
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
Available online at www.inia.es/sjar
doi: http://dx.doi.org/10.5424/sjar/20110904-531-10

Spanish Journal of Agricultural Research 2011 9(4), 1156-1167
ISSN: 1695-971-X
eISSN: 2171-9292

Predictive modelling in grape berry weight during maturation 
process: comparison of data mining, statistical and artificial 

intelligence techniques
R. Fernandez Martinez*, F. J. Martinez-de-Pison Ascacibar,  

A. V. Pernia Espinoza and R. Lostado Lorza
EDMANS Group, ETSII, Edificio Departamental D202, C/ Luís de Ulloa, 20,  

Universidad de La Rioja, 26004 Logroño, Spain

Abstract
Environmental and geographical factors are two of the key aspects conditioning the growth of any crop, in such a 

way that the ability to predict significant variables of grape maturation can be highly useful to vine-growers. Berry 
weight is one of the variables monitored during this period, and the wineries have called for the development of an 
accurate prediction model. This study compares various types of data mining (DM) and artificial intelligence (AI) 
algorithms for developing an efficient prediction model for determining the variations in weight of grape berries dur-
ing the ripening process according to the environmental and geographical properties not only throughout the ripening 
period but throughout the plant’s cycle. The final objective is the search for a model that is efficient for data for new 
years with different properties to those in the past. This model helps the grower to harvest the grapes on the most suit-
able date for producing the best possible wine.

Additional key words: crop growth; learning algorithms; models; ripening.

Resumen
Modelado predictivo del peso de la baya de uva durante el proceso de maduración: comparación de técnicas de 
minería de datos, estadísticas e inteligencia artificial

Los factores ambientales y geográficos constituyen uno de los elementos fundamentales que condicionan el desarrollo 
de cualquier cultivo, de tal manera que poder predecir variables significativas de la maduración de la uva a partir de estos 
factores puede ser de gran utilidad para el viticultor. Una de las variables observadas durante este periodo es el peso de la 
baya, y el desarrollo de un modelo preciso para su predicción es una de las necesidades demandadas por las bodegas. En 
el presente estudio, se muestra una comparativa realizada entre diversos tipos de algoritmos de minería de datos e inteli-
gencia artificial para el desarrollo de un modelo de predicción eficiente, que permita determinar la variación del peso de 
las bayas de uva durante el periodo de maduración según las características ambientales y geográficas, a lo largo no solo 
del periodo de maduración sino también de todo el ciclo vegetativo. El objetivo final es la búsqueda de un modelo que sea 
eficiente para datos de nuevos años con características diferentes a los de los históricos. Con este modelo es posible ayudar 
al viticultor a vendimiar las uvas en la fecha más adecuada para posteriormente producir el mejor vino posible.

Palabras clave adicionales: algoritmos de aprendizaje; crecimiento de cultivos; maduración; modelos.
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Introduction

In recent years, the vine-growing industry has fo-
cussed part of its efforts on controlling the grape matur-

ing process, as this is a key aspect for improving the 
quality of wines. This control relies on the use of new 
technologies that permit the gathering of information 
on those factors that have an impact on vineyards, such 
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as environmental conditions, which allows a more ac-
curate evaluation to be made of the crop evolution.

Many factors affect the chemical and physical proc-
esses undergone by the berry during ripening, such as 
illnesses, fertilisation modes, cultivation modes, etc. 
One of the physical changes that vine-growers control 
during ripening is the variation in weight (Peynaud, 
1989; Ollat et al., 2002). Berry growth of vine crops is 
influenced by myriad factors, such as location and 
climate factors (Buttrose et al., 1971; Greer and Wes-
ton, 2010). Crops that grow annually, including vines, 
record differences in the maturation of the berries de-
pending on the weather conditions to which the crop 
has been exposed (Coombe, 1992). Furthermore, the 
climate changes recorded in recent years, above all the 
variation in temperatures and the different rainfall pat-
tern, are having an ever greater impact on these kinds 
of crops.

The ability to predict certain variables beforehand 
may be of great use to vine-growers. In this case, know-
ing how berry weight is going to evolve over the com-
ing days, depending on the performance of the envi-
ronmental variables in the vineyard, may help to know 
how the fruit is maturing.

Environmental conditions do not just influence 
maturation but also the vine’s entire development 
process (Ebadi et al., 1996; Girona et al., 2009), al-
though it is during this stage that a proper analysis of 
temperatures, humidity, rainfall and other factors can 
help to provide the most important information. Dur-
ing the study period, the influence of the analysed 
variables is clearer, as the use of some actions such 
as irrigation, are regulated by the DOC (qualified 
designation of origin) Rioja Regulatory Council and 
its use is forbidden prior to a specific date (BOE, 
2003; APA, 2004).

Both the evolution of size and weight vary depend-
ing on the year and the weather conditions at the vine-
yard. Humidity and the amount of water present in the 
soil, depending mainly on precipitation, mean that the 
berry receives a continuous supply of water that is 
conducive to weight increase (Amerine, 1956; Huglin, 
1998). Temperature is a factor that favours berry 
growth, being essential for good plant development and 
for ensuring the grape matures fully, although very high 
temperatures can have a depressive effect on growth 
(Amerine and Winkler, 1944; Ribéreau-Gayon et al., 
1982; Mareca, 1983). Exposure to sunlight and ambient 
temperature are related as they are both responsible for 
the berry’s temperature (Bergqvist et al., 2001).

Current data mining (DM) and artificial intelligence 
(AI) techniques allow prediction models to be designed 
based on past data that support the decision-making 
process. 

Several authors (Behera and Panda, 2009; Bojacá 
et al., 2009) have developed and used models that 
explain the effect meteorological variables have on the 
growth of different kinds of crops. Knowing how these 
variables impact on the crop, monitoring either their 
natural or artificial development, constitutes a major 
step forward towards better product control. There are 
likewise some models capable of simulating grapevine 
systems that indicate their impacts on grape production 
(Due et al., 1993; Valdés-Gómez et al., 2009).

This paper considers a comparative study with mul-
tiple DM and AI techniques developing an overall 
dynamic model that predicts the weight of the berry in 
vineyards according to several influential variables 
during ripening. 

The aim is to develop overall models that learn from 
the past but which are capable of continuing to be ef-
ficient when presented with new conditions in the future. 
This method uses not only basic regression models, but 
also considers models based on artificial intelligence, 
such as neural networks, Gaussian functions, etc.

Material and methods

Study area

The DOC Rioja grows a range of different grape 
varieties, including Tempranillo, Garnacha, Mazuelo, 
Graciano and Viura. This research and all the samples 
taken involve the Tempranillo variety of red grape. It 
was chosen as it is the most widespread throughout the 
region, which accounts for over 60% of the cultivated 
vineyards (Martínez de Toda and Sancha, 1995).

Soil properties, latitude and altitude all play a role, 
above all when growing a crop in a specific location, 
although environmental factors are amongst the main 
aspects that condition any type of crop. The vine, like 
any plant, has an ecological window and finds its 
preferred habitat in specific microenvironments. An 
ideal habitat for vine growing is the region of La 
Rioja, which produces crops of the highest quality, 
making Rioja one of the world’s most esteemed wine 
labels. 

The vine-growing region of the DOC Rioja (Fig. 1) 
covers an area of 60,905 ha in the heart of the Ebro 
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Valley in Spain. The northern growing area, Rioja Alta, 
with an Atlantic climate of long hours of sunlight and 
stony, mostly limestone soils, has better qualities for 
producing aged wines than the other areas of the DOC 
Rioja (Pascual and Cabrerizo, 1995). 

The research has been conducted within this area, 
where 14 sites, with the Tempranillo variety of grape 
growing at different altitudes and on vine stock that 
has been in the ground for different lengths of time, 
were chosen. Table 1 shows the pertinent details for 
each one of the chosen locations.

Field measurements

From 2002 to 2008 sampling was conducted in sev-
eral selected vineyards, which were sampled weekly 
during the grape maturing process.

The readings in the vineyards were always taken by 
the same person in each case and using the following 
procedure: the berries were picked within a radius of 
approximately 20 m in each vineyard and collected, 
from around 20 plants in order to gather 100. Two ber-
ries were taken from the arms on each plant, two berries 
from the middle and one berry from the tip, with the 
orientation and location of the bunch on the plant being 
alternated. Once the berries had been picked, they were 
weighed together in the laboratory using precision 
scales.

The climate data was provided every 15 minutes by 
the weather stations the Government of La Rioja has 
within the observation area (eleven in total). These 
stations provide data on air temperature, rainfall, rela-
tive humidity and wind strength and direction. Table 2 
provides a summary of the main variables measured 
during the years considered for the modelling.

Modelling process stages

The modelling process has been undertaken in three 
stages:

1. Initially, identification was made of those climate 
variables that have the greatest impact on berry growth 
(Ribèreau-Gayon et al., 2006; Jackson, 2008) and a 
database was created based on past records of the ma-
turing process in prior campaigns. Once all this infor-
mation is stored, a feature transformation in order to 
make a variables reduction based in Principal Compo-
nent Analysis (PCA) techniques is performed. This 

Figure 1. DOC Rioja region and the 14 locations used in this 
research.
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ALAVA

NAVARRA

SPAIN

DOC Rioja

LA RIOJA
Rioja Alta
Rioja Alavesa
Rioja Baja

Table 1. Information on the different locations used in this research. Locations, coordinates, elevations and year of plantation

Site Latitude (º) Longitude (º) Altitude 
(m) Variety Year of 

plantation
Data 

points

  1 Haro - Vicuana 42°34’34.47”N 2°50’06.55”O 438 Tempranillo 1993 41
  2 Haro - El Cuervo 42°34’59.89”N 2°51’45.77”O 465 Tempranillo 1997 40
  3 Cihuri - La Arena 42°34’19.85”N 2°55’14.39”O 500 Tempranillo 1997 40
  4 San Vicente de la Sonsierra - La Liende 42°32’57.33”N 2°46’09.78”O 440 Tempranillo 1987 45
  5 San Vicente de la Sonsierra - Santamaría 42°34’27.22”N 2°45’13.78”O 590 Tempranillo 2000 42
  6 San Asensio - Camino Carrera 42°30’20.73”N 2°44’34.66”O 457 Tempranillo 1985 38
  7 San Asensio - El Roble 42°29’53.18”N 2°45’53.51”O 580 Tempranillo 1979 40
  8 Cenicero - Las Quince 42°29’44.14”N 2°40’05.93”O 434 Tempranillo 2000 34
  9 Cenicero - Carril 42°28’11.09”N 2°37’54.91”O 560 Tempranillo 1986 35
10 Fuenmayor - Los Llanos 42°26’49.70”N 2°32’08.88”O 520 Tempranillo 1986 40
11 Fuenmayor - Los Llanos 42°27’26.43”N 2°33’34.23”O 428 Tempranillo 2000 39
12 Fuenmayor - El Cuadro 42°28’42.65”N 2°34’05.92”O 430 Tempranillo 1996 38
13 Sotés - Palomar 42°24’03.35”N 2°36’39.32”O 650 Tempranillo 1996 40
14 Alesanco - Ajas 42°23’41.06”N 2°48’42.11”O 635 Tempranillo 1990 41
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process likewise included the development of a strati-
fied sampling that allows existing processes to be 
standardised in order to increase the degree of reliabil-
ity of the models created.

2. A subsequent validation is made of a battery of 
different techniques in DM and AI with a view to sin-
gling out those that generate the best predictive models.

3. Finally, the models created are tested with new 
data to identify the degree of generalisation of the 
models created.

Data analysis and pre-processing

The model’s design and testing requires a database 
with all the meteorological variables, vineyard data and 
berry weight. A total of 14 data groups are used, one 
for each location, with 7 years of field measurements 
(2002-2008). The model is calibrated by choosing 
6 years at random and separating the 14 locations of 
the remaining year for testing. 

The design of the regression model is shown in 
Fig. 2. The purpose of this model is to predict the 
weight of the grape berries during ripening taking into 
account the data provided by the vineyard and the me-
teorological variables to which the latter has been ex-
posed. The variables used are shown in Table 3.

Prior to the development of the models, several tech-
niques are used for detecting spurious data (Castejon-
Limas et al., 2004) and the final data obtained is ana-
lysed. This involves the use of several display techniques 
(Fig. 3), such as histograms, scatter diagrams, etc., which 
enable us to observe the structure of the data.

The raft of available variables makes the process of 
developing the models more complex and more liable 
to generate an erroneous output, so the first step is to 
compress the number of variables. Methods were stud-
ied for selecting the most influential variables, although 

the decision was taken to use PCA methods for the 
compression in model inputs keeping the maximum of 
information.

This projection technique compresses the number 
of correlated variables to provide a smaller number of 
uncorrelated variables by means of an orthogonal lin-
ear transformation of the data into a new system of 
coordinates, which means the least amount of informa-
tion possible is lost (Gorban et al., 2007). The new 
principal components or factors are a linear combina-
tion of the original variables that are independent of 
each other. The variables to which the PCAs are applied 
are the ones with the highest correlation between each 

Table 2. Magnitude of weather variables such as temperature, relative humidity, wind speed and 
rainfall during the vegetative growth periods

Variable 2002 2003 2004 2005 2006 2007 2008

Temperature (°C) Max 36.90 40.00 36.80 38.10 37.00 37.00 35.00
Min –2.40 –3.80 –3.10 –9.00 –5.10 –5.70 –4.20

Mean 12.86 13.88 12.69 12.64 13.65 12.67 12.78
Relative humidity (%) Max 95.00 93.16 94.00 92.80 92.48 89.11 90.97

Min 24.96 30.17 40.77 17.88 25.11 37.71 45.49
Mean 68.95 65.50 67.53 64.52 65.48 66.50 68.82

Wind speed (km h–1) Mean 7.60 4.60 7.11 7.36 7.20 6.55 5.62
Precipitation (mm) Total 409.50 409.30 433.00 427.40 419.30 366.50 603.40
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Figure 2. Design of the regression model. All variables are de-
fined in Table 3.
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other, such as all those related to temperature or all 
those related to the amount of rainfall.

Once the spurious values have been discarded and 
a selection made of the definitive variables that will 
provide the input for the models, the various families 
of models can be trained.

Data mining techniques

In order to find models that generate a low prediction 
error a battery of algorithms are used. These can be 
divided into three large groups: parametric models 
(PM), semi-parametric models (SPM) and non-para-
metric models (NPM). Models that range from the most 
classic, based on parametric statistics, to non-paramet-
ric models that work best with variables with unknown 

probability functions, high noise, many empty values, 
dependent variables, etc.

The parametric methods used are: 
— LeastMedSq (LMSQ) (Portnoy and Koenker, 

1997): It is an implementation of least median squared 
linear regression that minimizes the median squared 
error. Linear regression algorithms are used to form 
predictions.

— LinearRegression (LINREG) (Wilkinson and 
Rogers, 1973): Although requiring a major restriction 
of the model’s linearity, this algorithm is used to view 
the data behaviour using a linear model. Furthermore, 
it uses the Akaike criterion for model selection, and is 
able to deal with weighted instances.

The semi-parametric methods used are:
— M5P algorithm (M5P) (Quinlan, 1992): Imple-

mentation of base routines for generating M5Model 

Table 3. Variables used in the model

Vineyard variables

Location Loc
Vineyard age (year) Age
Altitude (m) Altit

Environmental variables related to the amount of rainfall

Total rainfall over the preceding week (mm) RFW
Total rainfall over the preceding two weeks (mm) RF2W
Total rainfall over the preceding three weeks (mm) RF3W
Total rainfall since the beginning of the year (mm) RFY
Total rainfall since bud break (mm) RFBB
Total rainfall during the penultimate week (mm) RFW2
Total rainfall during the penultimate and antepenultimate week (mm) RF2W2
Total rainfall between bud break and flowering (mm) RFBBF
Total rainfall between flowering and setting (mm) RFFS
Total rainfall between setting and véraison (mm) RFSV
Total rainfall between véraison and harvest (mm) RFVH

Environmental variables related to wind and humidity

Prevailing wind direction over the preceding week (N,S,E,W) Dir
Average relative humidity over the preceding week (%) Hum
Average wind speed over the preceding week (km h-1) Speed

Environmental variables related to temperature

Average temperature over the preceding week (ºC) Temp
Aggregate of average daily temperatures since the beginning of the year (ºC) STemp
Days with average temperatures above 18ºC during maturation DM18
Days with maximum temperatures above 30ºC during maturation DM30
Average differences between maximum and minimum daily temperature during 
maturation (ºC)

DDN

Weight variables in preceding weeks

Weight of 100 berries in preceding week (g) W100B
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trees. A decision list for regression problems is gener-
ated using separate-and-conquer. It builds a model tree 
in each iteration using M5 algorithm and makes the 
‘best’ leaf into a rule. Quinlan’s M5P can learn such 
piece-wise linear models. M5P also generates a deci-
sion tree that indicates when to use which linear model.

— PaceRegression (PR) (Li and Shue, 2004): The 
basic idea of regression analysis is to fit a linear model 
to a set of data. The classical ordinary least squares es-
timator is simple, computationally cheap, and has well-
established theoretical justification. Nevertheless, the 
models produced are often unsatisfactory. Page regres-
sion improves the classical ordinary least squares regres-
sion by evaluating the effect of each variable and using 
a clustering analysis to improve the statistical basis for 
estimating their contribution to the overall regressions. 
Under regularity conditions, pace regression is provably 
optimal when the number of coefficients tends to infin-
ity. It consists of a group of estimators that are either 
overall optimal or optimal under certain conditions.

And finally, the non-parametric methods selected are: 
— GaussianProcesses (GP) (Mackay, 1998; Wil-

liams, 1998): It implements a non-parametric Bayesian 
technique. Bayesian regression techniques assume a 
prior distribution over the function hypothesis space 
and calculate a posterior distribution using Bayes rule 
and the available learning data. Instead of assuming a 
prior over the parameter vectors, GP assume a prior 
over the target function itself.

— IBk (IBk) (Aha et al., 1991): It is instance-based 
learning that works as a k-nearest-neighbour classifier. 
A variety of different search algorithms are used to 
speed up the task of finding the nearest neighbours.

— IsotonicRegression (IR) (Stout, 2008): A non-
parametric method that is designed for applications where 
the expected value of a response variable (y) increases 
or decreases in one or more explanatory variables (x1, …, 
xp). It implements the method for learning an isotonic 
regression function based on the pair-adjacent violators 
approach. It minimizes the squared error between the 
observed class probabilities and the resulting calibrated 
class probabilities. The basic Pair-Adjacent Violators 
(PAV) algorithm iteratively merges pairs of neighbouring 
data points that violate the monotonicity constraint by 
computing their weighted mean. The result is a function 
that increases monotonically in a stepwise fashion.

— MultilayerPerceptron (MLP) (Haykin, 1999): It is 
a feed forward artificial neural network model that maps 
sets of input data onto a set of appropriate outputs. A 
supervised learning technique called back propagation 

is used for training the network connecting many simple 
perceptron-like models in a hierarchical structure, which 
can distinguish data that is not linearly separable.

— RBFNetwork (RBFN) (Haykin, 1999): The main 
characteristic of the radial basic function neural net-
work is the use of a normalized distance between the 
input points and the hidden nodes to define the activa-
tion of each node. The closer the two points, the 
stronger the activation.

— SMOreg (SMO) (Smola and Scholkopf, 1998; 
Shevade et al., 1999): A sequential minimal optimiza-
tion (SMO) algorithm for training a support vector 
regression using polynomial or RBF kernels. This im-
plementation globally replaces all missing values and 
transforms nominal attributes into binary ones. This 
algorithm solves large quadratic programming (QP) 
optimization problems, widely used for the training of 
support vector machines. SMO breaks up large QP 
problems into a series of smallest possible QP prob-
lems, which are then solved analytically.

The models are trained using cross-validation, as 
their calculation times are not very high and allow the 
entire training dataset, with 483 entries, to be used to 
create and validate models. This method involves divid-
ing the initial database into 10 subsets. To calculate 
this error, 9 subsets were chosen to train the model, 
with the one subset omitted from the training being 
used to calculate the error of the partial sample. This 
procedure is repeated ten times, each time using a dif-
ferent test subset. Finally, the error is calculated as the 
arithmetic mean of the ten errors of the partial samples.

The purpose of this paper is to determine the algo-
rithm or group of algorithms that provide the best 
prediction or, in other words, the algorithm that yields 
the lowest Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE) between model simulation 
and observed data which are not used for model con-
struction. RMSE and MAE are calculated as:

	 RMSE
n

y k y k
k

n

= −
=

∑1 2

1

( ( ) ( ))ˆ 	 [1]

and 

	 MAE
n

y k y k
k

n

= −
=

∑1

1

( ) ( )ˆ 	 [2]

where y and ŷ are, respectively, the measured and 
predicted outputs and n is the number of points of the 
database used to validate the models.
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Accordingly, twenty models of each type of algo-
rithm configuration are trained with 86% of the data 
from the training database and the remaining data 
(14%) are used to validate each model. 

WEKA suite (Witten and Frank, 2005) is used to 
develop the different models.

Results and discussion

Feature reduction

Feature transformation techniques have obtained a 
variable reduction and a modelling process optimiza-
tion. PCA technique compresses the number of corre-
lated variables providing a smaller number of uncor-
related variables. Three PCA analyses were conducted 
separately of meteorological variables in terms of tem-

perature and rainfall. The first PCA (PCA1) for the total 
amount of rainfall over the preceding weeks com-
presses the 5 related variables to 2 principle compo-
nents (PCs), which explains 93.7% of the data; the 
second PCA concerning the 6 variables of the total 
amount of rainfall throughout the full growth cycle 
reduces the original variables to 3 PCs, which explains 
90.9% of the data. The third PCA also identifies 3 PCs, 
which explains 84.8% of the data, for the 5 variables 
in relation to temperature. Overall, the 16 variables 
related to temperature and rainfall, were reduced to 8 
by the PCA (Fig. 4).

Model calibration

The models are obtained from a training dataset (483 
instances) with 16 final variables as Fig. 2 shows. The 

PCA1
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PC2
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Figure 4. Principal component analysis projections: PCA1 of amounts of rainfall during preceding 
weeks, PCA2 of amounts of rainfall during the growth cycle, and PCA3 of temperature variables.

Table 4. Results of the modelling process. Training errors for each model configuration (ordered by mean of RMSE1). This 
table presents the mean, maximum (max), minimum (min) and standard deviation (SD) of RMSE1 and MAE2 training errors for 
twenty models of each type of algorithm configuration. The last column shows the time required for creating the twenty models 
and obtaining the cross-validation errors

Algorithm Group RMSE1

mean
RMSE1

max
RMSE1

min
RMSE1

SD
MAE2

mean
MAE2

max
MAE2

min
MAE2

SD
TIME

(s)

GP NPM 0.0939 0.0951 0.0926 0.0005 0.0748 0.0755 0.0744 0.0003 224.88
SMO NPM 0.0957 0.0970 0.0944 0.0006 0.0748 0.0758 0.0739 0.0005 78.79
LMSQ PM 0.0958 0.0979 0.0941 0.0011 0.0752 0.0765 0.0735 0.0007 670.02
LINREG PM 0.0961 0.0970 0.0949 0.0006 0.0756 0.0761 0.0746 0.0004 2.12
M5P SPM 0.0962 0.0979 0.0949 0.0008 0.0757 0.0767 0.0746 0.0005 103.38
PR SPM 0.0964 0.0976 0.0951 0.0006 0.0758 0.0764 0.0747 0.0005 1.00
MLP NPM 0.1066 0.1139 0.0993 0.0030 0.0843 0.0906 0.0785 0.0028 76.98
IR NPM 0.1079 0.1094 0.1055 0.0011 0.0848 0.0856 0.0831 0.0005 334.94
IBk NPM 0.1146 0.1184 0.1127 0.0016 0.0905 0.0931 0.0887 0.0013 0.00
RBFN NPM 0.1502 0.1551 0.1448 0.0027 0.1209 0.1238 0.1166 0.0023 34.08

1 RMSE: root mean squared error. 2 MAE: mean absolute error.
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result of the calibration process is shown in Table 4. In 
this case, the model’s calibration dataset correspond to 
all the years but one, with the validation dataset being 
those for the discarded year (14% of the database, 70 
instances). This table provides a summary of errors 
obtained from cross-validation training processes or-
dered by the lower RMSE corresponding to twenty 
trained models for each type of configuration and al-
gorithm. 

It can be seen that, in general, the linear models 
perform better than all the others within the battery of 
models used. Models such as LMSQ, LINREG and PR 
perform better than others such as MLP and RBFN. 
Nevertheless, the model with the best performance is 
GP, as it generates the smallest RMSE, as well as the 
lowest mean of RMSEs. By contrast, the models with 
the worst performance are those based on k-nearest 
neighbours (IBk) and the radial basis function networks 
(RBFNs). The differences recorded range between 6 
and 9%. The models requiring the longest training time 
are the LMSQ with a high number of random samples 
used to generate the function.

Of the wide range of methods used, it was found that 
in the prediction of variables relating to crop growth, 
such as in the case of the weight of wine grape ber-
ries, the non-parametric models behave best. The 
models with the best behaviour obtained for this case 

are GP (RMSE=0.0939; MAE=0.0748) and SMO 
(RMSE=0.0957; MAE=0.0748). Not all the models 
of this type behaved in the same way and some in this 
group gave worse results. It is also significant that the 
models in the parametric techniques group also gave 
good results: LMSQ (RMSE=0.0958; MAE=0.0752) 
and LINREG (RMSE=0.0961; MAE=0.0756).

The GP model is based on Gaussian Processes for 
regression without hyper parameter-tuning using the 
kernel RBF (Radial Basis Function). Different values 
of σ are used for the calibration of this model. This 
parameter controls the width of the kernel and thereby 
the amount of generalization used by the GP. A σ of 
0.7 gives the best result. It generates the smallest 
RMSE, as well as the lowest RMSE mean. 

Model validation

Once the best model has been chosen (GP with a 
value for σ of 0.7), a comparison is made between the 
values obtained with that model and the real values in 
the validation database. Thus, a RMSE = 0.0842 and 
a MAE = 0.0708 is obtained with the best model ob-
tained at the validation stage. It can be seen that even 
the errors are relatively lower than those of cross-
validation proving the model’s good performance. 

Figure 5. Comparison of the real value of the weight of 100 berries with the predicted value working with the test database.
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Table 5 shows the validation errors in a function of 
experimental location.

Fig. 5 and 6 shows the results of using the model for 
predicting weight, compared with the real weight of 
the same 100 berries. The data used for the figure are 
those corresponding to the validation database.

As can be seen, the model’s performance is reasonably 
close to the real performance of weight evolution during 
ripening and accurately detects changes in the weight 
trend. When the trajectory of the curve undergoes, a sud-
den change is detected and the model minimizes the error.

The LMSQ model is another that gives good results. 
Their errors are close to the GP’s, albeit with the char-
acteristic that being a linear regression model, it pro-
vides information on how each variable informs the 
final model (Table 6). These coefficients show which 
are the more representative variables and the value of 
their influence.

Conclusions

The maturation of the grape is influenced by a host of 
factors, such as location and weather conditions. The 
possibility of predicting the short-term weight of the berry 
helps vine-growers considerably when taking decisions. 
This allows the wineries to know how the grape is evolv-
ing during the ripening process and can evaluate different 
management strategies under various environments.

This paper compares several classical and current 
techniques in DM and AI to design models for predict-
ing grape growth. It has shown that these methodolo-

Table 5. Validation errors for the model chosen as the best 
model in the training process divided according to the locations

Location Algorithm RMSE1 MAE2

1 GP(σ=0.7) 0.1202 0.1098
2 GP(σ=0.7) 0.0549 0.0438
3 GP(σ=0.7) 0.1078 0.0940
4 GP(σ=0.7) 0.0697 0.0649
5 GP(σ=0.7) 0.0727 0.0654
6 GP(σ=0.7) 0.0656 0.0542
7 GP(σ=0.7) 0.0632 0.0551
8 GP(σ=0.7) 0.1368 0.1269
9 GP(σ=0.7) 0.0557 0.0539
10 GP(σ=0.7) 0.0557 0.0539
11 GP(σ=0.7) 0.0953 0.0731
12 GP(σ=0.7) 0.0663 0.0587
13 GP(σ=0.7) 0.0675 0.0625
14 GP(σ=0.7) 0.0601 0.0540

1 RMSE: root mean squared error. 2 MAE: mean absolute error.

gies can be accurate and can be applied with confidence 
to vineyards other that the one for which the model has 
been trained, within the same variety and the same 
weather area conditions. 

A wide range of parametric and non-parametric 
models have been developed showing that, the results 
of non-parametric models are better than those obtained 
with parametric and semiparametric techniques when 
predicting several variables related with crops growth 
such as grape maturation.

From amongst the numerous configurations used, 
the model based on the Gaussian Processes (GP) algo-
rithm is deemed to be the one providing the best predic-

Table 6. Relative importance of variables in the case of one of the linear regression model used (LMSQ)

Coeff. Name Description Abs Ratio (%)

–0.0122 Week Maturation week 0.0122     1.52
0.0903 Age Vineyard age 0.0903   11.26
0.0046 Altit Vineyard altitude 0.0046     0.57
0.0068 Hum Mean humidity during preceding week 0.0068     0.85

–0.0002 Speed Mean wind speed during preceding week 0.0002     0.02
–0.0123 Dir Prevailing wind direction during preceding week 0.0123     1.53
0.0571 LAC-PC1 PC1 of PCA projection of rainfall amounts during preceding weeks 0.0571     7.12

–0.0584 LAC-PC2 PC2 of PCA projection of rainfall amounts during preceding weeks 0.0584     7.28
–0.0515 LAP-PC1 PC1 of PCA projection of rainfall amounts during growth cycle 0.0515     6.42
–0.0907 LAP-PC2 PC2 of PCA projection of rainfall amounts during growth cycle 0.0907   11.31
0.1231 LAP-PC3 PC3 of PCA projection of rainfall amounts during growth cycle 0.1231   15.35

–0.042 T-PC1 PC1 of PCA projection of temperatures 0.0420     5.24
–0.0236 T-PC2 PC2 of PCA projection of temperatures 0.0236     2.94
0.0967 T-PC3 PC3 of PCA projection of temperatures 0.0967   12.06
0.8019 W100B Weight of 100 berries in preceding week 0.8019 100.00
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tion results. This model proves to be efficient at dealing 
with new data in the maturing process and with new 
weather conditions. Its use can help vine-growers to 
monitor the maturing process and establish how the 
evolution of the growth can be affected.

Given the models and to data, we can see that the 
weather has a bearing on the grape maturing process 
and that major changes during the cycle have an impact 
on the berry’s end properties.
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