
Introduction

Olive trees (Olea europaea L.) are native to the Me-
diterranean basin; however, it is in Spain where they
have reached their greatest development and implan-
tation (Civantos, 2008). In many Spanish regions, this
tree is almost the only crop. In Andalusia, olive or-
chards cover a surface area that exceeds 1.5 million
hectares, 60.2% of Spain’s total growing area (MARM,
2010). Andalusia produces 39% of the world’s olive
oil and 24% of the world’s table olives (IOOC, 2011).
The crop represents 25% of Andalusia’s agricultural
production (CoAP, 2003). Most plantations are rain-fed,

occupying 74.5% of the total olive cultivated area in
Andalusia (CoAP, 2003) and are normally grown on
relatively poor soils with steep slopes. Approximately
12% of the olive trees in Andalusia are planted on slo-
pes greater than 25%, and 24% to 46% of the trees are
on hills with an inclination between 15-25% and 5-
15%, respectively. Only 18% are found on slopes of
less than 5% (CoAP, 2003). These facts, together with
a Mediterranean climate with lengthy periods of drought
followed by frequent torrential storms, result in high
soil losses as intensive tillage is the most common 
soil management system (Pastor, 2004; Gómez, 2005;
Vanwalleghem et al., 2010). During high intensity
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Abstract

The olive tree is one of the most important crops in Spain, and the main one in the region of Andalusia. Most orchards
are rain-fed, with high slopes where conventional tillage (CT) is the primary soil management system used. These
conditions lead to high erosion and a significant transport of organic carbon (OC). Moreover, soil tillage accelerates
the oxidation of the OC. Cover crops (CC) are the conservation agriculture (CA) approach for woody crops. They are
grown in-between tree rows to protect the soil against water erosion and their organic residues also help to increase
the soil carbon (C) sink. Soil and OC losses associated to the sediment were measured over four seasons (2003-07)
using micro-plots for the collection of runoff and sediment in five experimental fields located in rain-fed olive orchards
in Andalusia. Two soil management systems were followed, CC and CT. Furthermore, the changes in soil C in both
systems were analyzed at a depth of 0-25 cm. CC reduced erosion by 80.5%, and also OC transport by 67.7%. In
addition, CC increased soil C sink by 12.3 Mg ha–1 year–1 of carbon dioxide (CO2) equivalent, with respect to CT. Cover
crops in rainfed olive orchards in a Mediterranean climate could be an environmental friendly and profitable system
for reducing erosion and increasing the soil C sink. However, C fixing rate is not regular, being very high for the initial
years after shifting from CT to CC and gradually decreasing over time.
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events, these losses can cause erosion rates higher than
400 Mg ha–1 (Vanwalleghem & Giráldez, 2008).

Although soil loss associated tillage is the greatest
environmental problem of rain-fed olive farming, no-
wadays, the loss of soil organic carbon (SOC) associa-
ted with ploughing is considered a serious threat.
Indeed, not only for the continuity of crop production,
as it reduces soil fertility, but also for the environment,
as a result of high CO2 emissions (Kassam et al., 2012).

Several consequences of with soil tillage cause a de-
crease in SOC content due to organic matter (OM) mi-
neralization. These are: aeration of the soil profile,
breaking up, depletion and instability of the aggre-
gates, increase in the proportion of macropores to mi-
cropores and severe reduction of the contribution of
organic residue (Lal & Kimble, 1998; Jones et al.,
2004; Bronick & Lal, 2005; Pulleman et al., 2005).
These effects signif icantly reduce soil fertility and
productivity and increase CO2 emissions into the
atmosphere, through SOC oxidation. Moreover, global
CO2 releases associated with erosion are estimated to
be between 0.8 and 1.2 Gt year–1 (Lal, 2003).

OM is basically composed of carbon (C) and is wi-
dely recognized as a stabilizing compound of the soil
structure and a nutrient reservoir for plants (Carbonell
et al., 2010). During the second half of the 20th century,
the intensification of agricultural systems, especially
soil tillage, caused an important decrease in SOC
(Izaurralde et al., 2001; Sperow et al., 2003; Triplett
& Dick, 2008). The global amount of C accumulated
in the soil was estimated to be around 2,500 Gt, with
62% found in the SOC and the rest as inorganic C. This
reserve is double the amount found in the atmosphere
(760 Gt) and 2.8 times that of the biotic mass (560 Gt).
Inadequate practices are estimated to had been respon-
sible for the loss of between 55 and 78 Gt of C from
the soil, which corresponds with its potential capacity
as a C sink. However, the real capacity to store C in
the soil was found to be between 50% and 66% of its
potential capacity (Lal, 2004).

C sequestration requires the transfer of atmospheric
C to storage in such a way that it is not immediately re-
emitted. Given that the average degradation time of OM
in the soil is in the order of centuries, even millenniums
(Paul et al., 1997; Torn et al., 1997), increasing SOC using
appropriate soil management practices is an interesting
option, since the strategy for sequestering C in the soil
is economically and environmentally efficient.

Conservation agriculture (CA) in woody crops
accumulates C in the soil for several reasons. The first

is to reduce output of OM adsorbed to sediment by de-
creasing water erosion (Gómez et al., 2005; Francia et
al., 2006; Ordóñez et al., 2007a). The second to increa-
se OM content by contributing a great amount of plant
residue (Moreno et al., 2009). The third is to reduce
the mineralization of OM by not aerating the soil (Oades,
1993; Franzluebbers, 2002).

In spite of the foregoing advantages, there are still
many questions regarding the role that soil manage-
ment systems could play in atmospheric C sequestra-
tion (Smith et al., 2005; Pyke & Andelman, 2007;
Ovando & Caparrós, 2009). The objective of this study
is to quantify the efficiency of cover crops (CC) as a
method for improving soil capacity as a C sink in rain-
fed olive orchards under semiarid conditions in South-
ern Spain.

Material and methods

Experimental fields

The study was conducted over four seasons (2003-
07) in five experimental fields distributed in different
rain-fed olive regions in Andalusia: two in the province
of Cordoba (Fields 1 & 2), and one in the province of
Jaen (Field 3), Seville (Field 4) and Huelva (Field 5).
The fields include most soil types and olive growing
systems and the most common practices under CA.
Therefore, they represent the reality of olive produc-
tion in Andalusia, obtaining results that are very close
to real values, when extrapolating the data to the total
crop in this region. Table 1 presents the most relevant
characteristics of the fields. During the first year of
study, samples were taken from all fields to determine
the physico-chemical characterization of the f irst
60 cm of soil. Table 2 provides a summary of the re-
sults. Differences were observed in the textures of the
experimental fields and especially in the organic car-
bon (OC) content, which was influenced by the granu-
lometric composition of the soil, the weather and the
different tillage systems used by the olive grower.

Experimental design and treatments

In each field, three plots under CA were established
in the cover of the orchard and the tillage plots were
established in areas designed for this purpose. In order
to calculate the temporal evolution of the SOC, three
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pairs of sub-plots (6 m2) were selected for each soil ma-
nagement system, conventional tillage (CT) and CC,
in every experimental field. The sub-plots were distri-
buted in a completely randomized block design. So as
to ensure accurate results, runoff diverters were ins-
talled in the tillage plots to prevent entry of water and
sediment that came from the CC. Three micro-plots
(1 m2) were selected in each experimental f ield, for
collecting runoff and sediment, and measuring soil loss
and OC adsorbed in the sediment, as was described in
detail by Rodríguez-Lizana et al. (2005). The micro-
plots were distributed in a completely randomized
block design.

After every rainfall event, two sub-samples of water
and sediment were taken from each micro-plot field in
a 1.3 L container. Prior to taking of sub-samples, the
runoff and sediment collected in the containers were
shaken to ensure a homogeneous distribution of sedi-
ment. The CC were managed differently in each far-
mer’s field, so timing and type of cover control were
different, depending on their local practices, as Table 1
shows. Tillage inside the micro-plots under CT was
performed according to the vegetative state of the grass
and the local practices in the area under study. In order
to perfom this task, a rotary tiller was used to plough
the soil to a depth of 20-25 cm.
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Table 1. Main characteristics of the experimental fields

Field 1 Field 2 Field 3 Field 4 Field 5

Province Cordoba Cordoba Jaen Seville Huelva

Frame (m2) 8 × 8 Undefined 12 × 12 8 × 6 6 × 8

Age (years) 12 > 60 > 70 10 9

CCa Spontaneous Spontaneous Sown Spontaneous Spontaneous

CC control Mowing + tillage Grazing Herbicide Weed trimmer Weed trimmer

Slope (%) 15.6 21.6 18.6 6.2 8.7

Soil type Calcic Haploxerept Ruptic-Lithict Xerorthent Calcic Haploxerept Typic Calcexerept Typic Haploxerept

Coordinates 37° 38’ 18” N 38° 08’ 26” N 37° 49’ 42” N 37° 34’ 38” N 37° 21’ 14” N
4° 46’ 01” W 4° 46’ 01” W 3° 57’ 36” W 5° 21’ 37” W 6° 23’ 42” W

a CC: cover crops.

Table 2. Main physico-chemical characteristics of the experimental fields

Field
Depth

pH
OCa CO3

–2 Sand Silt Clay
Texture

(cm) (%) (%) (%) (%) (%)

1 0-20 8.09 0.65 78.6 21.3 45.8 32.9 Clayey-loam
20-40 8.26 0.51 78.6 25.9 45.8 28.3 Clayey-loam
40-60 8.25 0.76 67.0 27.1 39.2 33.7 Clayey-loam

2 0-20 6.61 1.54 8.5 37.6 57.6 5.2 Silty-loam
20-40 6.61 0.94 0.4 34.2 60.1 5.7 Silty-loam
40-60 6.66 0.55 0.4 47.4 47.5 5.1 Sandy-loam

3 0-20 7.98 0.55 48.0 27.0 39.8 33.2 Clayey-loam
20-40 7.89 0.69 44.8 25.3 43.9 30.8 Clayey-loam
40-60 8.08 0.35 49.6 30.4 43.1 26.5 Loamy

4 0-20 8.29 0.88 28.2 42.6 33.2 24.2 Loamy
20-40 8.21 1.21 28.1 36.2 32.8 31.2 Clayey-loam
40-60 8.23 1.06 34.2 37.6 34.9 28.3 Clayey-loam

5 0-20 8.05 0.89 20.1 28.4 41.8 29.8 Clayey-loam
20-40 8.09 0.79 20.9 27.4 43.1 29.3 Clayey-loam
40-60 8.25 0.55 33.4 24.7 47.6 27.7 Clayey

a OC: organic carbon.



At the beginning of the experiment and after 4-years
of study, a comparative balance of SOC was carried
out for both soil management systems. As the surface
layers show the most significant changes after the first
years of CC implementation (Jarecki & Lal, 2005);
samples were taken at the depths of 0-2 cm, 2-5 cm,
5-10 cm and 10-25 cm. Each sample was composed of
3 sub-samplings from each sub-plot. At the same time,
bulk density of the soil was calculated at two depths
(top 0-6 cm and 19-25 cm) in each soil management
system and experimental field, using a hollow stainless
steel cylinder (height 60 mm, diameter 52 mm, volume
127.423 cm3). In addition, prior to mowing the CC, the
amount of biomass generated was calculated by taking
annual samples in four replications from an area of
0.25 m2. This task was only performed in CA fields,
as CT eliminates the soil cover due to plough passes.

Climate conditions of the study area

The study area corresponds to a xeric moisture regi-
me, according to Soil Taxonomy (USDA, 1998). The
climate is characterized by a cold and humid period
that coincides with the autumn and winter, when 80%
of the rainfall occurs; and a very hot and dry period
during the spring and summer. The temperature regime
is thermic. Table 3 shows that temperatures were more
homogeneous than rainfall, which recorded differences
of more than 200 mm year–1 in some of the experimen-
tal fields with respect to the mean total precipitation.

Laboratory analysis

Runoff water with sediment lost were oven-dried at
110°C to obtain sediment dry weight, after which the

concentration of sediment was calculated by extrapo-
lating the total runoff volume. Dried soil and sediment
were sieved through a 2 mm sieve, and then fine earth
was used to determine SOC content using the oxidation
method proposed by Walkley & Black (1934). After
ascertaining the SOC content of each soil, using Eq
[1], the amount of CO2 equivalent can be calculated
using Eq [2]:

OC (Mg ha–1) = [1]
= OC (g kg–1) · ρa (Mg m–3) · D (m) · 10,000 (m2 ha–1) · 1 kg/1,000 g

CO2 (Mg ha–1) = OC (Mg ha–1) · 3,67 [2]

where OC: soil organic carbon, ρa: soil bulk density,
D: soil depth, and CO2: carbon dioxide.

The plant residue was washed with distilled water
to eliminate impurities and then was dried for two days
in a forced-air oven at 65°C to obtain the dry weight.

Statistical analysis

Version 8 of the program Statistix was used for the
statistical analysis of the data. Three factors were con-
sidered: plot, block and treatment. The comparison of
means between these factors was performed using the
Tukey test.

Results and discussion

Presumably, CA systems would produce an increase
in the bulk density of the soil due to absence of tillage
and the effects of repeated machinery traffic. However,
Fig. 1 does not show important differences in the soil
bulk density for CC and CT systems, as also observed
Álvarez & Steinbach (2009). Soils under CA registered
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Table 3. Average temperatures (°C) and precipitation (mm) and their standard deviation from 2003 to 2007

Field Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Total

1 Temp 7.4 ± 1.0 8.6 ± 1.6 11.9 ± 0.7 14.4 ± 1.4 18.0 ± 3.5 24.5 ± 1.6 27.4 ± 0.4 26.8 ± 0.6 22.5 ± 0.6 16.9 ± 1.7 11.5 ± 1.2 8.0 ± 0.5 —
Rain 41 ± 34 79 ± 21 71 ± 40 40 ± 31 53 ± 41 5 ± 5 2 ± 3 2 ± 4 29 ± 11 95 ± 50 37 ± 37 47 ± 30 500 ± 120

2 Temp 6.7 ± 1.1 7.1 ± 1.4 10.1 ± 0.9 12.4 ± 1.1 18.8 ± 2.1 23.0 ± 1.8 26.2 ± 0.5 25.5 ± 0.8 21.9 ± 1.6 15.5 ± 1.2 10.5 ± 1.2 6.9 ± 0.3 —
Rain 36 ± 26 57 ± 22 60 ± 36 60 ± 14 52 ± 36 4.4 ± 2.4 0 ± 0 8 ± 14 36 ± 27 146 ± 97 54 ± 43 53 ± 28 565 ± 177

3 Temp 8.0 ± 1.0 9.3 ± 1.7 12.7 ± 1.0 15.6 ± 1.4 20.4 ± 2.2 26.1 ± 1.7 29.0 ± 0.4 28.3 ± 0.8 24.1 ± 0.7 18.3 ± 1.0 12.4 ± 1.2 8.7 ± 0.3 —
Rain 21 ± 21 63 ± 21 54 ± 32 52 ± 36 45 ± 42 8 ± 9 1 ± 1 8 ± 10 21 ± 13 72 ± 52 38 ± 32 34 ± 21 416 ± 119

4 Temp 8.9 ± 1.4 10.1 ± 1.8 13.5 ± 0.6 16.3 ± 0.7 20.6 ± 1.7 25.2 ± 1.3 27.4 ± 0.8 27.0 ± 0.7 23.8 ± 0.8 18.6 ± 0.6 13.2 ± 1.3 9.5 ± 0.4 —
Rain 40 ± 44 68 ± 26 46 ± 30 33 ± 16 63 ± 53 2 ± 3 0 ± 0 14 ± 18 34 ± 24 79 ± 73 52 ± 43 57 ± 42 501 ± 138

5 Temp 10.1 ± 0.9 10.9 ± 1.1 13.6 ± 0.7 15.6 ± 0.9 19.4 ± 1.5 23.5 ± 1.7 26.0 ± 0.8 25.7 ± 1.1 22.7 ± 0.6 18.6 ± 0.6 14.0 ± 0.8 10.9 ± 0.5 —
Rain 50 ± 50 82 ± 70 57 ± 41 42 ± 31 36 ± 39 11 ± 20 0 ± 0 17 ± 33 18 ± 22 117 ± 72 59 ± 47 46 ± 53 535 ± 212



slightly higher bulk density values on the surface (0-
6 cm). In all experimental fields, average bulk density
increased by 4% with the CC system, whereas bulk
density was distributed more homogeneously under
the CT system. This result coincides with those publi-
shed by Birkás et al. (2004), who observed that CA
displayed a compaction peak at a depth of 3-5 cm. This
compaction could increase erosion processes, as Fullen
(1985) observed , but the plant protection reduced soil
erosion in CC.

Fig. 2 shows the relationship between soil loss and
OC loss adsorbed to the sediment during the four
seasons of the study for all the experimental fields and
treatments. A positive relationship can be observed
between soil loss and OC output in both management

systems. The results showed that for CC, erosion was
always below 2 Mg ha–1 and OC losses less than 40 kg
ha–1, with an R2 of 0.87. Meanwhile, for CT erosion (< 6
Mg ha–1) and OC losses (<80 kg ha–1) were higher than in
CC, also with a high R2 of 0.83. It is worth highlighting
the huge erosion and OM losses measured with some
rainfall events under the CT system, which is very common
in this region and these crops (Martínez-Mena et al., 2012).

Table 4 shows the average annual accumulated ero-
sion and OC loss over four seasons, as well as the de-
crease caused by CA compared to CT. In general, the
CC system reduced soil and OC loss, whereas the CT
system increased them in all experimental fields. Re-
lative to the CT system, the fields that recorded most
erosion were normally the fields with the greatest OC
loss i.e., Field 3, with 8.2 Mg ha–1 year–1 and 80.9 kg
ha–1 year–1 respectively, followed by Field 5 (with 3.66
Mg ha–1 year–1 and 43.73 kg ha–1 year–1) and Field 4
(with 2.46 Mg ha–1 year–1 and 49.04 kg ha–1 year–1).
Nevertheless, this did not happen with the OC in Fields
4 and 5, because the Field 4 had a greater OC concen-
tration on the surface than Field 5 in the CT system
(Fig. 3). With regard to the CC system, Field 5 contri-
buted the largest reduction in soil loss i.e., 91.6% in
comparison to the CT system, followed by 89.5%,
86.0%, and 83.6% for Fields 2, 4 and 3, respectively;
while the lowest reduction in soil loss was 51.7%
observed in Field 1. On the other hand, Field 2 displa-
yed the highest reduction in OC loss i.e., 80% in com-
parison to CT system, followed by 75.0%, 72.1%, and
66.4% for Fields 4, 5 and 3, respectively. The lowest
reduction in OC loss was 45.0%, observed in Field 1.
In general, the average reduction in OC output and
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Figure 1. Bulk density of the different experimental fields and
depths sampled. Sampling season: 2003-04.
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erosion in the five fields was 67.7% and 80.4% respec-
tively; this reduction was less than that observed by
Gómez et al. (2011) under similar conditions, espe-
cially for the OC (95.2%), and slightly lower for ero-
sion (97.4%). With regard to erosion and OC loss, the
higher the reduction in erosion, the greater the reduc-
tion in OC output from the system.

C inputs favored by the presence of plant residues
on the surface and the lower output of OC associated

with sediment, made greater OC concentration in the
soil in the conservative system. As observed in Fig. 3,
which shows the variation in OC content versus depth,
in the top layer sampled (0-2 cm), 4 out of 5 f ields
showed statistically significant differences in favor of
CC. Concentrations in CC were above 1.2% in the first
5 cm in all cases, which is the amount recommended
in Andalusia as the minimum value for integrated pro-
duction systems (BOJA, 2002). These results are simi-
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Table 4. Average annual soil and organic carbon (OC) losses and their reduction percentages from 2003 to 2007

Field 1 Field 2 Field 3 Field 4 Field 5

Soil loss (kg ha–1) CCa 616.60 219.35 1,350.00 345.44 309.21
CTb 1,276.14 2,079.29 8,216.13 2,461.01 3,662.70

Reduction (%) 51.7 89.5 83.6 86.0 91.6

OC loss (kg ha–1) CC 8.78 8.47 24.19 12.28 12.19
CT 15.95 42.27 80.91 49.04 43.76

Reduction (%) 45.0 80.0 66.4 75.0 72.1

a CC: cover crop. b CT: conventional tillage.
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lar to those obtained by Castro et al. (2008) and Gómez
et al. (2009) for olive groves in Andalusia.

As profile depth increased, differences in the content
of SOC decreased. In fact, below 10 cm, statistically
significant differences were observed in only one of
the fields (5), because the amount of debris contributed
by the roots of the plants may not be as great as the ca-
nopy, and it is distributed over a larger area. Therefore,
the top layer experienced a greater and faster increase
in OC not only in olive orchards, but also in different
arable crops (Jarecki & Lal, 2005; Ordóñez et al.,
2007b).

As regard the dispersion of the results, Table 5
summarizes the standard deviation of OC at the four
depths for the five experimental fields during the 2006-
2007 sampling season. Regardless of soil depth, the
highest standard deviation values were observed in the
soils using the CC system. Ploughing homogenized the
profile and lessened the spatial variations of its compo-
nents. These data coincide with those observed by
Hernández et al. (2005) under similar climatological
conditions.

For the total profile sampled (0-25 cm), most of the
f ields showed important differences in OC content
between CC and CT. Fig. 4 shows two fields (2 and 5)
demonstrating significant differences in favor of CC.
These results coincide with those obtained by other
authors for olive groves (Hernández et al., 2005;
Gómez et al., 2009; Ramos et al., 2010).

Soil capacity to store OC primarily depends on cli-
matic and edaphological conditions (Miller et al., 1994);
however, the soil management system can play a decisive

role in agricultural land (Hernanz et al., 2002), as well
as the local conditions of the farm itself. Some authors,
such as Arrouays et al. (2006), found a positive corre-
lation between clay content and the amount of SOC.
In our study, and considering the 0-25 cm layer, the
highest values of OC were observed in Fields 2, 5 and
4, whose soils registered a lower percentage of clay
than that estimated for Fields 1 and 3 (Table 2 and Fig. 4).
In these cases, the climatic conditions affecting the
study area could have been more important in the evo-
lution of SOC than its edaphological characteristics.
The soils with CC in Field 2 warrant a special mention,
recording higher OC values for all of the depths sam-
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Table 5. Standard deviation of the organic carbon concentration in the soil for the experimen-
tal fields and depths sampled

Field
Season 2006-07

0-2 cm 2-5 cm 5-10 cm 10-25 cm 0-25 cm

1 CCa ± 0.68 ± 0.79 ± 0.82 ± 0.90 ± 0.76
CTb ± 0.52 ± 0.47 ± 0.52 ± 0.56 ± 0.25

2 CC ± 0.76 ± 1.09 ± 0.69 ± 0.97 ± 0.54
CT ± 0.51 ± 0.19 ± 0.65 ± 0.60 ± 0.47

3 CC ± 2.40 ± 1.11 ± 0.72 ± 0.84 ± 0.44
CT ± 0.45 ± 0.72 ± 0.13 ± 0.10 ± 0.11

4 CC ± 0.76 ± 0.40 ± 0.43 ± 0.60 ± 0.42
CT ± 0.65 ± 0.27 ± 0.59 ± 0.08 ± 0.12

5 CC ± 0.94 ± 0.20 ± 1.06 ± 0.11 ± 0.25
CT ± 0.28 ± 0.22 ± 0.12 ± 0.18 ± 0.12

a CC: cover crop. b CT: conventional tillage.
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Figure 4. Variation in OC content between the different expe-
rimental fields for the total profile sampled (0-25 cm) for the
2006-2007 sampling season. Different letters indicate sig-
nif icant differences with the Tukey test for * p ≤ 0.05 and 
** p ≤ 0.01.



pled, possibly due to the fact that the cover was con-
trolled by grazing, which contributed a large amount
of C in the form of livestock excrement, further raising
OC content. These results coincide with those observed
by Quiroga et al. (2009). It must also be taken into
account that this field registered the bigger precipita-
tion, favoring the activity of microorganisms, which
decompose the organic residue. The lowest OC concen-
trations under both soil management systems were
obtained in Field 1. This farm was run under organic
farming, increasing the number of tillage passes over
the soil to control the grass in CT. In addition, both
management systems used the application of vinasse,
a liquid organic fertilizer, which is a product of grape
fermentation. Application required deep ploughing and
subsequent injection into the soil. It should be pointed
out that vinasse was not applied at the OC sampling
points, in order to prevent any alteration to the values
caused by the distorting effect of vinasse application
on C fixation. However, a tillage pass was made. There-
fore, the increase in soil tillage and tillage depth fa-
vored the breaking down of aggregates and the oxi-
dation of the OC that they protected in both systems
(Trebrügge & Düring, 1999).

The production of biomass, as shown in Fig. 5, pro-
duced very different results. The average biomass pro-
duction of the CC primarily consisting of broadleaf
weeds (Fields 1, 2 and 4) ranged between 3.5 and 4.5
Mg ha–1 during the three sampling years. The CC
primarily made up of gramineae produced much more
plant mass, approximately 7 Mg ha–1 in Field 3 and 9
Mg ha–1 in Field 5. These values are comparable to the
5-10 Mg ha–1 biomass produced in vineyards in Cali-

fornia measured by Bugg et al. (1996) and the mean
values observed by SAN (1998) for different types of
cover, 1.5-11 Mg ha–1. It is worth highlighting that the
fields with gramineae CC (3 and 5) display the highest
surface concentrations of OC of all five fields studied,
together with Field 2, for the previously mentioned
reasons.

Table 6 shows the CO2 equivalent accumulated in
the soil at the start of the study and the CO2 equivalent
after four years for the different depths sampled and
experimental f ields. Differences were also observed
between the soil management systems studied. At the
start of the experiment, the amount of CO2 equivalent
accumulated in the soil was similar for both manage-
ment systems and the differences observed were less
than 10%, except for Field 4, where it was 12.09%,
with a mean of 5.71% between the five fields. For the
total profile sampled, after four years in the five expe-
rimental fields, CC increased CO2 equivalent content
with respect to the reference period (2003) in all the
experimental f ields, with an average value of 15.88
Mg ha–1 year–1. CT increased the sink effect of this
compound in three of the five fields. However, overall,
a lower increase of 3.57 Mg ha–1 year–1 was obtained.
These values are higher than those measured by Gon-
zález-Sánchez et al. (2012), in similar conditions (1.54
Mg ha–1 year–1). The reason could be related to a shorter
period in our case (4 year respect 10 year). In addition,
in our study the cover crops formed with grass consti-
tuted the largest C sink, unlike in González-Sánchez
et al. (2012), where this alternative produced the worst
results.

Fig. 6 shows the deviation respect to the mean of the
average increase of CO2 equivalent observed in the
different experimental fields compared to the reference
period (2003-04 seasons), for CC and CT, studied indi-
vidually and collectively. It shows how the deviation
is small for CC. Field 1 was slightly below the mean,
and Field 5 was slightly above it. In the case of tillage,
the situation changes, exhibiting a much greater devia-
tion. Experimental Fields 1 and 2 displayed a negative
deviation (below the mean), since these fields under-
went deeper and harsher tillage, with inversion of the
soil profiles. However, less aggressive tillage was used
in the other three fields, with less tillage trips and no
overturning, resulting in a positive deviation (above
the mean). Studying both management systems together
revealed how CC always registered positive deviations
with respect to the mean, except in Field 1; as this sys-
tem was tilled to inject vinasse as previously explained.
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Figure 5. Average annual biomass production and its standard
deviation for the different experimental fields. Sampling sea-
sons: 2003 to 2007.
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Table 6. CO2 equivalent fixation (Mg ha–1) for the different depths sampled and experimental fields

Field System
2003-04 2006-07

0-25 cm 0-2 cm 2-5 cm 5-10 cm 10-25 cm Δc 0-25 cm

1 CCa 82.74 16.32 15.98 18.91 42.72 11.19
CTb 85.01 10.56 11.77 19.15 23.96 –19.58

Difference –2.27 5.76 4.21 –0.24 18.76 30.77

2 CC 178.19 31.45 43.69 48.88 126.96 64.16
CT 186.00 15.57 24.01 34.80 81.24 –30.39

Difference –7.81 15.89 19.69 14.08 45.82 94.55

3 CC 78.28 38.73 23.62 21.33 59.73 64.13
CT 79.88 16.93 15.95 21.24 46.11 19.58

Difference –1.60 21.80 7.67 0.09 13.62 44.55

4 CC 127.80 25.80 28.15 43.80 95.64 65.59
CT 139.89 18.87 28.95 49.87 103.36 61.16

Difference –12.09 6.93 –0.80 –6.07 –7.72 4.43

5 CC 127.80 33.42 32.27 56.99 117.85 112.52
CT 132.59 14.57 23.14 34.07 101.44 40.63

Difference –4.79 18.85 9.13 22.92 16.19 71.89

Average –5.71 13.85 7.98 6.16 17.33 49.24

Average cm–1 –0.23 6.92 2.66 1.23 1.16 1.97

a CC: cover crop. b CT: conventional tillage. cΔ: Increase of CO2 equivalent respect to the reference period (2003-04).
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Figure 6. Deviation with respect to the mean of C increase in (a) cover crops (CC) and (b) conventional tillage (CT), individually
and (c) collectively. Sampling season: 2006-07.
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Under CT, all of the alternatives recorded zero or
negative increases, except Field 4, due to the variation
in the mineralization processes caused by flooded con-
ditions, very common in this field (Castro et al., 2008).
In relation to the increase in CO2 equivalent provided
by the CC compared to CT during the four years of
study, it was observed that conservation systems in-
creased the content of this compound by 1.97 Mg ha–1

cm–1 compared to CT. These data were higher than
those obtained by Gómez et al. (2009) in a seven-year
experiment (1.23 Mg ha–1 cm–1), as like other author
had found that the maximum sink effect is reached
during the fifth year after the application of CA (West
& Six, 2007), with the fixation speed decreasing since
this period. The values obtained were slightly greater
than those indicated by Sombrero & De Benito (2010)
for extensive crops (1.59 Mg ha–1 cm–1), although they
took samples at greater depth (30 cm). The values are
also much higher than those reported by Ordóñez et
al. (2007b), who obtained an increase of 0.75 Mg ha–1

cm–1, due to a longer study duration, 11 years, and depth
sampled, 52 cm.

This study shows the capacity and effectiveness of
CC in the conservation and improvement of soil qua-
lity. Under our experimental conditions, erosion de-
creased by an average of 80.5% and OC loss adsorbed
to sediment decreased by 67.7%. In addition, the depth
sampled, 0-25 cm, experienced a mean increase in OC
of 38.1% with respect to tillage, with a more marked
increase in the f irst 10 cm of soil, where it reached
47.5%. The CC formed with grass obtained the best
results in regarding to increasing the C sink.

CC increased the sink capacity of C fivefold com-
pared to CT, achieving an increase in CO2 equivalent
fixation with respect to the conventional system of 12.3
Mg ha–1 year–1 for the total depth sampled. According
to the MARM (2011a), the CO2 equivalent emissions
in Andalusia for the year 2008 were 58,188 Gg, ex-
ceeding the maximum permissible value by 15,819 Gg
required to fulfill the commitments made by this region
in reference to the Kyoto protocol (MAGRAMA, 2012).
According to the data obtained and taking into account
the actual CC area of 518,659 ha (MARM, 2011b) in
Andalusian olive groves, these soil conservation sys-
tems could annually fix 40.4% of the total gases needed
to fulfill the commitments made.

However, we should be cautious with these figures,
as other studies show how after a few years of practi-
cing CA the fixation rate diminishes, while the sink
effect continues to increase, albeit at a slower rate.
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