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Abstract
The vegetation spectral indices have been widely used as estimators of the nutritional status of the crops. This 

study has evaluated if it is possible to improve the effectiveness of these indices to estimate the nitrogen concentra-
tion using dimension reduction techniques to process the spectral signatures. It has also demanded that the model is 
valid in a wide range of growing conditions and phenological stages, thus increasing the predictive power guarantee 
and reducing the implementation effort. This work has been done using an agronomic trial with dual-purpose triticale 
(X Triticosecale Wittmack) whose design included plots with different planting densities, number of grazing and 
fertilizer doses. The spectral signatures of the leaves were recorded with the ASD-FieldSpec3 spectroradiometer and 
the nitrogen concentrations were determined by Kjeldahl method. The factors with effect on nitrogen concentration 
were identified by the analysis of variance and pairwise comparisons and, then, the mean spectral signature was 
calculated for each of the groups formed. The dimensional reduction was performed with both PCA and ICA. The 
analysis of the relationships between components and nitrogen concentration showed that only the components ob-
tained with PCA generated a significant model (p = 0.00) with a R2 = 0.68. The best spectral vegetation index in this 
test, the reflectance in green, obtained a R2 = 0.31. Although further confirmation is needed, this study shows that the 
PCA may be a viable alternative to spectral vegetation indices.

Additional key words: cereals; dual purpose triticale; independent component analysis; leaf; precision agriculture; 
principal component analysis; radiometry.

Resumen
PCA versus ICA para la reducción de dimensiones de las firmas espectrales en la búsqueda de un índice para la 
concentración de nitrógeno en planta

Los índices espectrales de vegetación han sido ampliamente usados como estimadores del estado nutricional de los 
cultivos. En este estudio se ha evaluado si es posible mejorar la eficacia de esos índices para estimar la concentración de 
nitrógeno empleando técnicas de reducción de dimensiones para procesar las firmas espectrales. Además se ha exigido que 
el modelo sea válido en un amplio rango de condiciones de desarrollo y estados fenológicos, aumentando así las garantías 
de poder predictivo y reduciendo el esfuerzo de implementación. Se realizó un ensayo agronómico con triticale de doble 
aptitud (X Triticosecale Wittmack), en cuyo diseño se incluyeron parcelas con diferentes densidades de siembra, aprove-
chamientos y fertilización. La firma espectral de las hojas se registró con el espectrorradiómetro ASD-FieldSpec3 y la 
concentración de nitrógeno se determinó mediante el método Kjeldahl. Los factores con efecto en la concentración de ni-
trógeno fueron identificados mediante el análisis de la varianza y tests de comparación de medias; posteriormente se cal-
culó la firma espectral media para cada uno de los grupos. La reducción de dimensiones se realizó tanto con PCA como 
con ICA. El análisis de las relaciones entre componentes y concentración de nitrógeno mostró que sólo las componentes 
obtenidas con PCA generaron un modelo significativo (p = 0,00) con un R2 = 0,68. El mejor índice espectral de vegetación 
en esta prueba, la reflectancia en verde, obtuvo un R2 = 0,31. Aunque es necesaria una mayor confirmación, en este trabajo 
se muestra que el PCA puede ser una alternativa válida a los índices espectrales de vegetación.

Palabras claves adicionales: agricultura de precisión; análisis de componentes independientes; análisis de compo-
nentes principales; cereales; hoja; radiometría; triticale de doble aptitud.
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Abbreviations used: Adj R2 (adjusted correlation coefficient); ICA (independent component analysis); MSE (mean square error); 
NDVI (normalized difference vegetation index); PCA (principal component analysis); RMSE (square root of the mean square error); 
SNR (signal to noise ratio); SWIR (shortwave Infrared); VNIR (visible and near-infrared).

ture, this work is in that line. The purpose of this study 
is to present a methodology which improves, in easily 
reproducible conditions on farms, the effectiveness of 
the methodologies based on the classical vegetation 
spectral indices and also offers greater guarantees of 
space-time generalization.

With the dual-purpose triticale (X Triticosecale 
Wittmack), the crop used in this study, there is the pos-
sibility of letting livestock grazing on more than one 
occasion without ruining the final harvest. The plant 
after each grazing has to regenerate the above-ground 
part and with it the ability to synthesize chlorophyll, 
but the below-ground part is unaffected so that the 
plant’s nitrogen absorbing capacity remains intact. The 
result is an imbalance in the first weeks after each cut, 
which is manifested by a yellowing of the plant. This 
is not a symptom of nitrogen deficiency, since there has 
been neither a decrease in the concentration of this 
element nor an interruption in plant growth. 

The loss of greenness is not always related to a nu-
tritional deficiency, this peculiarity, entailed by the crop 
chosen for the study, requires that the radiometric model 
is based on spectral features different from those used 
in many of the vegetation spectral indices such as the 
index of the reflectance in green. These new spectral 
features have to be more closely related to the concen-
tration of nitrogen because they respond correctly under 
conditions in which the classical indices err.

There is no competition between old and new spec-
tral features, it is a necessity dictated by the crop, when 
developing models for other cereals without the dual-
purpose both features can be integrated and thus obtain 
better levels of effectiveness. 

One way to increase the guarantees of predictive 
power is limiting the number of models, only one 
model will be developed for the entire period during 
which it would be possible to correct the shortcoming 
nitrogen in the crop. The changes in the plant during 
its development (Marschner, 1995; Azcón-Bieto and 
Talón, 2003) complicate the development of generic 
models, but if that development is possible, then the 
model would provide greater guarantees, the Occam’s 
razor is applicable. In addition, a unique development 
would reduce the participation of specialists in the 
implementation, which would reduce costs and would 
facilitate transfer of technology.

Introduction

The demand of nitrogen by the crop throughout its 
development is well known (Alaru et al., 2004) and 
both the excessive and the deficit have a negative im-
pact on production, operating costs and environmental 
conservation.

The technology available today can get huge vol-
umes of information at a reasonable cost; the challenge 
is the correct interpretation of that information (Moran 
et al., 1997). Reflectance measurements can be used to 
obtain the values of the most widely used spectral in-
dices (Guyot et al., 1988; Yoder and Pettigrew-Crosby, 
1995; Gitelson and Merzlyak, 1996; Blackburn, 1998; 
Gitelson et al., 1999; Daughtry et al., 2000; Ustin 
et al., 2004) as indicators of chlorophyll concentration. 
The suitability of these indices to estimate the concen-
tration of nitrogen in plants is limited; Li et al. (2010) 
showed that the predictive power of these indices can 
reach a R2 = 0.5 for certain growth stages. Heege et al. 
(2008) reached higher values, but they linked the spec-
tral signature with a dose of fertilizer applied and not 
with the nutritional status of the plant.

The work of Li et al. (2010) revealed one of the 
challenges to overcome, the poor spatial and temporal 
generalization of the models developed. Another dif-
ficulty was evidenced in the work of Rodriguez-Moreno 
and Llera-Cid (2011), the tests are conducted under 
conditions difficult to reproduce in real farms. In a real 
farm, for example, there is not a panel of experts 
dedicated to calibrate the methodology, so the tasks of 
identifying acceptable cuts in the procedure and finding 
out the true effectiveness of the methodology are left 
to farmers.

In this context, only the large farms (large areas) can 
bet strong for these new technologies, because the small 
improvements per unit area represent a significant in-
crease in production and benefits, which compensate 
for the salary of specialist staff and equipment costs 
required for implementation. This is a sad reality as 
precision agriculture, besides trying to maximize prof-
its, also seeks sustainability and protecting the environ-
ment (Moran et al., 1997).

Studies, some of them six years old (Waheed et al., 
2006), have shown the high potential of radiometry and 
artificial intelligence in the field of precision agricul-
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The huge volume of data obtained in a hyperspectral 
sampling is very complex to analyze and its processing 
has a high computational cost. For contexts such as 
these were devised dimension reduction techniques, 
which filter the noise, identify redundancies and reveal 
the structure hidden. The most widely used dimen-
sional reduction techniques are principal component 
analysis (PCA) (Rao, 1964) and independent compo-
nent analysis (ICA) (Hyvärinen and Oja, 2000). This 
study will examine whether the components identified 
by these techniques contain the information necessary 
to estimate, by a linear regression model and under the 
conditions described above, the nitrogen concentration 
in the plants. 

The anticipated results would be evidences to sup-
port three hypotheses, the existence of features in the 
spectral signatures closely related to nitrogen concen-
tration, the ability to develop models valid for a wide 
phenological range and the appropriateness of the di-
mension reduction techniques to process of the spectral 
signatures preserving the information on the nutri-
tional status.

Material and methods

As part of a study at the “La Orden-Valdesequera” 
Research Centre (Badajoz, Spain) to determine the 
optimal combination of factors for the cultivation of 
the triticale, the reflectance of the leaves, at different 
stages of crop development, were measured.

The experimental design used was a split-split-plot 
with four replicates. The first factor was seeding density 
(400, 500 and 600 plants m–2), the second the number of 
times the crop was cut to simulate grazing (0, 1 and  
2 grazing), and the third the dose of nitrogenous ferti-
lizer (0, 75 and 125 kg ha–1). Each factor had three levels, 
so that there were 108 experimental plots in total, each 
of 30 m². The leaf reflectance measurements were made 
at 80, 117, 132, and 164 days after seeding. Together with 
these measurements, crop samples were taken, which 
were sent to the laboratory for the determination of the 
concentration of total nitrogen by the Kjeldahl method. 
The correspondence between the number of days after 
seeding and the crop’s phenological stage, along with its 
description, is presented in the Table 1. The growth 
stages were determined using the Zadoks (Zadoks et al., 
1974) and Feekes (Large, 1954) scales. 

In accordance with the experimental design, the influ-
ence of each factor on the nitrogen concentration meas-

ured for each of the 108 plots on each sampling day was 
analyzed (it is unknown whether all the factors at all 
levels have an effect on the concentration of nitrogen). 
The split-split-plot analysis of variance (ANOVA) and 
the pairwise comparisons, Fisher’s LSD Procedure, 
determined a grouping of the plots according to the 
nitrogen concentration (p = 0.05). Figure 1 is a flow-
chart explaining this analysis. This and the rest of cal-
culations were done using R 2.9 (R Development Core 
Team, 2004).

On each sampling date, 20 leaves at random were col-
lected in each of the 108 elementary plots. Ten estimates 
of the reflectance (each averaging 50 readings) were made 
of these samples, using the ASD FieldSpec 3 spectrora-
diometer for this. This device has a spectral range of 
350-2500 nm, a sampling interval (the spacing between 
sample points in the spectrum) of 1.4 nm for the range 
350-1000 nm and 2 nm for the range 1000-2500 nm, and 
a spectral resolution (the full-width-half-maximum of the 
instrument response to a monochromatic source) of 3 nm 
at 700 nm and 10 nm from 1400 nm to 2100 nm. Read-
ings were performed using a plant probe plus leaf clip. 
The light source of the plant probe is a halogen bulb with 
a colour temperature of 2901 ± 10 K.

The reflectances for the wavelengths in which the 
transition between the spectroradiometer sensors 
(VNIR - SWIR1 and SWIR1 - SWIR2) occur were 
removed of the spectral signatures, regions where in-
strumental errors could be found.

For each of the different groups of elementary plots, 
formed according to their nitrogen concentration on 
each sampling date, the mean reflectance was calcu-
lated by averaging the readings taken in their respec-
tive plots. As the number of models has been limited 
to one, from this point all the pairs of nitrogen con-

Table 1. Correspondence between the number of days after 
seeding and the crop’s phenological stage

Days after 
seeding

Phenological stage
DescriptionZadoks 

escale
Feekes 
Scale

80 35 7-8 Stem elongation
(5th node detectable)

117 40 9 Booting

132 46 10 Booting (flag leaf  
sheath opening)

164 65 10.5.2 Anthesis half-way
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centration - spectral signatures come together in one 
set, regardless of the date of sampling, since the model 
had to provide a correct estimate for all of them with-
out knowing that information.

The dimension reduction techniques filter the noise, 
identify redundancies and reveal the structure hidden. 
There are different strategies; each employs different 
assumptions about the original components and the 
mixing process, mathematical assumptions that may 
not fit perfectly with the data set. This is the reason 
why two techniques, with statements so distant, have 
been tested.

The principal component analysis (PCA) searches 
for a new base, linear combination (this restriction 
simplifies the search) of the original base (in which 
the data were collected), that best expresses the data. 
For the PCA, the dynamics of interest is the one with 
better signal-to-noise ratio (SNR), this is the search 
criteria of the new base. Reducing the number of di-
mensions is got by eliminating noise and redundancy 
(Rao, 1964).

The independent component analysis (ICA) is the 
other technique that was tested. This dimension reduc-
tion technique seeks that the information contained in 

the new components is statistically independent (Hy-
värinen and Oja, 2000). The ICA has been proved suc-
cessful in many cases in which the PCA fails (Oz-
dogana, 2010). 

The PCA returns as many components as inputs. In 
this study it was identified the smallest group of new 
components necessary to explain, at least, the 95% of 
the total variance, excluding other components; this is 
the way in which dimensional reduction was achieved. 
The ICA is different; one must indicate the number of 
independent components to generate. In this study the 
number of principal components (PCA) employed has 
been used as an estimation of the number of independ-
ent components (ICA) needed, performing several tests 
around that number.

It has built a linear regression model for each of the 
different sets of components generated (PCA and ICA) 
with nitrogen concentration (%). The goodness of fit of 
each model was evaluated by calculating the correlation 
coefficient squared (R2), the adjusted squared correlation 
coefficient (adjR2), the square root of the mean square 
error (RMSE) and the statistical significance (p-value) 
of the model (analysis of the variance). Figure 2 is a 
flowchart that summarizes the whole process.

The score to improve is 0.31, the value of R2 ob-
tained by the green reflectance index, which is the 
highest correlation found between the nitrogen concen-
tration and the classical spectral indices. Calculation 
obtained with the same dataset that this study and per-
forming the evaluation under the same conditions. The 
list of spectral indices analyzed in the comparative and 
other details of the study is in Rodriguez-Moreno and 
Llera-Cid (2011). 

Results and discussion

The split-split-plot ANOVA (Table 2) and the pair-
wise comparisons (Fisher’s LSD procedure) identified 
the factors with effect on nitrogen concentration (Level 
of significance in all tests of 0.05). 

It was observed that the factor seeding density had 
no effect at any time, the levels may not be appropriate 
or perhaps the effects were felt later. 

The effect of the factor number of grazing was not 
analysed in the first dataset, since the first cut was made ​​
after this sampling. In the dataset of the second and 
third sampling, with two levels (0 and 1 cut), it was 
determined that the factor number of grazing had effect 
on the concentration of nitrogen. The analysis of the 

Those parcels that  
differ from each other  

by a factor-level  
without effect are 

repetitions of the same 
configuration.

A certain factor-level 
could have a significant 
effect on a given time 
and not in another, the 

analysis was performed 
for each day of sampling.

Looking for a valid  
model for the 4 days of 

sampling, so all the data 
were grouped into a 

single set.

In the 432 determinations of nitrogen  
(108 experimental plots x 4 days of sampling)  

found 14 different values. The factors number of 
grazing (by livestock) and doses of fertilizers have 
effects, but not on all levels. Planting density has  

no effect on the concentration of nitrogen in plant.

Split-split-plot Anova + Pairwise Comparisons  
(Fisher´s LSD Procedure)

Identify the factors-levels that have significant  
effect on nitrogen concentration  

(level of significance 0.05).

1st sampling 2nd sampling 3rd sampling 4th sampling

Dependent variable:

Plant nitrogen concentration (%)

Elementary plots 108

Average concentration of nitrogen in plant at the...
 

Figure 1. Flowchart of the statistical analysis for the concentra-
tion of nitrogen.
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fourth dataset, the first with three levels since the sec-
ond cut was made ​​after the third sampling, revealed 
that the three levels of the factor number of grazing 
had significant effect on plant nitrogen concentration.

The factor dose of fertilizer had effect on the con-
centration of nitrogen in all the datasets, but only in 
the fourth dataset the levels 75 and 125 kg ha–1 had 
different effects. The fact that the effects of the two 
higher doses of fertilizers do not differ is natural. The 
triticale takes the nitrogen from the soil along its de-
velopment, but most absorption occurs in a develop-
mental stage later than the dates on which the sam-
plings were done (Lance et al., 2007).

Those plots that differed only by a factor or level 
without effect were repetitions, so the representative 
value ​​for the concentration of nitrogen and the spectral 
signature were obtained by averaging the data from 
plots with the same configuration. The 14 different 
nitrogen concentrations recorded in the 108 plots and 

the four days of sampling were: 1.02, 1.19, 1.22, 1.31, 
1.36, 1.42, 1.52, 1.54, 1.64, 1.95, 2.32, 2.74, 3.14 and 
3.40 percentage of nitrogen.

Cumulative variance explained by the first 10 com-
ponents obtained using PCA reached 99.5% of the total 
variance. This percentage was considered sufficient, so 
only the first 10 components were taken into account 
in developing the linear regression.

Unable to make the same test to determine the ap-
propriate number of components for the ICA, it was 
chosen to calculate 7 linear regressions (using 7 to  
13 components). If the 99.5% of the variance of the 
reflectance could be explained with only 10 components 
in the case of PCA, ICA had to need something similar.

It has built a linear regression for each of the differ-
ent sets of components generated (PCA and ICA) with 
nitrogen concentration (%). The goodness of fit of each 
model (Table 3) was evaluated by calculating the R2, 
the adj R2, the RMSE and the p-value of the model. 

Figure 2. Flowchart of the analysis of spectral signatures.

Principal component analysis (PCA)

The criteria that guides the transformation is improving 
the signal-to-noise ratio. The new base should be a linear 

combination of the original.

Number of components: The smallest set that explains 
95% of the variance.

Independent component analysis (ICA)

The information contained in each of the new 
components is statistically independent

A good estimation of the number of independent 
components is the optimal number of principal 

components (ONPC), number determined in the PCA. 
Seven ICA were done, the numbers of independent 

components were: ONPC, ONPC+1, ONPC+2, ONPC+3, 
ONPC–1, ONPC–2, ONPC–3

Dependent variable:

Plant nitrogen 
concentration (%)

Calculation of linear regression:       [Nitrogen concentration]   =       a1 * Component1 + … + an * Componentn + b

Relationship evaluated by the correlation coefficient squared, the adjusted squared correlation coefficient, the square root of the mean 
square error and the statistical significance of the model.

Spectral signatures 432 (108 plots × 4 sampling days)

Calculation of the spectral signatures representative of each nitrogen concentration, averaging all signatures obtained on plots with  
the same concentration.

Independent variable:

Principal components

Independent variable:

Independent components (7 dataset)



1173Estimation of the nitrogen nutritional status by spectral analysis with PCA and ICA

The best fit, R2 = 0.68, was reached in the linear 
regression with the components of the PCA. That result 
showed that the spectral signatures of crops meet the 
suppositions on the PCA is based (linearity in the 
change of base, higher variance means greater impor-
tance of the variable in the dynamics and that the 
principal components are orthonormal).

The winner model is presented in the Table 4. Except 
the fourth and ninth components, the rest were in-
cluded in the model (level of significance of 0.05). The 
eighth component is the one that gets the highest coef-
ficient, but the seventh, the tenth and the second are 
close, so one cannot conclude that the concentration of 
nitrogen can be identified with a particular component, 
one must use the derived model.

This study provides evidences that data mining is an 
effective technique for analyzing the spectral signatures 
in the search for estimators of the nutritional status of 
the crop.

This work shows that the changes in the crop 
throughout its development are not sufficient to pre-
vent the development of a single model. This means 
that the implementation of this methodology would 
require, at most, a calibration study per crop cam-
paign. At this point it is worth recalling the high 
variability in the experimental plots in terms of grow-
ing conditions, which means that the effort to adjust 
the model could be valid for a large area.

In an evaluation under the same conditions and 
with the same dataset, of the potential of spectral 

Table 2. Results of the split-split-plot ANOVA, factors with effect on nitrogen concentration

Factor (simple or interaction)

Sampling

1st 2nd 3rd 4th

Phenological stage

Stem elongation Booting Booting (flag leaf 
sheath opening)

Anthesis  
half-way

Seeding density
Number of cuts * *
Dose of nitrogenous fertilizer * * *
Seeding density - Number of cuts
Seeding density - Dose of nitrogenous fertilizer
Number of cuts - Dose of nitrogenous fertilizer *
Seeding density - Number of cuts - Dose of 
nitrogenous fertilizer

*: effect on nitrogen concentration at the level of significance 0.05.

Table 3. Goodness of all linear regressions made between the sets of components (PCA and ICA) and the ni-
trogen concentration (percentage of nitrogen)

Technique Number of 
components

Significance of the model  
(p-value) R2 Adj R2 MSE RMSE

ICA   7 0.19 0.02 0.01 0.62 0.79
  8 0.61 0.02 0.00 0.62 0.79
  9 0.12 0.03 0.01 0.62 0.78
10 0.42 0.02 0.00 0.62 0.79
11 0.48 0.03 0.00 0.62 0.79
12 0.18 0.04 0.01 0.62 0.79
13 0.33 0.03 0.00 0.62 0.79

PCA 10 0.00 0.68 0.67 0.20 0.45

Adj R2: adjusted correlation coefficient. ICA: independent component analysis. MSE: mean square error. PCA: prin-
cipal component analysis. R2: correlation coefficient. RMSE: square root of the mean square error.



F. Rodriguez-Moreno and F. Llera-Cid / Span J Agric Res (2011) 9(4), 1168-11751174

indices of vegetation to estimate the concentration of 
nitrogen in plant, it was determined that the best 
index was the reflectance in green, which reached an 
R2 = 0.31 (Rodriguez-Moreno and Llera-Cid, 2011). 
The results of this study placed the strategy with the 
PCA over the spectral indices such as NDVI. This is 
not surprising because it is not the first work that 
improves their effectiveness. An example is the result 
obtained by Waheed et al. (2006) who was able to 
develop a decision tree with a classification hit rate 
above 90% in a similar experiment. The models de-
veloped by Waheed et al. (2006), more than 5 years 
ago, have been unable to replace the spectral indices 
of vegetation; the NDVI keeps its hegemony in the 
scientific and commercial uses.

The NDVI needs to determine the reflectance at two 
wavelengths, the methodology presented in this article 
needs to apply the complete hyperspectral signature. 
More information improves the estimates, but to over-
come the NDVI, the simplicity and cost effectiveness 
are as important as the effectiveness.

The complexity of the new methodology could be 
reduced by identifying the wavelengths with greater 
weight in the components built into the model and 
developing with them a model that, instead of estimat-
ing the concentration of nitrogen, estimates if the plant 
is deficient in nitrogen. In that case one would only 
need to know the reflectance in a few wavelengths and 
the data processing would be easier.

Competing with the NDVI in terms of profitability 
would be possible with more studies supporting the 
greater effectiveness of this method in all scenarios and 
that is a valid methodology for large areas that only 
requires a calibration study per crop campaign. While 

both aspects do not improve simplicity and profitabil-
ity, the methodology presented will not end the he-
gemony of the spectral indices of vegetation.

Li et al. (2010) presented ​​the model with more pre-
dictive power; in their development the spectral indices 
of vegetation and the brute force search were tested, 
by the difficulties of the brute force search one can say 
that the methodology presented in this article has a 
similar complexity. The models developed by Li et al. 
(2010) are specific for certain phenological stages and 
their best model reaches an R2 = 0.5; this work achieves 
a small improvement, R2 = 0.68, with a valid model for 
the whole period during which it could act to correct 
the deficiency in the crop.

It is very likely that this study has determined the 
lower threshold of efficacy, the dual-purpose triticale 
supports the grazing by livestock throughout its devel-
opment without ruining the final harvest; this makes it 
a special crop with additional difficulties for the devel-
opment of radiometric models (details given in the 
introduction). It is hoped that the models developed for 
other cereals can get higher scores, but studies are 
needed to quantify it.

Developing this model has required the processing 
of over nine million data. In the case of developing a 
similar model with data taken in various scenarios 
(other locations, different weather, varieties, etc.) the 
data volume will grow exponentially, making it impos-
sible to process, even for supercomputing centres. 
Proving that dimensional reduction techniques are ef-
fective is the first step required to initiate such studies.

The progress made has the limitation of requiring 
the spectral signatures of the leaves; an on-going in-
vestigation is going to determine if the model could be 
adjusted to operate with measures of vegetation cano-
py reflectance. 
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