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Abstract
Aim of study: To evaluate and develop a machine learning code that uses aerial images in visible and near infra-

red (NIR) spectra to detect mite-infested Saffron (Crocus sativus L.) plants through processing the spectral indices to 
classify healthy and diseased plants. This leads to the identification of the concentration points of the bulb mites and the 
estimation of the percentage of infestation in the field.

Area of study: Khorasan-Razavi province, Torbat-Heydarieh, Iran.
Material and methods: Five fields were randomly selected and their red-green-blue (RGB), as a typical visible spectral 

image, and NIR images were taken in two consecutive years. Seven spectral vegetation indices for NIR images including 
NIR-band, Red-band, normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation 
index (DVI), difference red-nir ratio (DRN) and infrared percentage vegetation index (IPVI); and twelve indices for RGB 
images inlcuding red-band, green-band, blue-band, visible-band difference vegetation index (VDVI), visible atmospheric 
resistant index (VARI), triangular greenness index (TGI), normalized difference greenness index (NDGI), normalized 
green blue difference index (NGBDI), modified green red vegetation index (MGRVI), red green blue vegetation index 
(RGBVI), vegetative index (VEG) and excess of green index (EXG), were extracted and analysed. In order to detect 
affected plants, two support vector machine (SVM) classifiers with radial basis function (RBF) kernels were used 
separately for NIR and RGB images.

Main results: The average accuracy of the SVM classifier models were estimated to be 82.3% for NIR images and 
91.4% for RGB images during the test phase. Also, the accuracy of the developed models when evaluated in the field with 
respect to the confusion matrix method was 75.6% and 80.3% for the classification models for NIR and RGB images, 
respectively.

Research highlights: RGB images were able to distinguish infested plants with better accuracy. Processing aerial images 
of lightweight drones could speed up the inspection of vast saffron fields.

keywords: Aerial imaging; Classification; Image processing; Crocus sativus; Support vector machine.

Detección de plantas de azafrán infestadas por ácaros mediante imágenes aéreas y un 
clasificador de aprendizaje automático

Resumen
Objetivo del estudio: Evaluar y desarrollar un código de aprendizaje automático que utilice imágenes aéreas en los 

espectros visible e infrarrojo cercano (NIR) para detectar plantas de azafrán (Crocus sativus L.) infestadas por ácaros 
mediante el procesamiento de índices espectrales para clasificar plantas sanas y enfermas. Esto permite identificar los 
puntos de concentración de los ácaros del bulbo y estimar el porcentaje de infestación en el campo.

Área de estudio: Provincia de Jorasán-Razaví, Torbat-Heydarieh, Irán.
Materiales y métodos: Cinco campos fueron seleccionados al azar, y se tomaron sus imágenes en rojo-verde-azul 

(RGB), como una imagen espectral visible típica, e imágenes en infrarrojo cercano (NIR) en dos años consecutivos. Se 
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extrajeron y analizaron siete índices de vegetación espectrales para las imágenes NIR, que incluyeron NIR-band, red-
band, normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI), 
difference Red-NIR ratio (DRN) and infrared percentage vegetation index (IPVI); y doce índices para las imágenes 
visibles RGB, que incluyeron red-band, green-band, blue-band, visible-band difference vegetation index (VDVI), visible 
atmospheric resistant index (VARI), triangular greenness index (TGI), normalized difference greenness index (NDGI), 
normalized green blue difference index (NGBDI), modified green red vegetation index (MGRVI), red green blue vege-
tation index (RGBVI), vegetative index (VEG) and excess of green index (EXG). Para detectar las plantas afectadas, se 
utilizaron dos clasificadores de Máquinas de Soporte Vectorial (SVM) con núcleos de Función de Base Radial (RBF) de 
forma separada para las imágenes NIR y RGB.

Resultados principales: La precisión promedio de los modelos clasificadores SVM se estimó en un 82.3% para las 
imágenes NIR y un 91.4% para las imágenes visibles durante la fase de prueba. Además, la precisión de los modelos 
desarrollados al ser evaluados en campo con respecto al método de matriz de confusión fue del 75.6% y 80.3% para los 
modelos de clasificación de imágenes NIR y RGB, respectivamente.

Aspectos destacados de la investigación: Las imágenes RGB lograron distinguir plantas infestadas con mejor precisión. 
El procesamiento de imágenes aéreas de drones de bajo peso podría acelerar la inspección de grandes campos de azafrán.

Palabras clave: Imágenes aéreas; Clasificación; Procesamiento de imágenes; Crocus sativus; Máquina de soporte 
vectorial.
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Introduction
Saffron, Crocus sativus L., a valuable member of the 

Liliaceae family, possesses one of the most expensive 
stigmas in the world, prized for its industrial and medicinal 
applications (Caiola & Canini, 2010; Golmohammadi, 
2014). This perennial herb, typically reaching 10-30 cm 
in height, features a hard, round corm covered in thin, 
brown scales. It produces 5-11 leaves, often emerging 
simultaneously or shortly after flowering (Cardone et al., 
2020). The dried red stigma of saffron is the coveted final 
product. It occupies a prominent position in the agricultural 
economies of Iran, Spain, Greece, Afghanistan, and certain 
Middle Eastern countries(Mzabri et al., 2019). Given the 
widespread use of saffron, enhancing its production, yield, 
and quality is a critical objective (Kafi et al., 2006).

One significant challenge hindering saffron’s quantitative 
and qualitative yield is the damage inflicted by pests and 
diseases. Saffron virus diseases, saffron corm rot, saffron 
dry rot (Burkholderia gladioli), and the saffron bulb mite 
(Rhizoglyphus robini) are among the primary biotic factors 
affecting stigma quality (Zakiaghl et al., 2021). The saffron 
bulb mite poses a particular threat to saffron corms (Kafi 
et al., 2006). This pest inflicts both direct and indirect 
damage. Directly, it tears into the corm’s healthy tissue 
with its claws and feeds on its contents. Indirectly, it creates 

entry points for parasitic and saprophytic fungi, leading 
to rotting, blackening, and ultimately, the destruction of 
infected tissue (Rahimi et al., 2018).

Identifying saffron pathogens involves various laboratory 
and field methods (Kafi et al., 2006; Zakiaghl et al., 2021). 
The saffron bulb mite often infests corms from the wounds 
and sometimes from healthy parts, and as it feeds and 
tunnels inside the corms, it begins to multiply and form 
cavities in the corms (Tavakkoli-Korghond & Sahebzadeh, 
2022). Infested plants exhibit thinner, shorter leaves that 
fall prematurely. A common symptom of both mite and 
fungal damage is reduced photosynthesis (Genc et al., 
2008) and discolored leaves, often turning light green or 
yellow. While these leaf changes are not noticeable, they 
may not be readily distinguishable to the human eye, 
making it difficult to identify infested plants from healthy 
ones. Traditional detection of mite damage in saffron bulbs 
requires farmers to inspect fields and physically remove 
bulbs from the soil. Aerial imaging offers a potential 
solution to expedite and enhance the accuracy of this 
process.

Early detection of infested plants is problematic, as 
visual symptoms often remain imperceptible until the 
infestation has spread significantly, resulting in substantial 
plant damage. Prompt recognition of mite infestation is 
crucial due to the disease’s rapid propagation (Rahimi et 
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al., 2018). Identifying areas affected by fungi resulting 
from saffron mite infestation can facilitate the strategic 
application of chemical control. This targeted approach, 
focusing solely on infested regions, minimizes pesticide 
or fungicide consumption compared to treating the entire 
field. Precision farming technologies offer a promising 
solution by enabling early detection of pests and diseases, 
leading to targeted variable-rate spraying (Zakiaghl et al., 
2021; Baradaran Motie et al., 2023).

Various studies have explored the use of image 
processing techniques to identify plant infestation by pests 
or diseases using hyperspectral, multispectral, Red-Green-
Blue (RGB) cameras, with demonstrated effectiveness 

(Abdulridha et al., 2020; Li et al., 2021). Research has 
established a significant difference in spectral absorbance 
between healthy and infested plants within the 750-900 
nm spectral range (Basati et al., 2018). Image capture 
can be performed from ground-based systems or aerial 
platforms. Subsequently, these images are processed 
using computer software employing machine learning 
and other techniques (Li et al., 2021). Ground imagery 
offers greater precision due to the controllability of factors 
affecting image quality (e.g., light, reflection). While aerial 
imaging is influenced by certain uncontrolled factors, it is 
favored by researchers owing to its rapid acquisition speed 
and ability to monitor extensive areas (Sankaran et al., 

Table 1. Some applications of image processing for the detection of plant diseases.
Target 
plant

Application spectral 
range 
(nm)

Wavelength/ 
index 

selection 
method [1]

Indices 
used [2]

Accuracy 
(%)

Method of 
modelling [3]

Source

Rice Detection of brown 
spots on leaves

350-2400 DA NDVI, 
SAVI, green 

NDVI

86 MLR (Yang et al., 
2007)

Sugar beet Diagnosis of some 
diseases in sugar 

beet leaves

400-1050 DT NDVI, 
SI, SIPI, 

PSSRa, ARI, 
REP, mCAI

65-90 SVM (Rumpf et al., 
2010)

Cotton Feasibility of 
disease diagnosis

RGB GA Basic RGB 
and YCbCr 

channels

90.5 SVM (Gulhane & 
Gurjar, 2011)

Whiteflies Detection of pests 
in the greenhouse 

based on leaf 
symptoms

RGB Shape and 
colour 

properties

Basic RGB 
channels

90 SVM (Rupesh & 
Mundada, 

2013)

Wheat Determining 
damage levels 

in wheat kernels 
caused by Sunn 

pest

950-1650 N/A Full 
spectrum

88.2 PLS-DA (Armstrong et 
al., 2019)

Squash Detecting powdery 
mildew disease 
in squash using 
hyperspectral 

imaging

388-1012 Based on Vis NDVI, 
greenNDVI, 
mCAI, ARI, 

SIPI, PRI

89 RBF-ANN (Abdulridha et 
al., 2020)

Tomato Tomato disease 
detection from 
leaves image

RGB C-GAN C-GAN 
layers

97 DenseNet121 (Abbas et al., 
2021)

Potato Early detection of 
Alternaria solani 

in potatoes

350-2500 N/A Full 
spectrum

75 PLS-DA (Abdelghafour 
et al., 2023)

[1] DA: stepwise Discriminant Analysis. DT: Decision Tree. GA: genetic algorithm. C-GAN: Conditional Generative Adversarial Network. 
N/A: Not Available.[2] NDVI: Normalized diffrence vegetation index. SAVI: Soil Adjusted Vegetation Index. SI: Simple Ratio (R800/R650). 
SIPI: Structure Insensitive Vegetation Index. PSSRa: Pigments Specific Simple Ratio. ARI: Anthocyanin Reflectance Index. REP: Red Edge 
Position. mCAI: modified chlorophyll absorption integral. RGB: red, green, blue bands. VI: vegetation index. [3] MLR: Multiple Linear 
Regression. SVM: Support Vector Machine. PLS-DA: Partial Least Squares Discriminant Analysis. RBF: Radial Basis Function. ANN: 
Artificial neural network.
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2015). In many cases, results derived from aerial image 
processing are comparable in accuracy to those obtained 
from ground-based methods. Xiang & Tian (2011) reported 
a mere 1.5% difference between results obtained from 
drone-mounted multispectral cameras and ground-based 
surveys in evaluating herbicide application performance. 
While factors such as global positioning system (GPS) 
coordinate accuracy (Gomez et al., 2008), the number of 
ground control points, flight altitude, image resolution, and 
pixel spatial resolution influence the precision of aerial 
survey results, the choice of appropriate analysis software, 
including classification systems, artificial neural networks, 
and machine learning algorithms, can significantly impact 
accuracy. Abuleil et al. (2015), found that the k-nearest 
neighbors (kNN) algorithm outperformed artificial neural 
networks (ANN) and support vector machine (SVM) in 
detecting red clover (Trifolium pratense) ground cover 
using RGB images captured by unmanned aerial vehicles 
(UAV), achieving a 91% accuracy rate.

By extracting and processing spectral bands and 
calculating various indices such as the normalized 
difference vegetation index (NDVI), ratio vegetation index 
(RVI), and leaf area index (LAI), variations in plant health 
status within fields or gardens can be determined (Table 
1). However, the optimal indicators may vary depending 
on the specific disease or pest. Examples include the 
correlation between grapevine leaf streak disease (GLSD) 
and the NDVI index in vineyards (di Gennaro et al., 
2016) and the relationship between plant vegetation 
and the LAI (Ballesteros et al., 2014). To achieve the 
highest accuracy, simultaneous analysis of multiple plant 
indices is often necessary (Zarco-Tejada et al., 2013). For 
instance, Elarab et al. (2015) proposed the combined use of 
indices incorporating RGB, Near-Infrared (NIR), NDVI, 
LAI, green model, and thermal imaging data to assess 
chlorophyll levels in plants (Oat plant case study).

Despite extensive research on the application of 
multispectral imaging in detecting numerous plant 
diseases, literature on its use in identifying saffron bulb 
infection using machine learning techniques remains 
limited. Therefore, the primary objective of this study 
was to investigate the feasibility of employing spectral 
features from visible and near-infrared drone images 
to differentiate infested saffron plants from healthy 

ones using support vector machine (SVM) models. The 
SVM models, a powerful pattern recognition method 
for binary classification, has demonstrated its efficacy in 
various research contexts (Baradaran Motie et al., 2023). 
Additional objectives of this study included: i) Analyzing 
and comparing various vegetation indices. ii) Identifying 
the most effective indices for distinguishing infested plants. 
iii) Developing a MATLAB code for image analysis based 
on these indices to delineate contaminated areas in large 
fields and calculate the extent of infestation.

Material and methods
Experimental fields and plants

Field investigations were conducted during the 
phenological vegetation phase of saffron, spanning February 
to April, across five saffron fields in Torbat-Heydarieh 
(Khorasan-Razavi Province, northeast of Iran), situated at 
an average altitude of 1450 meters above sea level (Table 
2). These fields employed furrow irrigation. The primary 
objective was to identify saffron plants damaged by mites. 
Prior to the investigation, manual inspections confirmed 
the presence of mite pests in the examined fields during the 
previous growing season. 

Imaging devices - The cameras

This research employed a variety of imaging techniques. 
Initially, hyperspectral images of saffron leaves in both 
healthy and damaged states were captured within a 
laboratory setting. A desktop HYSPIM alpha visible-
near infrared (Vis-NIR) hyperspectral camera (Hyspim, 
Sweden) was utilized for this purpose. Each pixel of the 
2D image contained spectral data within the wavelength 
range of 400-950 nm at a resolution of 2 nm. The camera 
was positioned in a controlled dark room, and illumination 
was provided by four full-spectrum 50W halogen lamps 
(Osram, Germany). Subsequently, on-site imaging was 
conducted during ground and aerial surveys. A Survey2 
NIR camera (MAPIR, USA), equipped with a Sony Exmor 
IMX206 16MP (Bayer RGB) sensor and an FOV of 82° 

Table 2. Saffron fields selected for mite infestation monitoring and aerial imaging.
Site code Field age[1]

(year)
Soil type Coordinates of the 

field centre
A1 3 Loam N 59°20’55.0”E”4.0’35º18
A2 2 Loam N 59°20’48.0”E”11.0’35º °18
A3 4 Sandy loam N 59°20’40.0”E”60.0’ 35°17
A4 4 Loam N 59°19’30.0”E”14.0’ 35°19
A5 4 Loam N 59°22’44.0”E”13.0’ 35°18

[1] Number of years after bulb cultivation.
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23mm f/2.8, was used to capture images in 850 nm (NIR) 
and 660 nm (visible region) bands. A Canon Powershot 
RGB camera, featuring a 1/2.55” CMOS sensor with 12MP 
effective pixels and a field of view (FOV) of 94° and f/2.2, 
was also employed.

A Phantom 3 SE (DJI, China) drone was utilized for 
aerial imaging. This drone is equipped with a 4K camera 
capable of recording video at 30 frames per second, a 
1/2.3-inch CMOS sensor with 12 million effective pixels, 
a maximum flight time of 25 minutes, and a maximum 
transmission range of 5 kilometers. Its specially designed 
lens with an FOV of 94° is well-suited for aerial imaging. 
The NIR camera was subsequently mounted on a drone for 
aerial imaging.

Image acquisition and processing 

To assess the feasibility of using spectral data to 
differentiate between healthy and infested saffron plants and 
to select the most appropriate spectral bands, twenty plants 
were sampled from each field. These plants were divided 
into two groups: healthy and infested. Hyperspectral 
imaging was conducted within the 400-900 nm spectral 
range. To identify the optimal bands for classification 
and validate camera performance, spectral signatures of 
healthy and infested saffron leaves were compared.

The field survey phase comprised two stages. During 
the first year, ground surveys were conducted to identify 
and harvest mite-infested saffron plants. Corms were 
separated from the surrounding soil and analyzed. Infested 
areas were marked with GPS coordinates for subsequent 
study of the infestation’s effects on plants in the second 
year. Plants were divided into two groups: healthy and 
infected. Images were captured under consistent lighting 
conditions in both visible light and NIR spectra. Generally, 
the NIR images were preferred over RGB images due to 
their greater sensitivity to plant photosynthetic properties 
(Aslahishahri, et al., 2021). Image quality and resolution 
were evaluated at three flight altitudes: 5, 10, and 15m. 
Given the requirement for high-resolution images, a flight 
altitude of five meters was selected.

In the second stage, infested plants were labeled, 
and aerial images were acquired at the study site at a 
5-meter altitude with 12-megapixel resolution. Images 
were captured using both RGB and NIR cameras in two 
consecutive years, March 2021 and 2022. At a height of 5 
m, 12-megapixel images covered an approximate area of 
7.7 × 6 m, resulting in a spatial resolution of 593 pixels/
m² (6 pixels/cm).

The first-stage images of saffron plants (Figure 1) and 
the aerial images (Figure 2) were captured on sunny days 
between 10 a.m. and 12 p.m. During the first stage, 20 
images were acquired, while the second stage involved 
capturing 20 aerial images from each of the five fields in 
both RGB and NIR bands. A total of 100 images (from the 
first stage) were used to train the classification algorithm. 
To create datasets of healthy and infested plants, plants 
were removed from the soil, and damage was confirmed. 

The first-stage images were employed to process and 
train the machine learning classification model, while the 
second set was used to evaluate the model’s performance. 
Raw images underwent color analysis (extraction of color 
channels, histogram stretching, edge detection) before 
being processed. Image processing comprised four steps: 
pre-processing, segmentation, determination of vegetation 
indices, and image classification.

Figure 1. The images show mite-damaged saffron plants adjacent to 
healthy ones. Left: RGB image. Right: NIR (850 nm) image. This is 
an illustration of the first stage images from which the leaf reflection 
indices were extracted.

Figure 2. Second stage aerial image of field code A3 which infested 
by mite. Left: RGB image. Right: NIR image.

Software

Image processing was conducted using MATLAB 
software (version 2017). Two distinct codes were 
developed, one for analyzing RGB images and the other 
for NIR images. These codes followed a similar procedure, 
each consisting of five components:

1. Image acquisition.
2. Background removal and creation of a mask for leaves 

or utilization of a predefined mask.
3. Creation of a data matrix for all bands and calculation 

of vegetation indices.
4. Development of a dataset containing indices from 

both healthy and infested plants.
5. Creation and training of the SVM model.
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Table 3. The examined indices in order to find the distinction between healthy and infested saffron plants.
Index group Index(1) Calculation  method Reference

NIR images

RED Reflectance in the red band (Xue & Su, 2017)

NIR Reflectance in the near-infrared band (Mohamed et al., 
2018)

NDVI (Carreño-Conde et 
al., 2021)

RVI (Xue & Su, 2017)

DVI (Xue & Su, 2017)

DRN (Silleos et al., 2006)

IPVI (Crippen, 1990)

RGB images

The reflectance of 
primary bands

RED, GREEN, BLUE (Abuleil et al., 2015)

VDVI (Xue & Su, 2017)

VARI (Weiss et al., 1997)

TGI (Weiss et al., 1997)

NDGI (Xue & Su, 2017)

NGBDI (Xue & Su, 2017)

MGRVI (Bendig et al., 2015)

RGBVI (Bendig et al., 2015)

VEG (Hague et al., 2006)

EXG (Woebbecke et al., 
1995)

[1] Red: red band. NIR: near infrared band. NDVI: normalized diffrence vegetation index. RVI: ratio vegetation index. DVI: difference 
vegetation index. DRN: difference red-nir ratio. IPVI: infrared percentage vegetation index. VDVI: visible-band difference vegetation 
index. VARI: visible atmospheric resistant index. TGI: triangular greenness index. NDGI: normalized difference greenness index. NGBDI: 
normalized green blue difference index. MGRVI: modified green red vegetation index. RGBVI: red green blue vegetation index. VEG: 
vegetative index. EXG: excess of green index.
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segmentation during the classification process, some indices 
were selected based on the available spectra extracted from 
the cameras (red, green, blue and 850nm NIR) according to 
the literature (Table 3). Since the infested and healthy plants 
were identical, the shape-based indices were discarded 
and the classification process was performed based on the 
spectral colour-based indices. As shown in Table 3, seven 
indices, including the Red, NIR, NDVI, RVI, difference 
vegetation index (DVI), difference red-nir ratio (DRN), 
and infrared percentage vegetation index (IPVI) were used 
to classify the infrared images. Besides, the reflectance 
in the main spectra of red, blue, green, and visible-band 
difference vegetation index (VDVI), visible atmospheric 
resistant index (VARI), triangular greenness index (TGI), 
normalized difference greenness index (NDGI), normalized 
green blue difference index (NGBDI), modified green red 
vegetation index (MGRVI), red green blue vegetation index 
(RGBVI), vegetative index (VEG), and excess of green 
index (EXG) were used to classify the RGB images.

Analysing and data modelling 

The SVM, a supervised learning algorithm based on 
statistical learning theory, was adopted to detect and 
classify the infested plants from the healthy ones (Vani et 
al., 2017). Assuming class separability based on spectral 

Prior to creating the dataset, NIR images required 
calibration, which was performed using “Mapir Camera 
Control” software (MAPIR, USA). The flowchart 
illustrating the dataset creation process is depicted in 
Figure 3. To separate infested and healthy saffron leaves, 
segmentation was performed on the images to create 
masks. This process was carried out individually for each 
image using MATLAB code or through manual cutting and 
separation of infested leaf sections. In some cases, where 
saffron plants exhibited minimal corm damage caused by 
mites, healthy and infested leaves were juxtaposed. For 
these instances, masking and separation were performed 
manually in Photoshop software, guided by information 
from field inspections and physically placed markers on 
the leaves.

Two datasets were generated for each image: the first 
containing a raw dataset of infested leaf pixels extracted 
from the main bands, and the second comprising a raw 
dataset of the main bands relating to healthy leaves. Both 
groups were utilized to calculate spectral indices (Table 3) 
for training the classifier.

Vegetation indices 

In order to identify the required indices for a sound 
description of the infested areas and to maximise 

Figure 3. Workflow diagram of making a classifier model to detect the infested saffron plants by mite.
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index differences, hyperplanes with minimal margins 
were developed to distinguish between the classes. A 
dataset comprising randomly selected pixels and their 
corresponding indices from the total NIR images dataset for 
each group was created. These datasets included vegetation 
indices of 4000 pixels associated with healthy plants and 
4000 pixels associated with infested ones. Ground survey 
data validated the accuracy of these groups. A similar 
procedure was followed for RGB images, resulting in two 
separate SVM structures: one for RGB images and one 
for NIR images. Eighty percent of the data was randomly 
selected for training, while the remaining 20% was used for 
validation (Baradaran Motie et al., 2021). The radial basis 
function (RBF) kernel was utilized in the SVM classifier. It 
is important to note that SVM models assign a class to each 
datum based on a decision-making function (Equation 1). 
Equation 2 presents the RBF kernel (Vani et al., 2017).

No significant differences were found between clusters 
in the composition, hygiene-sanitary parameters, and 
antioxidant capacity of the milk studied, as the animals 
in all farms were similarly managed based on the use 
of natural pastures. However, significant changes were 
observed in the milk composition by calendar month 
because of lactation effects and differences in feeding 
regimens. The percentage of lactose and the milk 
component yields (g d−1) patterns throughout the lactation 
months were similar, while the relationship between the fat 
and protein percentages was inverse to milk yield. During 
the end of summer and autumn months, the highest number 
of bacteria and somatic cells in the milk were observed, but 
the bacteriological count levels were below the legal limit 
set by EC regulations. The TAC was significantly higher 
in winter and spring milks than in the other milk samples.

The negative correlation between the antioxidant 
capacity and the somatic cells shows the important role 
of antioxidants in maintaining optimal udder health. One 
of the compounds involved in this antioxidant mechanism 
could be vitamin A due to the positive correlation between 
the antioxidant capacity and retinol determined in a 
previous study.

Finally, the information generated in this and previous 
studies on the quality of goat milk from the autochthonous 
Payoya breed will contribute to establishing the records 
of the traceability system to guarantee that the animal 
products obtained are of the native breed. All of this will 
help the consumer to easily identify these products and 
increase their demand, which will result in the conservation 
and promotion of the genetic heritage of these breeds and 
the foods derived from them.

(1)

(2)

In these equations, α is a constant coefficient, y is the 
group vector (labels), Si is the support vector, Z is the input 
vector, K (Z, Si) is the kernel of the SVM model, D(Z) is 
the decision function and σ is the variance.

To identify infested saffron plants, the generated 
SVM-based codes first processed the images, calculated 
vegetation indices, and applied the classification model. 
Furthermore, these developed SVM classifiers enabled the 
calculation of infestation proportions and the identification 
of corresponding areas within the field.

Software

To validate the SVM classifier models, two new datasets 
were created using images (NIR and RGB) from different 
fields acquired during the second year of imaging and not 
utilized in model development. These datasets comprised 
30 aerial images, three RGB and three NIR, representing 
six images from each field.

The confusion matrix method was employed to evaluate 
classifier performance. To address the class imbalance 
resulting from a higher prevalence of healthy plants, an 
under-sampling technique was implemented. This involved 

Table 4. Average, standard deviation, and t-test results for the image-based indices of healthy and infested saffron leaves 
for near-infrared images.

Index[1]
Healthy plant Infested plant t-test for equality of 

means p-valueAverage SD[2] Average SD
Red 131.6 31.5 153.1 20.0 0.000
NIR 236.6 21.1 221.8 24.6 0.007

NDVI 0.266 0.089 0.215 0.037 0.000
RVI 0.587 0.106 0.646 0.052 0.000
DVI 90.062 18.02 83.71 14.751 0.000
DRN -0.755 0.430 -0.556 0.120 0.000
IPVI 0.633 0.045 0.608 0.045 0.006

[1] Red: red band. NIR: near infrared band. NDVI: normalized diffrence vegetation index. RVI: ratio vegetation index. DVI: difference 
vegetation index. DRN: difference red-nir ratio. IPVI: infrared percentage vegetation index. [2] Standard deviation.
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The F1 score ranges from zero to one, with higher values 
indicating better performance.

To develop a classification structure using SVM, 
model results were continually compared with actual 
data to optimize the model and minimize deviations from 
the original data. The SVM model aimed to reduce this 
deviation iteratively by identifying discrepancies from 
actual values and determining optimal hyperparameters for 
separating infested and healthy plants. Model optimization 
was conducted using the “fitsvm” function with 5-fold 
cross-validation. This process identified the optimal values 
for the hyperparameters gamma and C in the RBF kernel 
function, which correspond to the selection of values for 
box constraints and kernel scale. A larger C value results 
in a narrower boundary between the two datasets (infested 
and healthy groups). While higher classification quality 
can be achieved with larger C values, it increases the risk of 
misclassification during the testing phase due to potential 
errors in classifying borderline data.

The kernel scale parameter, inversely related to gamma, 
indicates the influence of each observation on the model’s 

randomly sampling from the healthy class to maintain 
approximately equal class sizes. The developed model 
classified the images, generating a binary matrix indicating 
the positions of infected pixels. This matrix was termed 
“Model Prediction”. Subsequently, a second matrix, referred 
to as “Actual,” was manually created based on field survey 
data, containing the positions of pixels corresponding to 
infected plants at the same imaging points. By comparing 
the Actual and Model Prediction matrices, classification 
accuracy parameters were calculated. These parameters 
included ‘true positive’ (TP), ‘true negative’ (TN), ‘false 
positive’ (FP), and ‘false negative’ (FN), as presented in 
Table 6. Based on these data, classification quality criteria 
were calculated.

Classifier algorithm accuracy is represented as the ratio 
of correctly classified pixels to the total number of pixels. 
This is also known as Sensitivity (SNS) or True Positive 
Rate (TPR). The F1 score, or F Measure, reflects the balance 
between precision and TPR. In classification models, the 
ideal scenario is when both FP and FN approach zero. 

Table 5. Average, standard deviation, and t-test results for the image-based indices of healthy and infested saffron leaves 
for RGB images.

Feature[1] Healthy plant Infested plant t-test for equality of 
means p-valueAverage SD[2] Average SD

Red 117.7 45.2 147.3 38.2 0.000
Green 129.2 42.7 158.2 42.8 0.003
Blue 89.3 41.4 128.8 55.3 0.000

VDVI 0.134 0.105 0.079 0.067 0.000
VARI 0.089 0.111 0.064 0.091 0.048
TGI 28.77 12.52 22.16 15.80 0.067

NDGI 0.062 0.088 0.034 0.056 0.064
NGBDI 0.221 0.151 0.142 0.159 0.004
MGRVI 0.119 0.150 0.067 0.110 0.057
RGBVI -0.360 0.092 -0.409 0.080 0.000

VEG 1.281 0.325 1.164 0.193 0.070
EXG 51.27 24.54 40.25 28.05 0.081

[1] VDVI: visible-band difference vegetation index. VARI: visible atmospheric resistant index. TGI: triangular greenness index. NDGI: 
normalized difference greenness index. NGBDI: normalized green blue difference index. MGRVI: modified green red vegetation index. 
RGBVI: red green blue vegetation index. VEG: vegetative index. EXG: excess of green index. [2] Standard deviation.

Table 6. Calculated parameters of the confusion matrix for the detection of infested saffron plants in RGB and NIR 
images in validation phase. The numbers are in pixel unit. Positive (class 1): infested, Negative (class 0): healthy.

Imaging 
mode Total TP TN

FP
(Type I 
error)

FN
(Type II 
error)

Accuracy Sensitivity Specificity Precision F1

NIR 500 177 201 45 77 0.756 0.697 0.817 0.797 0.744
RGB 2004 773 837 165 229 0.803 0.771 0.835 0.824 0.797

NIR: Near infra red. RGB: red, green, blue. TP: True Positive, TN: True Negative, FP: False Positive, FN: False 
Negative, F1: The F1-score of a classifier.
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output during training. Smaller kernel scale values 
are preferable as they suggest greater model stability. 
Additionally, the receiver operating characteristic (ROC) 
curve was employed as another evaluation metric to assess 
model performance. The ROC curve represents the area 
under the curve (AUC), and a value close to 1 indicates 
superior model performance.

Results
Five fields were selected based on reported infestations 

of the saffron bulb mite. Mite damage leads to saffron corm 
rot, characterized by plant withering, leaf yellowing and 
wilting, and a tawny to black, decayed, and soft appearance 
of infested corms (Figure 1). Mite pest prevalence in these 
fields was substantial, with an average of three out of ten 
plants exhibiting bulb mite damage when removed from 
the soil. Damaged corms exhibited over 70% rot.

Figure 4 illustrates the average spectral reflectance of 
leaves from healthy and mite-infested saffron plants within 
the Vis-NIR spectrum. A clear distinction exists between 
the spectral reflectance of healthy and infected plant leaves 
in both the visible (600-650 nm) and near-infrared (800-
850 nm) spectra. Infected plants demonstrated higher 
reflectance in the visible region and lower reflectance in 
the NIR region, likely due to a decrease in chlorophyll 
content compared to healthy plants(Knipling, 1970). These 
results validate the wavelengths utilized by the cameras for 
identifying infested plants.

Vegetation indices

To initiate the analytical process, preliminary correlation 
coefficients between all indices (features) and descriptive 

Figure 5. Pearson correlation matrix between the indices for NIR images of healthy and mite infested saffron plants. The numbers within 
the boxes indicate the correlation coefficients (black: all data, blue: infested, and red: healthy) and the significance levels of difference (*** 
significant at 0.01 level) between groups of data. The lower side of the matrix presents the scatter plot of indices in pairs in two healthy and 
infested groups.

Figure 4. The spectral reflectance of healthy and mite infested saffron 
leaves recorded with the HYPSIM desktop hyperspectral camera. 
The black lines show the average reflectance at each wavelength and 
the shadows show the reflectance variations of the different samples 
at each wavelength.
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statistics were calculated. A dataset was prepared, 
encompassing images with selective masks for healthy and 
infested plants, including all five fields across two years 
of imaging. Table 4 presents the mean, standard deviation, 
and t-test results for the calculated indices (Table 3) of 
healthy and infested plants in NIR images. The results 
revealed that damaged plants exhibited higher average 
reflectance in the red band compared to healthy plants, 
while conversely, NIR band reflectance values were lower. 
The NDVI index, indicative of plant greenness, was on 
average 23.7% lower in damaged plants than in healthy 
plants (Devadas et al., 2009). Significant differences (p < 
0.01) were observed between the values of the two groups 
(healthy and infested) for all indices. However, the standard 
deviation analysis indicated a wide dispersion of data, 
resulting in overlapping values between the two groups, as 
visualized in Figure 5. This suggests that no single index 
could effectively differentiate between healthy and infested 
saffron plants.

Figure 5 summarizes the pearson correlation coefficient 
(PCC) between indices and presents scatter plots depicting 
index changes relative to each other within the two groups 
(healthy and infested). These plots revealed distinct 
trends between the indices of the two groups, particularly 
for NIR-NDVI, NIR-RVI, NIR-DVI, NIR-DRN, and 
NIR-IPVI, suggesting potential for differentiating and 
classifying the groups. To distinguish between healthy and 

infested saffron plants, identifying distinct trends in the 
cross-changes of indices between the two groups is crucial. 
For instance, the NIR-NDVI plot (Figure 5) demonstrates 
a lack of correlation between the NIR index and NDVI of 
the infested group (correlation coefficient -0.012), whereas 
a correlation coefficient of -0.66 is observed for the healthy 
group. This highlights the importance of including both 
indices in the classification model. Conversely, in the 
cross-correlation plot of certain indices, such as RVI-
NDVI, a high correlation coefficient between the values of 
the two groups (0.994 for healthy and 0.999 for infested) 
is evident. However, the pattern of change remains similar, 
with significant overlap between the data (scatter plot 
- Figure 5). Similar observations can be made for DRN-
NDVI, DRN-RVI, IPVI-RVI, IPVI-NDVI, and IPVI-DRN.

Likewise, for RGB images, the descriptive statistics as 
well as the results of the t-test for healthy and infested 
plants are presented in Table 5. It reveals that, while there 
was no statistically significant difference between the mean 
values of infested and healthy plants in MGRVI, EXG, and 
VEG indices, the mean value of EXG in healthy plants 
was approximately 25% higher than in infested plants. 
However, the standard deviation indicates some overlap 
between the two groups, suggesting that this index may 
not be sufficient for individual group differentiation.

 The PCC matrix and the scatter plot of the features 
which selected in the feature selection process relative 

Figure 6. Pearson correlation matrix between the input variables for RGB images of healthy and mite infested saffron plants. The numbers 
within the boxes indicate the correlation coefficients (black: all data, blue: infested, and red: healthy) and significance levels (*** significant 
at 0.01 level) between the independent variables. The lower side of the matrix presents the scatter plot of features in pairs in two healthy and 
infested groups.
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to healthy and infested groups are presented in Figure 6. 
The feature selection process identified Red, Green, Blue, 
VDVI, VARI, NGBDI, MGRVI, and RGVBI as essential 
features for the classification model, a finding supported 
by t-test results (p < 0.01) (Table 5). The average values of 
the primary RGB bands ((red+green+blue)/3) were higher 
in infested plants compared to healthy plants, indicating a 
brighter color in infected leaves.

Evaluation and validation of the SVM models

The training and testing steps for evaluating the best 
objective function after 30 iterations of NIR images 
revealed optimal C (Box-Constraint) and kernel scale 
values of 386.4 and 34.41, respectively. The model’s 
accuracy in the testing phase reached 82.3%. Similarly, 
the SVM classifier with the radial basis function was used 
to classify RGB images. The training and testing steps for 
evaluating the best objective function identified optimal 
C (Box-Constraint) and kernel scale values of 205.6 and 
74.23, respectively. The resulting classifier model achieved 
a testing stage accuracy of 91.4%.

The performance of the classifier models is presented in 
two confusion matrices, with their parameters summarized 
in Table 6 for both RGB and NIR models. The confusion 
matrices shown in Figures 7 and 8 demonstrate that over 
75.6% and 80.3% of the data were correctly categorized 
for NIR and RGB images, respectively.

The RGB-SVM model exhibited a marginally higher 
AUC compared to the NIR-SVM model, as evidenced 
by the ROC curves (Figure 9). Therefore, based on the 
obtained results and the ease of using an RGB camera, the 
RGB-SVM detection system is recommended.

The developed SVM models could discriminate mite 
infested plants with an acceptable level of performance 
and accuracy. Low FN (false negative) values (Table 6) 

Figure 7. Confusion matrix for classifying infested saffron plants 
by mites in NIR images. Overall 75.6% of the data has been well 
categorized.

Figure 8. Confusion matrix for classifying infested saffron plants 
by mites in RGB images. Overall 80.3% of the data has been well 
categorized.

Figure 9. ROC curve and AUC of the SVM classifier models for detection of mite infested saffron plants. Left: RGB images classifier, Right: 
NIR images classifier.
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suggest that there is little chance of missing the infested 
plants. However, the results for FP (false positive) show 
that, because of the small variation in their spectral 
reflectance, healthy plants could be identified as infested 
ones. Additionally, the F1 and sensitivity values are close 
to 0.7, indicating that the SVM classifier is performing 
as expected. To sum up the findings, the analysis shows 
that the classification model generates results that are both 
highly accurate and broadly applicable. The MATLAB 
code, running on a Core i7 CPU with 4 gigabytes of RAM, 
processed each aerial image in less than 15 seconds.

Discussion
This study investigated the feasibility of distinguishing 

mite-infested saffron plants from healthy plants using 
aerial imaging, image processing, and machine learning 
techniques. Five saffron fields were imaged in two 
consecutive years during the vegetative stage (when plants 
have leaves) in both RGB and near-infrared bands. After 
processing, the images were classified using the SVM 
classifier models and the efficiency of the models were 
verified.

The analysis of the Red band reflectance (660 nm 
wavelength) showed that the reflectance of the infested 
plant’s leaves was significantly higher than those of the 
healthy ones. This was due to some colour changes on the 
leaf tips, indicating the effects of fungal damage (caused 
by mites) on the plant, leading to weakness and reduced 
chlorophyll-a, which absorbs red band. The average of NIR 
(850 nm) values of the damaged plants were significantly 
lower than those of the healthy plants (the diagonal 
diagrams of Figure 5). These results are consistent with 
those reported by Genc et al. (2008) and di Gennaro et 
al. (2016). The NDVI index, widely used in vegetation 
monitoring (Weiss et al., 1997), demonstrated higher values 
in healthy plants due to their significantly higher near-
infrared reflectance compared to infested plants (Govaerts 
& Verhulst, 2010). The average of NDVI values of the 
damaged plants (0.215) were significantly lower than those 
of the healthy plants (0.266). The mean of the RVI index of 
damaged plants was higher than those of the healthy ones, 
as they had a considerably higher reflectance in the RED 
band and lower reflectance in the NIR band, raising the 
RVI index. However, healthy plants had higher DVI values 
than unhealthy plants because they absorb more significant 
amounts of Red band wavelength than infested plants, this 
is consistent with Silva et al. (2004) findings. Moreover, 
the mean value of the DRN index was much smaller in 
healthy plants than in infested plants. Therefore, this index 
was able to distinguish infested plants from healthy ones. 
The IPVI index displayed minimal variation between 
damaged and healthy plants across all studied fields.

Analysis of RGB image indices revealed that VDVI 
values in damaged plants varied within a narrow range. 
This variation can be attributed to mite and fungal damage, 
resulting in decreased photosynthetic activity. Higher 

VDVI values generally indicate healthier and denser 
vegetation (Du & Noguchi, 2017). However, in this 
study, the VARI index proved insufficient for individually 
distinguishing between damaged and healthy plants. No 
statistically significant difference was observed in the 
VARI mean value between the two groups. The TGI index 
values for infested plants were lower than those of healthy 
plants, as shown in Table 5 and Figure 6. A higher TGI 
value generally signifies a healthier plant with a higher 
chlorophyll-a content. While no statistically significant 
difference was found between the TGI values of healthy 
and infested plants, the NDGI index results align with 
those reported by Phadikar, et al., (2013), according to 
which the mean NDGI value for the healthy saffron plants 
was higher than that of the infested plants. The NGBDI 
describe the vegetation using reflectance in Green and 
Blue spectra (Du & Noguchi, 2017), higher value of the 
NGBDI suggests healthier status of the intended plants 
(Brenner et al., 2018). As found in this study, the average 
of the NGBDI for infested plants was significantly lower 
than that of the healthy plants.

This study demonstrated the capability of Vis-NIR 
aerial imaging to differentiate between similar infested 
and healthy saffron plants. The analysis of proposed 
indices for NIR and RGB images revealed a narrow 
boundary separating the characteristics of healthy and 
infested saffron plants, with a considerable portion of the 
two groups overlapping within this boundary (Figures 5 
and 6). To achieve acceptable discrimination accuracy, 
multiple spectral indices were simultaneously employed in 
the developed SVM models (Rumpf et al., 2010; Carreño-
Conde et al., 2021).

The average accuracy of the detection system was 91.4% 
and 82.3% respectively for using SVM models based on 
RGB images and NIR images. The results are in line with 
those reported for other plant disease detection models 
based on processing leaves symptoms. For example, 88.1% 
accuracy for powdery mildew detection in wheat plant 
(Hussein & Abbas, 2019), 92.6% for early blight detection 
on potato leaves (Abdu et al., 2020) and 95% accuracy for 
rice paddy disease detection (Chawal & Panday, 2019) 
using different types of SVM classifiers. This study focused 
on using aerial images captured by a drone, incorporating 
index selection for potential commercial in-line application, 
which may be more suitable for precision spraying than 
manual in-field classification. In scenarios requiring 
on-the-go image analysis, reducing the number of indices 
to three could potentially accelerate model processing 
time. The combination of aerial imaging, machine learning 
models, and SVM classifiers offers a practical solution for 
detecting infestations in saffron fields.

Conclusion
This study investigated the possibility of identifying 

infested saffron plants with their corms damaged by mites 
and fungi using RGB and NIR images. Mites infest saffron 
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corms, and the resulting damage often remains concealed 
underground. The effects of this damage become apparent in 
the outer plant parts at a later stage, making visual detection 
challenging, even for experts. The fungal infestation of 
saffron plants, often caused by mites, is a complex process. 
As a result, the ability to detect contamination in the field 
can still help saffron producers, even if not very accurately. 
Aerial imaging, with its acceptable performance, rapid 
surveying speed, and timely results, presents a viable 
solution. The SVM model, employing the RBF kernel, 
offers a robust method for distinguishing infested saffron 
plants from healthy ones.
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