 23.78 -0.10 0.24 Exp. 4.02 0.33 0.52 855.10
Mn 86.41 25.66 -0.11 0.09 Gaus. 86.78 268.79 226.14 367.29
SB 7.93 25.20 -0.01 -0.04 Exp. 7.93 2.73 1.22 149.73
Zn 4.97 40.92 0.21 0.23 Gaus. 5.10 1.59 3.04 367.65

[1] H+Al3: total potential acid. [2] CV: coefficient of variation; Coef.X, Coef.Y: Pearson's linear correlation coefficient (r) for each coordinate (X and 
Y) with each of the soil's chemical attributes. [3] Gaus.: Gaussian; Exp.: exponential; M. κ=2.5: Matérn with κ=2.5; μ̂, φ̂1, φ̂2, â: estimated values of 
the mean, nugget effect, partial sill, and practical range (meters) parameters, respectively.
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Table 2. Estimated values of the overall accuracy (OA), Kappa (Kp) and Tau (T) similarity measures for comparison 
between the initial sample configuration and the reduced configurations for the 2013-2014, 2014-2015 and 2015-2016 
harvest years.

Attributes Indexes R50 R25 PR50 PR25 S50 S25 PS50 PS25

2013-2014

Ca OA 58.61 70.30 61.63 59.02 62.40 70.59 71.06 80.14
Kp 31.56 53.98 39.46 35.40 37.92 44.57 33.85 60.78
T 48.26 72.87 52.04 48.77 53.00 63.24 63.82 75.18

Cu OA 47.38 81.47 50.19 75.77 66.86 74.85 68.45 82.44
Kp 26.59 76.02 20.29 69.31 51.26 67.77 59.38 77.44
T 34.22 76.83 37.73 69.71 58.57 68.56 60.56 78.06

Fe OA 53.58 79.71 71.90 53.46 52.66 78.00 62.94 57.91
Kp 30.61 62.05 50.86 31.21 28.65 64.35 22.79 33.63
T 41.98 74.64 64.88 41.82 40.83 72.50 53.67 47.38

H+Al3 OA 58.45 78.72 46.12 56.08 66.93 46.12 46.51 58.95
Kp 30.61 60.42 0.00 24.77 39.43 0.00 0.69 20.95
T 48.07 73.39 32.65 45.09 58.66 32.65 33.13 48.69

Mn OA 66.75 77.28 61.98 74.66 72.57 89.79 59.19 84.37
Kp 34.13 58.11 22.16 55.00 45.66 82.03 0.00 70.52
T 41.98 71.60 52.47 68.32 65.71 87.24 49.98 80.47

2014-2015

Al OA 84.94 85.81 78.86 87.44 81.99 81.97 85.94 86.45
Kp 24.11 60.43 36.77 63.62 0.99 0.00 50.73 54.07
T 81.18 82.27 73.57 84.29 77.48 77.47 82.43 83.06

Ca OA 59.24 61.42 61.05 80.19 54.82 45.23 64.28 85.13
Kp 23.92 38.50 23.83 64.23 1.02 18.05 29.97 71.47
T 49.05 51.78 51.32 75.23 43.53 31.54 55.36 81.41

Mn OA 67.35 79.04 71.08 88.34 59.34 80.47 48.87 65.93
Kp 53.30 70.42 50.06 82.97 28.09 72.35 24.09 47.18
T 59.19 73.80 63.84 85.43 49.18 75.59 36.09 57.41

Zn OA 62.27 66.36 67.76 79.82 68.69 74.12 70.68 76.56
Kp 31.88 40.70 41.23 60.44 43.63 55.39 47.15 59.40
T 52.83 57.95 59.69 74.77 60.86 67.65 63.36 70.70

2015-2016

C OA 70.82 65.40 56.69 73.46 47.51 63.15 48.22 74.19
Kp 59.08 40.87 35.53 63.82 15.39 47.34 20.62 63.87
T 63.53 56.75 45.86 66.82 34.38 53.94 35.27 67.74

Ca OA 51.37 81.83 67.73 66.59 73.73 51.37 81.23 76.55
Kp 0.00 58.12 37.15 41.23 35.17 0.56 44.27 50.87
T 39.21 77.29 59.67 58.24 67.16 39.21 76.54 70.69

Cu OA 73.79 76.69 64.95 79.59 50.76 73.79 52.90 60.48
Kp 58.65 65.26 44.18 68.51 15.26 60.06 19.41 35.57
T 67.24 70.87 56.18 74.48 38.46 67.24 41.13 50.60

Mn OA 61.49 72.57 59.96 63.45 52.20 70.29 55.03 72.50
Kp 44.74 62.67 42.04 49.24 32.73 57.14 36.63 61.94
T 51.87 65.71 49.95 54.31 40.25 62.87 43.79 65.63

SB OA 64.32 68.50 66.66 53.40 59.03 64.93 64.93 64.93
Kp 0.00 39.21 27.51 20.72 23.58 0.00 0.00 7.67
T 55.40 60.62 58.32 41.75 48.79 56.16 56.16 56.16

Zn OA 43.13 75.19 69.93 85.36 70.97 83.03 71.01 85.83
Kp 14.14 57.77 48.91 74.52 52.14 73.21 52.44 77.72
T 28.92 68.99 62.41 81.70 63.72 78.79 63.76 82.29

R50 (R25): sample configuration randomly reduced by 50% (25%). PR50 (PR25): sample configuration randomly proportionally reduced by 50% 
(25%). S50 (S25): sample configuration systematically reduced by 50% (25%). PS50 (PS25): sample configuration systematically proportionally 
reduced by 50% (25%).
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Clustering

For the 2013-2014 and 2015-2016 harvest years, the 
scatter plots of the number of clusters versus the SSE and 
the silhouette (Fig. 2a,b) showed that the best number of 
clusters for all the clustering methods was 2. For the 2014-
2015 harvest year, and for most of the clustering methods, 
the ideal number of clusters was 3 (Fig. 2a,b). Moreover, 
K-means was the best clustering method for all the harvest 
years (Table S1 [suppl]). With the best number of clusters 
and the best clustering method selected, the AZ map was 
generated, for all the harvest years (Fig. 2c). 

It is observed that the AZs present differences in the 
seasons, as they are generated with the chemical attributes 
of the soil, to be used for a single application recommenda-
tion. It is noted that a larger AZ was created in all harvest 
years (red colour, Fig. 2c). In addition to that, it was ob-
served that there is at least one AZ in the Southwest region 
in all the harvest years (Fig. 2c). And, except for the 2015-
2016 harvest year, it was also possible to find at least one 
AZ in the North region (Fig. 2c).

In the harvest years that presented two AZs, the largest 
(red) occupied 106.85 ha (64% of the plot) and 99.61 ha 
(60% of the plot) for the 2013-2014 and 2015-2016 har-
vest years, respectively (Fig. 2c). The 2014-2015 harvest 
year, which featured three AZs, had 69.64 and 54.03 ha in 
the two largest AZs, corresponding to 42% and 32% of the 
total area, respectively (Fig. 2c).

Sample configuration

For the 2013-2014, 2014-2015, and 2015-2016 harvest 
years, AZ 1 covered 60, 32, and 65 sampling points, re-
spectively, which correspond to 59%, 31%, and 64% of 
the total points in the study area (Fig. 2c). AZ 2 comprises 
42, 26 and 37 sampling points, corresponding, respective-
ly, to 41%, 26%, and 36% of the total points in the study 
area (Fig. 2c). In addition, in the 2014-2015 harvest year, 
the third AZ included 44 sampling points (43% of the total 
points in the study area). Sample configurations reduced 
by 50% obtained 51 sampling points; on the other hand, 

Figure 2. Silhouette graph (a), knee graph (b) and thematic maps (c) with the best 
number of application zones (AZs) and the best clustering method.
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sample configurations reduced by 25% had 76 sampling 
points distributed in the agricultural area (Fig. 3).

For all harvest years, similarity in descriptive statistics 
was observed when comparing all sample configurations 

reduced by 50% and 25% with the initial one (Table 1 and 
Fig. 4). For all harvest years, most of the attributes did not 
present any directional trend for the initial sample con-
figurations, except for soil chemical attribute Zn for the 

Figure 3. Initial and reduced sample configurations (points in red •) for the 2013-
2014, 2014-2015 and 2015-2016 harvest years (random [R], proportional random [PR], 
systematic [S], and proportional systematic [PS] sample configurations reduced by 50% 
and 25%).
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2014/2015 harvest year, which showed a directional trend 
in the Y direction (North-South). As for the reduced sam-
ple configurations, soil chemical attributes Cu, H+Al3, Mn, 
and Zn presented a directional trend in the X (East-West) 
or Y (North-South) direction for at least one sample, with 
Pearson’s linear correlation coefficient (r) values greater 
than 0.30 in a module.

Regarding the classification of spatial dependence in-
tensity of the soil chemical attributes, for attributes H+Al3 
and Mn in the 2013-2014 harvest year, there was a change 
in the classification, from moderate (Table 1) to weak (Ta-
ble S2) spatial dependence intensity, in the PR50, PR25, 
S25, PS50 and PS25 sample configurations. The presence 
of pure nugget effect was found in soil chemical attributes 
Ca, Cu and Fe, mainly in the systematic sample config-
urations (Table S2). For the 2014-2015 harvest year, soil 
chemical attributes Al and Ca presented weak spatial de-
pendence in the R50 and S25 sample configurations (Table 
S3). 

The proportional and random sample configurations 
had a greater number of attributes with pure nugget effect, 
namely: Al, Mn, and Zn (Table S3). For the 2015-2016 
harvest year, soil chemical attributes C, Ca, Cu, and SB 
also presented weak spatial dependence in at least one of 
the systematic sample configurations (Table S4). 

Disregarding the cases that presented low spatial de-
pendence and pure nugget effect, the spatial dependence 
radius of all the reduced sample configurations were com-
pared with the initial one, showing variations (of more or 
less) of: 4.94 m to 106.75 m for Al; 27.55 m to 381.36 m 
for C; 1.38 m to 209.41 m for Ca; 26.64 m to 541.63 m 
for Cu; 5.76 m to 574.31 m for Fe; 9.42 m to 45.48 m for 
H+Al3; 1.00 m to 288.82 m for Mn; 65.14 m to 168.61 m 
for SB; and 75.44 m to 213.18 m for Zn (Table 1 and Table 
S2 to S4), regardless of the harvest year. 

When comparing the thematic maps of the chemical at-
tributes generated considering the initial and the reduced 
configurations in all harvest years, most of the soil chem-
ical attributes presented low or average accuracy by the 
estimated values of the Kappa and Tau agreement indices; 
with values between 0.00% and 78.79% (low accuracy if 
Kappa; Tau < 67%, average accuracy if 67% ≤ Kappa; Tau 
< 80%) (Table 2). 

For the 2013-2014 harvest year, it was observed that 
only the Mn content in the soil in the S25 sample present-
ed an estimated overall accuracy (OA) value greater than 
85%, which indicates that the maps of both configurations 
are similar regarding distribution of the content of this soil 
attribute in the study area (OA ≥ 85%) (Table 2; Fig. S1). 
For the 2014-2015 harvest year, the Al attribute with sam-
ples PR25, PS50 and PS50; the Ca attribute in SP75; and 
the Mn attribute in PR25 also presented estimated OA val-
ues above 85% (Table 2; Fig. S2). Attribute Al exhibited 
high accuracy with values between 81.18% and 84.29% 
for most of the sample configurations. However, one of 
the main reasons is the fact the pixels fall into only one 

class. Finally, for the 2015-2016 harvest year, only the Zn 
attribute presented high overall accuracy in sample config-
urations PR25 and PS25, with estimated OA values above 
85% and Kappa; Tau ≥ 80% (Table 2; Fig. S3). 

Discussion
Regardless of considering the same variables year to 

year to generate zones, Schenatto et al. (2016), working 
with different soil attributes, also found different amounts 
of the zones for an agricultural area considering different 
harvest years. The sampling points obtained by the reduced 
sampling configurations (points in red in Fig. 3) within 
each AZ (Fig. 3), showed that sampling points selected 
throughout the study area, seeking greater concentration of 
points in regions where there is greater variability, as well 
as a reduction in sample density in more uniform locations 
(Rodrigues Jr. et al., 2011).

The similarity in descriptive statistics when comparing 
the reduced sample configurations with the initial sample 
configurations was also found by Maltauro et al. (2019); 
and Dal’Canton et al. (2021) working with the sample re-
duction in the same agricultural area with grain cultivation, 
considering the chemical attributes of the soil.

The results regarding spatial dependence are explained 
by the bilateral relationship of sample size in the spatial 
scale (Kerry et al., 2010). A reduction in sample size can 
generate a reduction in spatial dependence intensity, as 
evidenced by these authors, who presented examples with 
sample size reduction that generated an increase in the 
nugget effect. These authors also mention the importance 
of defining an adequate sample size, to remove the effect 
of the “noise” that may have been generated exclusively by 
the choice of sample size.

In general, most of the soil’s chemical attributes showed 
moderate spatial dependence; this fact makes the themat-
ic maps more accurate than those generated considering 
weak spatial dependence (Cambardella et al., 1994). In 
addition, a high nugget effect indicates low spatial de-
pendence and leads to estimates around the sample mean 
(Alencar et al., 2019), as the nugget effect is associated 
with sampling or analysis errors, which indicates that two 
observations close to each other have very different values. 
Regarding the range, Dal’Canton et al. (2021) concluded 
that the larger the spatial dependence radius, the smaller 
the sample size, estimated by the effective size of the uni-
variate sample and the greater the area of homogeneity be-
tween sampling points.

The best estimates for the accuracy indices were ob-
served comparing the initial sample configurations with 
those reduced by 25% (Table 2). This result was already 
expected, for containing more sampling points than the 
50% sample reduction. However, it was possible to ob-
serve that the spatial variability pattern was maintained 
in most classes of the thematic map of the soil chemical 
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Figure 4. Boxplots of the reduced sample configurations for the 2013-2014, 2014-2015 and 2015-2016 harvest 
years, with the respective soil chemical attributes (random [R], proportional random [PR], systematic [S], and 
proportional systematic [PS] sample configurations reduced by 50% and 25%).
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attributes, even considering the largest sample reduction. 
This same trend was observed in Maltauro et al. (2019) 
and by Dal’Canton et al. (2021), even the authors working 
with different methods for sample reduction in an area with 
grain cultivation.

For all the harvest years, the clustering methods were 
efficient for defining the AZs and, for the 2013-2014 and 
2015-2016, the best number of clusters for all the cluster-
ing methods was kc=2. For the 2014-2015 harvest year 
and for most of the clustering methods, the ideal number 
of clusters was kc=3. Considering the evaluation criteria, 
K-means was the best clustering method. Therefore, from 
a practical point of view, it is concluded that the AZs allow 
for localized application of inputs in the agricultural area.

Among the configurations analysed, the sample config-
uration proportionally reduced by 25%, when compared 
to the initial sample configuration, presented the best esti-
mates for the values of the spatial dependence radius and 
the highest values for the accuracy indices; while the worst 
estimates for the accuracy indices were shown when com-
paring the initial sample configuration and those randomly 
and systematically reduced by 50%.

Overall, the AZs allowed dividing the agricultural area 
into more homogeneous sub-regions, as well as to select a 
smaller number of points within each AZ. Thus, the defini-
tion of AZs is efficient in obtaining a reduced sample con-
figuration and in defining future soil samplings in the study 
area, aiming to minimize, in the long term, the spatial var-
iability of the soil chemical attributes soil in this agricul-
tural area, also allowing the producer to reduce costs when 
carrying out the soil analysis. This methodology used pre-
sents a design-based and model-based combination, great-
er simplicity in execution and brief computational times. 

As future works, we seek to apply the methodology de-
veloped in spatio-temporal data.
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