
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
Available online at www.inia.es/sjar
http://dx.doi.org/10.5424/sjar/2012103-508-11

Spanish Journal of Agricultural Research 2012 10(3), 596-604
ISSN: 1695-971-X
eISSN: 2171-9292

Dynamic segmentation to estimate vine vigor from ground images
V. Sáiz-Rubio1 and F. Rovira-Más1, *

1 Departamento de Ingeniería Rural y Agroalimentaria. Universidad Politécnica de Valencia. 
Campus Camino de Vera s/n, 46022 Valencia, Spain

Abstract
The geographic information required to implement precision viticulture applications in real fields has led to the 

extensive use of remote sensing and airborne imagery. While advantageous because they cover large areas and provide 
diverse radiometric data, they are unreachable to most of medium-size Spanish growers who cannot afford such image 
sourcing. This research develops a new methodology to generate globally-referenced vigor maps in vineyards from 
ground images taken with a camera mounted on a conventional tractor. This monocular camera was able to sense in 
the visible, NIR, and UV spectra, selectively isolated with bandpass filters. The versatility of the system was further 
enhanced by implementing two sampling levels: intensive coverage of 1 m2 and super-intensive for 0.1 m2. The core 
of the procedure resides in the algorithm for automatically segmenting the filtered images in such a way that relative 
differences in canopy vigor were objectively quantified. The calculation of the dynamic threshold involved the math-
ematical concepts of gradient and curvature. Field results showed that relative differences in vine vigor can be de-
tected from NIR-filtered images and intensive sampling. Furthermore, individual images were successfully merged 
into a global vigor map that can be directly employed by end-users. Super-intensive sampling and UV perception were 
not appropriate for building vigor maps, but could be of interest for other agronomical purposes as the early detection 
of diseases. Field tests proved the feasibility of building global vigor maps from ground-based imagery, and showed 
the potential of this technique as a predictive instrument for modest-size producers. 

Additional key words: dynamic threshold; GPS; NIR; precision viticulture; UV; vigor map. 

Resumen
Segmentación automática de imágenes digitales para estimar el vigor en viñas 

La información requerida para implementar aplicaciones de viticultura de precisión en parcelas reales ha desembo-
cado en el uso extensivo de la teledetección y la detección aérea. Si bien estos métodos son ventajosos por cubrir 
vastas áreas y proveer diversa información radiométrica, suelen ser inalcanzables para el productor español medio 
debido a los gastos ocasionados. Esta investigación desarrolla una nueva metodología para generar mapas de vigor con 
referencias globales basados en imágenes digitales tomadas con una cámara montada sobre un tractor convencional y 
con capacidad para percibir en el espectro visible, infrarrojo cercano (NIR) y ultravioleta (UV). Para hacer el sistema 
más versátil se analizaron dos niveles de muestreo: intensivo (1 m2 de cobertura vegetal) y super-intensivo (0,1 m2 de 
cobertura). El núcleo de la metodología propuesta se basa en el algoritmo de segmentación de imágenes para cuanti-
ficar automáticamente diferencias en vigor vegetativo. El cálculo del umbral dinámico se fundamenta en los conceptos 
matemáticos de gradiente y curvatura. Los resultados obtenidos mostraron que es posible cuantificar diferencias en 
vigor vegetativo de viñas utilizando el rango espectral del NIR con un muestreo intensivo. El muestreo super-intensi-
vo y la banda espectral UV no resultaron adecuados para esta aplicación, aunque pueden aportar información clave en 
otras aplicaciones agronómicas. Las pruebas de campo demostraron la viabilidad de generar mapas georreferenciados 
de vigor desde vehículos convencionales, y mostraron el potencial de esta técnica como instrumento predictivo para 
explotaciones de tamaño medio. 

Palabras clave adicionales: GPS; mapas de vigor; NIR; umbralizado dinámico; UV; viticultura de precisión.
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practical for European vineyards. Illumination prob-
lems in outdoor environments have always been very 
difficult to handle and, despite passive sensors have 
been widely used over the years to measure light re-
flectance, active sensors seem to bring certain advan-
tages for field applications (Kim & Reid, 2007). Many 
times, the difficulties found in image segmentation 
come from unpredictable illumination changes in the 
field. Some authors have tried to solve this problem 
with texture analysis (Nuske et al., 2011) or through 
spatial filters (Ramalingam et al., 2003). There are 
some general purpose segmentation methods (Otsu, 
1979), but unfortunately they are not efficient when 
applied in open fields due to always varying lighting 
conditions. However, there exist commercial devices 
that have counterweighted these illumination chal-
lenges with active lighting as, for example, CropCir-
cleTM (Holland Scientific Inc., Lincoln, NE, USA) and 
GreenseekerTM (NTech Industries Inc., Ukiah, CA, 
USA). The latter, in particular, has been used in vine-
yard fields to sense canopy reflectance and calculate 
vegetation indices, which have been further related to 
canopy porosity (Tardáguila et al., 2008), leaf area 
index projected onto a vertical plane (VLAI) (Drissi et 
al., 2009), and pruning weight (Stamatiadis et al., 
2006). Mazzeto et al. (2009) corroborated the feasibil-
ity of calculating standard vegetation indices such as 
the NDVI with GreenseekerTM in vineyards; neverthe-
less, these commercial devices are not polyvalent and 
the information obtained from them has seldom taken 
part in decision making algorithms of PA applications. 
Some of them can only be used in bulk crops or do not 
incorporate GPS receivers, which complicates the shar-
ing of data coming from other sensors with the final 
goal of explaining variability and casting predictions. 

The ultraviolet (UV) band has not been as profuse-
ly studied as the infrared band due to the high reflect-
ance of vegetation in the infrared. In addition, the at-
mospheric dispersion has a strong attenuation effect in 
the ultraviolet band, which limits this spectral band for 
sensing vegetation remotely (Noble & Crowe, 2005). 
Despite these drawbacks, there have been several stud-
ies focused on UV perception. Verhoeven & Schmitt 
(2010) recommend taking images in this band from a 
low altitude —under 300 m— to avoid the negative 
effect of dispersion. However, closeness to the vegeta-
tion must be balanced according to Hahn (2009), who 
remarks the importance of studying main crop param-
eters to a field level against an individual level, as it is 
known that canopy properties change if they are stud-

Introduction

The agricultural sector of industrialized countries 
is currently facing up a crisis that requires the urgent 
introduction of structural changes in crop production; 
the sort of changes that only technology is able to 
make. The set of new methodologies adopted by Pre-
cision Agriculture (PA) results in the practical applica-
tion of information technology (IT) to agricultural 
production. In line with this philosophy, this research 
proposes an algorithm for the automatic segmentation 
of images used in a ground-based and non-invasive 
system to generate globally-referenced vigor maps. 
The goal of these maps is tracking the relative varia-
tion of vegetation, with independence of external data 
sourcing coming from satellites or aerial vehicles, in 
order to estimate vine yield and wine quality before 
harvesting time.

Light reflectance from crops, canopy, and fruits, has 
been widely studied for several bands of the electro-
magnetic spectrum. Gausman (1977) found that the 
highest percentage reflected by vegetation is located in 
the infrared band, and Weekley (2007) also confirmed 
the existence of a specific range of that band where the 
percentage of reflectance grows dramatically, gener-
ally known as the ‘‘red edge’’ and located between 700 
nm and 800 nm. Traditionally, the predominant tech-
nique used to sense physiological properties of leaves 
and fruits has been spectrometry, a manual procedure 
capable of covering several bands of the spectrum 
(Tucker, 1979; Peñuelas et al., 1994). The —relative-
ly— new technique of remote sensing uses artificial 
satellites and airborne imagery for data acquisition, 
offering an attractive alternative to conventional meth-
ods, typically manual and very often invasive. Remote 
sensing applications for viticulture tend to search in 
the infrared band, either in the near infrared (NIR) or 
in the thermal infrared band of the spectrum (Best  
et al., 2011). Reflectance in the NIR has been applied 
to the early detection of stress in plants (Chaerle & Van 
Der Straeten, 2000), to monitor growth and health of 
vegetation (Weekley, 2007), to detect nitrogen defi-
ciency in crops (Noh et al., 2005), or to predict the 
content of sugar in fruits (Lu & Ariana, 2002). Praat  
et al. (2004) built a mechanical structure with a flat 
panel to capture the side view of vine canopies under 
a controlled background. They counted green vine 
pixels on the magenta background panel to estimate 
the biomass. The system withstood sunlight problems, 
but the bulkiness of the solution makes it highly un-
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ied to the individual level of a leaf or fruit. Canopies 
have the same characteristics of each leaf, but such 
properties change as the surface of leaves acts, many 
times, as a polarizing filter, reflecting light to different 
directions. Due to this fact, image properties very often 
depend on the position of the camera.

In wine vines, it is essential to detect the best time 
for harvesting. It is not rare that vines from the same 
field have to be harvested in different periods, as they 
typically do not mature at the same time. Differential 
harvesting is justified when producers are searching 
for a wine with very special characteristics (Best et al., 
2011). A practical way to carry out differential harvest-
ing can be by creating field maps that help to harvest 
the grapevines when their phenolic maturity is optimal 
(Lamb et al., 2004). According to Johnson et al. (2003) 
leaf area may be related to vegetation vigor, as well as 
to crop diseases and infestations, plant water stress, 
fruit characteristics, and wine quality. The most popu-
lar technologies for monitoring key parameters in ag-
ricultural and forestry production have used airborne 
techniques, which are not reachable for the majority of 
modest wine producers in Spain. More efficient alterna-
tives can be feasible as long as external data sources 
are replaced by user-operated data acquisition systems. 
In this regard, this article proposes a novel procedure 
to endow conventional vehicles with a mapping system 
based on the fusion of GPS positioning information 
with a vision-based perception system, with the final 
objective of tracking relative differences in vegetative 
vigor, quantitatively expressed as percentage of veg-
etation and counted by the algorithm as number of 
vegetation pixels per image. This system is meant to 
be used by smallholders, who represent an important 
percentage of producers in Spain.

Material and methods

The acquisition system for mapping vigor during the 
field tests was mounted on a conventional tractor (JD 
5820, Deere & Co., Moline, IL, USA). This vehicle is 
equipped with the StarFire iTC GPS receiver used in 
the JD GreenStar system, capable of delivering free 
signals SF1 with static accuracy of 75 cm and pass to 
pass accuracy of ± 33 cm, as well as licensed signals 
SF2 with static accuracy of 25 cm and pass to pass 
accuracy of ± 10 cm. Although the SF2 signal can be 
activated anytime by paying a subscription fee, the 
architecture proposed only took into account free sig-

nals in order to make the system affordable to a wider 
range of producers. The principal sensor for visual 
perception was a CCD camera (JAI, Copenhagen, Den-
mark). This camera is monocular, monochrome, sensi-
tive in the range UV – NIR, and has a pixel depth of  
8 bits per pixel. Image acquisition and storage was car-
ried out with a laptop computer (2.20 GHz and 1.5 GB 
of RAM, Fujitsu Siemens Computers, Tokyo, Japan) 
located inside the cabin and connected to the camera 
via Ethernet. In order to assure the continuous supply 
of electric power to the camera, computer, and GPS 
screen, the tractor featured a secondary battery of  
12 volts connected in parallel with the main engine 
battery. The selection of a particular field of view 
(FOV) and spectral band required the coupling of a lens 
of either 8 mm or 25 mm of focal length (Goyo Optical 
Inc., Saitama, Japan), in combination with an optical 
filter (Midwest Optical Systems Inc., Palatine, IL, 
USA). Two pass-band filters were employed over the 
experiments, one centered at 324 nm in the ultraviolet 
band (UV-A and UV-B, from 270 nm to 375 nm), and 
the other centered in the NIR at 880 nm, with an oper-
ating range between 840 nm and 1,100 nm. Inciden-
tally, the UV filter also included a narrow band of low 
transmission in the NIR from 690 nm to 750 nm.

Field tests were carried out in July and August, 2010, 
in the vineyards belonging to a winery located near 
Requena (Valencia, Spain). All the plants mapped with 
the tractor were 20-year-old Cabernet-Sauvignon vines, 
approximately oriented along the East-West direction. 
The field had an average elevation of 650 m above sea 
level. Inter-row lanes were 3 m wide and about 130 m 
long. Different camera positions were tried over the 
tests, but the best alternative turned out to be ahead the 
tractor front, just above the front ballast as shown in 
the schematic of Fig. 1. Table 1 lists the combination 
of lenses and filters implemented in the vehicle to per-
form the field tests. 

Figure 1. Front view (left) and top view (right) of the camera 
position respect to the vehicle and vine rows.

Camera

Ballast

GPS

90 cm
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Image analysis (I): Preliminary inspection  
of the raw images

The first step of the image analysis consisted of 
superposing all the histograms of the set of images 
belonging to each pass listed in Table 1. On the whole, 
nine passes were examined and the initial assessment, 
based on the morphology of the histograms overlaid 
for each pass, revealed a dominant accumulation of 
pixels for two distinct levels of gray when sensing in 
the NIR spectral band. This outcome was favored by 
limiting the light reflected from the scene —and cap-
tured by the sensor— to the NIR, which tends to stand 
out vegetation from the background of an image. The 
accumulated plot of the histograms demonstrated that 
most of the pixels usually concentrated around two 
definite centers of mass, but these centers varied de-
pending on the mean gray level of the images. Addi-
tionally, there were also local variations in the position 
of these centers among images coming from the same 
pass. Therefore, the differences among passes and 
among images of the same pass resulted in the need of 
a customized dynamic threshold for isolating vigorous 
leaves; that is, a different threshold for each image 
adapted to its particular characteristics. The application 
of a real-time dynamic threshold to each single image 
allowed the straightforward estimation of the percent-
age of vegetation for a given sampled area.

Image analysis (II): Dynamic segmentation 
for estimating plant vigor

The series of histograms justifies the benefit of a 
specific threshold per image if accurate vegetation 
percentages need to be estimated. However, finding 

each threshold directly from the histograms is not an 
easy task, and can be detrimental for real time imple-
mentations where image analysis cannot extend in 
excess. To overcome this time-consuming task, critical 
information can be managed more efficiently through 
the segmentation profile plot of Fig. 2b, where the 
abscissa axis represents the 8-bit grey level — or in-
tensity level — analyzed and the ordinate axis provides 
the percentage of pixels in the image whose intensity 
level is higher than that analyzed. Fig. 2a is a sample 
image of the NIR-filtered images used in this study. 
Note, for example, that for a grey level of 100, Fig 2b 
indicates that approximately 90% of the pixels in the 
image of Fig. 2a have an intensity value above 100. 
Logically, the plot states that 100% of the pixels have 
a gray level above 0, and similarly, 0% of the pixels 
have a grey level higher than 255. Obviously, this fact 
about the boundary values of segmentation profiles is 
common to all the images, but what results most inter-
esting for the efficient execution of the algorithm pro-
posed is the actual profile of the curve. Generally 
speaking, these curves will be S-shaped, being the 
particular form of the profile what holds the critical 
information for selecting the threshold. Given that the 
object of interest —vegetation of vines— has been 
enhanced with the NIR filter, a sharp drop for the seg-
mentation profile is expected in the vicinity of the 
optimal threshold. In practical terms, as soon as the 
checked gray level crosses the optimal threshold, a 
significant amount of pixels in the pattern plot change 
their condition from vegetation pixels to non-vegetation 
pixels. This steep change in the profile of Fig. 2b occurs 
around a threshold of 100.

The segmentation profile plot (Fig. 2b) provides the 
key information to find the best threshold; what remains 
is the search of the specific point of the profile after 

Table 1. Summary of field tests selected to map vine vigor

Pass Direction1 Lens (mm) Filter2 Speed  
(km h–1)

Exposition time 
(µs)

Images
(No.)

1 E-W  8 IR 2.5 Automatic 68
2 W-E  8 IR 2.5 15412 67
3 E-W  8 IR 6 Automatic 29
4 W-E  8 UV 2.5 Automatic 44
5 E-W  8 UV 6 Automatic 44
6 W-E 25 IR 2.5 2520 99
7 E-W 25 IR 6 2520 43
8 W-E 25 UV 2 1542 80
9 E-W 25 UV 2 10326 76

1 E: East; W: West. 2 IR: infrared; UV: ultraviolet.
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which the most drastic drop starts. This calculation must 
be fast, automatic, and as reliable as possible, given that 
correct thresholds will result in trustable vegetation 
percentages. With the purpose of finding the optimal 
threshold for each image, the mathematical concepts of 
gradient (first order variation) and curvature (second 
order variation) were applied to the contour given by 
segmentation profile plots. The underlying idea is the 
automatic detection of the largest change in ordinate for 
a constant change in abscissa (intensity value). A direct 
way to locate and quantize big sets of pixels changing 
their classification status when the applied threshold 
varies in the range [0, 255] is through the concept of 
gradient (i), whose mathematical expression for dis-
crete elements is given in Eq. [1], where the grey level 
considered is represented by i, the finite interval of grey 
levels —i.e. the resolution— is δ, and P(i) is the per-
centage of pixels whose grey level is above the thresh-
old i. 

 
∇ = = … >( )

( ) – ( – )
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i

δ
δ

δ δ 255 1
 

[1]

Apart from a significant drop in the profile of Fig. 2b, 
a change in the curvature of the plot is also noticeable 
in the neighborhood of the downwards fall; therefore, 
the calculation of the curvature for gray levels in the 
vicinity of the drop should lead to high values as well. 
As a matter of fact, field experience showed that the 
optimal gray levels were obtained by averaging the grey 
level of maximum gradient with that of maximum cur-
vature and then shifting the value back by δ pixels. 
Curvature is a second order calculation that indicates 
gradient variations for a discrete jump δ. The second 
derivative is usually taken as an approximation of the 

curvature, which can be applied to segmentation profile 
plots according to Eq. [2], where  (i) is the gradient for 
grey level i, δ is the interval of grey levels considered, 
and  2(i) is the curvature for intensity level i. 
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Once the highest values for the gradient and curva-
ture have been found and related to their corresponding 
gray levels imax∇ and i imax max∇ ∇2, the dynamic value of the 
imax∇ threshold μ can be estimated according to Eq. [3]. 
A grey level interval δ = 5 was chosen throughout the 
entire analysis of the images acquired in 2010. 
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The final operation for each individual image of the 
series consists of the estimation of the vegetation per-
centage, which is straightforward after the calculation 
of the most favorable threshold μ. Recall that every 
image generally resulted in a different μ, as shown in 
the plot of Fig. 3a. The move from the threshold plot 
(Fig. 3a) to the final vegetation percentage (Fig. 3b) 
for any series of images simply entails the segmentation 
of each image with its particular dynamic threshold μ, 
so that those pixels with a gray level superior to μ are 
classified as vegetation. The total number of pixels 
classified as vigorous vegetation divided by the resolu-
tion of the image analyzed gives the percentage of 
vegetation for that image. This is the parameter to be 
tracked and inserted in the vigor map.

All the operations applied to every image in order 
to estimate the final percentage of vegetation can be 

Behavior pattern

Pe
rc

en
ta

ge
 o

ve
r t

he
 th

re
sh

ol
d 

(%
)

Gray level (8 bits)
250200150500 100

100

90

80

70

60

50

40

30

20

10

0

Figure 2. Original image with 256 levels of gray (a), and its corresponding behavior pattern (b) showing its 
segmentation profile curve and optimal threshold value (vertical line).

(a) (b)



601Dynamic segmentation for vine vigor estimation

summarized in the schematic of Figure 4, which pro-
vides a block diagram of the algorithm with the se-
quence of steps that need to be taken from the initial 
acquisition of the image to the final construction of the 
vigor map. In addition to performing the calculations 
described above in Eqs. [1] to [3], the algorithm also 
stores the vital information necessary to compose the 
vigor map. In particular, a text file collects the dy-
namic thresholds and percentage of vegetation for each 
image processed. The combination of this perceptive 
information with the global position at which each 
image was taken is essential to assemble the vigor map. 
Further details on how vigor maps were represented 
with conventional software for the passes listed in 
Table 1 are included in the next section.

Results 

Before attempting to build vigor maps following the 
procedure outlined in Fig. 4, it is necessary to check the 
performance of the segmentation routine, as dynamic 
thresholding is the most delicate stage of the mapping 
algorithm. The text files output by the algorithm facili-
tated this validation because every image analyzed was 
always associated to an optimized dynamic threshold 
μ. Fig. 5 illustrates how the algorithm segmented NIR-
filtered images by separating vegetation from the back-
ground, typically represented by sky, trellis wires and 
posts, or vine trunks (stocks). The algorithm found cor-
rect thresholds in the majority (≈ 97%) of the NIR im-
ages, but encountered difficulties in the UV band, 
mainly caused by the confusing reflection of the sky. 

Several operations need to be successfully accom-
plished in order to obtain correct vegetation percent-
ages and, thus, useful vigor maps. First, an acceptable 
level of perception has to be assured, which implies 
selecting the most favorable spectral band and identify-

Figure 3. Optimal threshold µ plot (a) showing one threshold value per image, and percentage of 
vegetation coverage in each image (b) for a pass of 19 images.
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ing the searched features, vegetation vigor in this case. 
The proposed adaptive thresholding algorithm applied 
over NIR-filtered images was consistently able to es-
timate the percentage of vegetation in the images. 
Second, the geographic localization of every image in 
a global reference frame is essential to generate usable 
maps. Third, an aspect of great importance with regards 
to vigor maps is the sampling-capacity of each map, 
determined by the user when selecting the lenses of the 
camera. Fig. 6a,b represent a vigor map of the same 
row; however, the size of the area sampled is tenfold 
for the former. The area perceived by the 8 mm lens of 
the map drawn in Fig. 6a seems more informative than 
that obtained with the 25-mm lens of Fig. 6b. Although 
Fig. 6a takes more area than Fig. 6b, the latter has, in 
contrast, the added benefit of detecting details not avail-
able with larger images, such as fruit properties or 
infestations. 

Discussion

The spectral band that showed the best capacity to 
highlight the object of interest in this research (vegeta-
tion) was the near infrared. The configuration of the 
system proposed demonstrated the capability of gen-
erating vigor maps with NIR vision. Despite a few 
publications related to the detection of vegetation in 
the UV band (Hahn, 2009; Verhoeven & Schmitt, 
2010), its applicability for the objectives set and the 
nature of the environments tested did not meet the 
expected requirements. In particular, unhealthy vines 
affected by downey mildew (Plasmopara viticola) and 
stained on the leaves by oily spots were not detected 
by the UV-based vision system, leaving this research 
topic completely opened. 

The developed algorithm mapped the trajectory of the 
vehicle and acquired all the images with the computer 
onboard running a customized program. Although vigor 
maps were successfully generated, data synchronization 
was difficult at some points, and consequently, the tight 
integration of both algorithms —localization and percep-
tion— still remains to be done. According to the goals 
initially set for the creation and use of vigor maps, inten-
sive sampling turned out to be more appropriate than 
super-intensive sampling, as the field of view covered by 
the 8 mm lens provided the best window to estimate 
vegetation changes along the rows. Super-intensive sam-
pling (Fig. 6b), on the contrary, may be suitable for other 
purposes such as the early detection of vine diseases. 

The validation of the entire system requires a com-
parison between the information stored in the map and the 
actual assessment of the data in the field. This final step in 
the validation of the method will require data from sev-
eral seasons, and therefore was not possible for the time-
frame within which the experiments took place, although 

Figure 5. Resulting image of applying the dynamic thresholding 
algorithm to NIR-filtered images. Red color shows non-vegeta-
tion pixels.

Figure 6. Intensive-sampling (a) and super-intensive-sampling (b) vigor map. Intense red color shows tractor path when capturing 
images for pass 2 (a) and for pass 6 (b).
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is one of the necessary tasks for upgrading the system in 
the near future. Field data from several harvesting opera-
tions will be necessary to properly correlate prospective 
yield maps with reality and eventually make useful predic-
tions. The percentage of vegetation estimated in Figs. 6a 
and 6b give a sense of the vigor of the vines, but field 
validation has to establish the numerical equivalence to 
what Hall et al. (2002) denominate high vigor, a principal 
contributor of high yield, delay in the maturity of fruits, 
and a medium-low quality of the produced wines.

This research proposes a mapping system that ap-
proximates emerging technology to medium-small wine 
producers. The methodology developed combines global 
positioning information from a GPS receiver with NIR 
ground-based imaging to create vigor maps of vines. All 
the necessary equipment was implemented in a standard 
tractor, and the perceptive capacity of the system can eas-
ily be expanded by enlarging the sensitivity of the spectral 
band of the imaging sensor. Preliminary results showed 
the viability and potential of this ground-based system, 
which provides a new approach in processing the images 
and obtaining grapevine vigor maps. The ultraviolet reflect-
ance of vegetation was also explored as a potential indica-
tor for plant vigor, but the calculation of a dynamic thresh-
old becomes more complex. Nevertheless, UV may bring 
further information to detect other properties of the cano-
py, as may do other bands of the spectrum such as thermal 
infrared or thin slices in the visible. Finally, the same sys-
tem architecture can be applied to alternative perception 
sensors to systematically obtain comparable maps where, 
not only the type of radiation, but also the sample size 
would be adjusted by the growers to their specific needs.
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