
Introduction1

Knowledge of epidemiological features of plant
diseases provides useful information for understanding
the biology of their causal agents, and is the basis for
the establishment, planning and monitoring of effective

disease management strategies (Jeger, 2004). The first
and more common approach to the epidemiological
study of an epidemic is the analysis of its temporal
dynamics through the description and interpretation
of the disease progress curve (DPC). DPC measures
the change with time in the amount of disease in the
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Abstract

A logistic regression model was compared to logistic, Gompertz and log-logistic growth functions for analyzing a
set of data describing the incidence of Alfalfa mosaic virus infection in lucerne fields aged from one to five years, and
located in three different ecological areas of the Ebro Valley, Northeast Spain. Models were f itted in the form of
generalized linear models, and none of them explained well the high variability of the field data, although they were
useful to analyze the interdependence among epidemiological factors associated with estimated parameters in the
models. The logistic regression model proved more sensitive than classical growth function models to detect significant
differences in parameters such as the rate of incidence increase with age of lucerne field or the initial amount of disease,
and to detect differences associated to explanatory variables such as the ecological area. Results indicate that logistic
regression may be a method well suited to statistical analyses in plant epidemiology.
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Resumen

Comparación de modelos de regresión logística y modelos de función de crecimiento para el análisis 
de la incidencia de infección por virus

Se ha comparado un modelo de regresión logística con modelos de función de crecimiento logístico, de Gompertz
y log-logístico para el análisis de un conjunto de datos que describen la incidencia de infección del virus del mosai-
co de la alfalfa en campos de alfalfa con edades comprendidas entre uno y cinco años, localizados en tres áreas eco-
lógicas distintas del Valle del Ebro en España. Ninguno de los modelos, que se ajustaron como modelos lineales ge-
neralizados, explicaron suficientemente la alta variabilidad existente en los datos de campo, pero fueron útiles para
analizar la interdependencia entre determinados factores epidemiológicos asociados con los parámetros estimados
por los modelos. El modelo de regresión logística proporcionó mayor sensibilidad que los modelos clásicos de creci-
miento para detectar diferencias significativas en los parámetros, como el índice de aumento de la incidencia con la
edad del alfalfar o la cantidad inicial de infección, y diferencias asociadas con las variables explicativas del modelo,
como el área ecológica. Los resultados indican que la regresión logística puede ser un método adecuado de análisis
estadístico para estudios de epidemiología vegetal.

Palabras clave adicionales: epidemiología, Gompertz, log-logístico, logístico, modelo, regresión logística.

* Corresponding author: fescriu@aragon.es
Received: 20-07-07; Accepted: 22-01-08.

1 Abbreviations used: AMV (Alfalfa mosaic virus), df (degrees of freedom), DPC (disease progress curve), MSE (mean squares
of error), STE (standard error).

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Spanish Journal of Agricultural Research 2008, 6 (Special issue), 170-176
Available online at www.inia.es/sjar ISSN: 1695-971-X



population of host plants, and may be considered as
the epidemic «signature» in the sense that it integrates
all host, pathogen and environmental factors occurring
during the epidemic (Campbell and Madden, 1990),
which determine the final amount of disease. Different
mathematical models have been used for the analysis
and prediction of DPCs, including those derived from
population growth functions (Campbell and Madden,
1990) or theoretical ecology and epidemiology (Segarra
et al., 2001; Gilligan, 2002), and those based on computer
simulations (Lannou et al., 1994; Bertschinger, 1997).
Comparative analyses of epidemics by model fitting
may help to identify what factors are primary deter-
minants of model parameters describing the epidemics,
such as the rate of disease change or the initial and final
amount of disease. Among the simplest growth models,
the most widely used in plant epidemiology are the lo-
gistic, the Gompertz and the log-logistic. These models
are usually fitted to data by least squares regression of
their linearized form. Logistic regression represents
an alternative fitting method for the logistic transfor-
mation, in which linear regression is performed by the
maximum-likelihood method. In fact, least-squares
regression might be considered as a particular case of
maximum-likelihood regression when the dependent
variable follows a normal distribution (Sokal and Rohlf,
1995). Thus, logistic regression should be a more general
and better approach for f itting bivariate, binomially
distributed variables, such as count data of disease
infection. Whereas logistic regression has been exten-
sively used in case-control analysis in clinical epide-
miology (Petrie and Sabin, 2000; Agresti, 2002), it is
infrequent in plant epidemiology studies (Mila et al.,
2003; Musaka et al., 2003; Weiland et al., 2003; Thebaud
et al., 2006; Harikrishnan and Del Río, 2007).

In this paper, we discuss the results of fitting logistic,
Gompertz and log-logistic models, or a logistic regression
model, to data sets describing Alfalfa mosaic virus
(AMV) infection in one to five years-aged lucerne fields
in the Ebro Valley, Northeast Spain. AMV (Alfamovirus,
Bromoviridae) is worldwide distributed in lucerne
crops, reaching considerable incidence (Gibbs, 1962;
Forster et al., 1985; Hajimorad and Francki, 1988).
AMV is transmitted by more than 15 aphid species,
and it is also seed-transmitted in lucerne, with seed
transmission rates varying from 1 to 50% depending
on virus strain, cultivar and age of the infected plant
(Frosheiser, 1974; Pathipanawat et al., 1997). This high
transmissibility, together with its broad host range,
with more than 400 host species including many

vegetable crops, are probably the main reasons for its
wide geographical spreading and high incidence.
Fitting logistic, Gompertz and log-logistic growth models
to AMV incidence data by least squares regression
provides similar conclusions regarding the comparison
of the rate of incidence increase among epidemics.
However, logistic regression seems a more sensitive
method for identifying differences in DPC-description
parameters.

Material and Methods

Origin of data

Data used in this work are incidence of AMV in 26
different fields of lucerne of ecotype ‘Aragon’, aged
from one to five years, sampled in three ecological areas
(named A, B and C) in the Ebro Valley (Northeast Spain)
during the summer of 2005 and 2006 (Table 1). Areas
A and B were located near Sariñena (Huesca), and area
C in Tauste (Zaragoza). In each area, one or two fields
of each age were sampled in a random systematic manner
taking about 100 samples per field and analyzing them
for the presence of AMV infection by ELISA with anti-
sera raised against AMV (Loewe).

Statistical models

To analyze incidence of AMV in lucerne fields, lo-
gistic, Gompertz and log-logistic models were fitted
to incidence data by least-squares regression. The
logistic model was also fitted by maximum-likelihood
regression. Models were fitted as generalized linear
models (Agresti, 2002) and took the following mathe-
matical expression: TM = k + a(Z) + b · E + c(Z) · E. The
dependent variable in the models TM derived from data
(Y, expressed as frequency) of AMV incidence (Table 1)
after their transformation according to each model:
TM = Ln [Y/(1 – Y)] for logistic and log-logistic least-
squares and logistic regression (M = L, LL, LR, respec-
tively), and TM = G = –Ln [–Ln (Y)] for the Gompertz
least-squares model. The dependent variable was fitted
as a function of two explanatory variables, Z and E,
with Z explaining the effect on AMV incidence of the
ecological area (Z = A, B, C, see Table 1), and E ex-
plaining the effect on AMV incidence of the age of the
lucerne field (E = Age for all the models except log-
logistic, in which E = Ln (Age), with Age = 1 to 5 years,
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see Table 1). The term k + a(Z), which is named Y0,
represents an intercept that does not depend on age
effect, i.e., it quantifies the initial amount of disease
of an hypothetical DPC, with k constant and a(Z)
accounting for differences in ecological area. The term
b + c(Z), which is named rM (M = L, G, LL or LR),
represents the rate of increase of AMV incidence with
age, with b constant and c(Z) accounting for differences
in ecological area. The term c(Z) · E represents the
interaction between the explanatory variables Z and E.
Thus, models also take the form TM = Y0 + rM · E, which
is their more generally known linearized form.

Statistical parameters of goodness of fit for least-
squares regression models, i.e. the coeff icient of
determination (R2) and the mean squares of error
(MSE), were recalculated to give R2* and MSE* after
back-transformation of the predicted TM and the
predicted mean of its distribution, in order to allow
goodness of fit comparisons among models. Similarly,
the initial amount of disease Y0

* for the hypothetical
DPC was calculated by back-transformation from the
intercept parameter Y0 in the models. The rate of increase
of AMV incidence for each model (rM) was recalculated
to give the weighted mean absolute rate of incidence
increase using the expression: rR = rM/ (2m + 2), with m = 2
for logistic, log-logistic and logistic regression models,
and m = 1 for Gompertz model (Richards, 1959). This
new parameter allowed comparisons among models.

Results

Incidence data of AMV infection of 26 commercial
lucerne fields with ages ranging from one to five years

are presented in Table 1. Fields were located in three
different ecological areas referred to as A, B and C.
Models describing hypothetical DPCs for increase of
AMV incidence with age were fitted to transformed
incidence data (TM) in the form of generalized linear
models with two explanatory variables accounting for
ecological area (Z) and age (E) of fields. Transformations
of incidence or incidence and age variables varied de-
pending on the model fitted in each case (see Materials
and Methods).

Growth function models

Linearized forms of logistic, Gompertz and log-
logistic growth models were f itted by least squares
regression. Criteria for comparing models are presented
in Table 2. The three models significantly explained
the variation of the data in terms of explanatory variables
(P < 0.01). Gompertz and log-logistic models yielded
quite similar results, while the logistic model explained
a smaller proportion of the variation, as indicated by
the back-transformed coefficient of determination (R2*).
Based on both R2* and MSE*, the Gompertz model
showed the best fit to data, slightly better than the log-
logistic model. Distribution of standarized residuals
was also similar for the three models (not shown).
Parameter values and their standard errors were calcu-
lated in the three models for each level (A, B, C) of the
explanatory variable Z, which affects the component
a(Z) of the intercept Y0, and the component c(Z) of the
rate of increase of incidence with age, rM (Table 3,
case I). Models directly provide values of the intercept,
Y0 = k, and the rate of increase of incidence, rM =b, for
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Table 1. Incidence(1) of Alfalfa mosaic virus (AMV) in commercial lucerne fields aged from one to five years and located
in different ecological areas of the Ebro Valley (Northeast Spain)

Ecological Age of lucerne field (years)

area 1 2 3 4 5

A 0.0 28.0 27.0 19.0 —
— 18.0 75.7 47.0 52.0

B 0.0 9.0 40.4 66.6 —
4.0 34.3 41.0 — 59.5

C 25.0 67.0 83.0 96.0 98.0
0.0 10.0 96.0 23.0 79.0

(1) Data are percentages of AMV infection in 26 different fields of lucerne, one to five years old, located in three ecological areas of
the Ebro Valley (see Materials and Methods). In each area, one or two fields of each age were sampled during the summer of 2005
(first row of data) and 2006 (second row). A dash indicates the lack of data, i.e. only one field of the corresponding age was sampled.



Z = A, i.e. a(Z) and c(Z) equal to zero. These parameters
are calculated as Y0 = k + a(Z) and rM =b + c(Z) for Z = B
or Z = C. The parameters describing DPCs, i.e. the
initial amount of disease (Y0

*) and the weighted mean
absolute rate of increase of incidence with age (rR), were

calculated after back-transformation of Y0 or Richards’
correction of rM, respectively, for comparison among
models (Table 3, case I, see Materials and Methods).

The advantage of using general linear models with
explanatory variables Z and E is that they provide the

Comparison of logistic regression and growth function models 173

Table 2. Summary statistics for the goodness of fit of growth function models fitted by least-squares regression to data of
Alfalfa mosaic virus (AMV) incidence

Model R2 (%)(1) R2* (%)(2) MSE*(2) d.f.(3) F(3) P(3)

Logistic 58.61 49.40 0.069 5 5.66 0.0021
Gompertz 59.69 59.22 0.054 5 5.92 0.0016
Log-logistic 67.49 57.53 0.058 5 8.31 0.0002

(1) Coefficient of determination for transformed dependent variable TM. (2) Coefficient of determination and mean-squares of error
recalculated after back-transformation of the dependent variable TM. (3) Hypothesis test for the models: d.f., degrees of freedom;
F, Fisher statistic; P, probability of the significance test. 

Table 3. Estimated parameters and their standard errors of growth function models fitted by least-squares regression to da-
ta of Alfalfa mosaic virus (AMV) incidence

Model Model(1): TM = k + a(Z) + b · E + c(Z) · E

parameters(2) Logistic Gompertz Log-logistic

Coefficient(3) STE(3) Coefficient(3) STE(3) Coefficient(3) STE(3)

I) k –4.053* 1.628 –1.341 0.979 –4.043** 1.246

a(Z) Z = A 0.0 — 0.0 — 0.0 —
Z = B –0.595 2.129 –0.441 1.280 0.047 1.581
Z = C 0.455 2.077 –0.160 1.249 1.058 1.570

b 0.971 0.502 0.395 0.302 2.917* 1.125

c(Z) Z = A 0.0 — 0.0 — 0.0 —
Z = B 0.270 0.686 0.188 0.413 0.253 1.492
Z = C 0.363 0.635 0.476 0.382 0.625 1.415

rR Z = A 0.162 — 0.099 — 0.486 —
Z = B 0.207 — 0.146 — 0.528 —
Z = C 0.222 — 0.218 — 0.590 —

Y0* Z = A 0.017 — 0.022 — 0.017 —
Z = B 0.009 — 0.003 — 0.018 —
Z = C 0.027 — 0.011 — 0.048 —

II) rR Z = A,B,C 0.202 — 0.165 — 0.544 —

Y0* Z = A 0.008 — 0.000 — 0.012 —
Z = B 0.010 — 0.001 — 0.017 —
Z = C 0.038 — 0.093 — 0.062 —

(1) TM: transformed dependent variable fitted by least-squares regression. Transformation was different for each model fitted: TL =
= TLL = Ln[Y/(1–Y)]; TG = –Ln[–Ln(Y)], with M = L for logistic, G for Gompertz and LL for log-logistic models. Z: explanatory va-
riable for the ecological area of lucerne field. E: explanatory variable for the age of lucerne field: E = Age for logistic and Gom-
pertz models, E = Ln (Age) for log-logistic model, with Age = 1 to 5 years. (2) I) Interaction Z × E is present in the models, II) Inter-
action Z × E is dropped from the models. k, a(Z), b and c(Z) are intercept and coefficients for explanatory variables Z and E (see
Materials and Methods for details). rR: weighted mean absolute rate of increase of incidence with age after Richards’ correction
for comparison among models: rR = rM / (2m + 2), with rM = b + c(Z), m =2 for logistic and log-logistic models, m = 1 for Gompertz
model. Y0*: initial amount of disease after back-transformation of Y0 = k + a(Z). (3) Significance t-test for coefficient estimate: sig-
nificance at 95% (*) or 99% (**) confidence level and standard error (STE) are indicated.



means to test hypotheses about the effects of these
variables and their interaction. Analysis of variance of
explanatory variables in the three models indicated that
the variable age (E) had a significant effect on AMV
incidence (P ≤ 0.0004), and that the interaction Z × E
was not signif icant (0.4515 ≤ P ≤ 0.9012), i.e., the
effect of age (E) on AMV incidence did not change for
A, B, or C ecological areas under study. Thus, the
interaction Z × E was dropped from the models, so that
DPCs for the three areas had the same weighted mean
absolute rate of increase of incidence with age (Table 3,
case II). With the same rate of increase of incidence (rR),
the three areas were compared for the initial amount
of disease (Y0

*), which did not differ for the logistic
model, while the Gompertz and log-logistic models
detected differences between areas A and B, on one
side, and area C, on the other (P ≤ 0.0189).

Logistic regression models

Logistic regression models were step-wise fitted to
the AMV incidence data (Y) by the maximum-likeli-
hood method. Fitting started with model I, which included
no explanatory variables, and proceeded by introducing
explanatory variables for ecological area (Z) and/or
age of lucerne field (E) at subsequent steps (models II
to IV). Finally, the complete model V included both
explanatory variables (E and Z) and their interaction
(Z × E) (Table 4). Maximum-likelihood ratio statistics
(G) tests the goodness of f it of each model. The de-
creasing values of G indicated a better fit as new expla-
natory variables were added to the models. However,
the G value for the complete model V was still significant,
which means a lack of fit, i.e., additional explanatory
variables should be included in order to better explain
the variation within data. Significance of the expla-

natory variables in the models could be analyzed by
computing the loss of fit resulting from dropping each
variable from the model. Thus, the effect of ecological
area, represented by the term a(Z), was tested by
subtracting the G-goodness of fit value of model IV
from that of model III, i.e. G = 152.3844 with two
degrees of freedom (d.f.), which is significant (P < 10-33).
Similarly, the effect of age, represented by the term
b · E, was tested by the difference between the G values
of models II and IV, and the effect of Z × E interaction,
represented by the term c(Z) · E, was tested by the diffe-
rence between the G values of models IV and V, which
is G = 488.0101 with one d.f. for age and G = 19.4428
with two d.f. for Z × E interaction (P < 10–107 and P < 10–5,
respectively). Thus, the age of the lucerne field was
the main factor affecting AMV incidence, the ecolo-
gical area was the second more important factor, and
the interaction between both effects was the third one.
These results indicate that the increase of incidence
with age differed depending on the ecological area.

Parameter estimates and their standard errors for
model V, which includes the three effects indicated
above, are presented in Table 5. The intercept and the
rate of increase of incidence with age are Y0 = k and
rLR = b, respectively, for Z = A. Those for Z = B or Z = C
are computed as Y0 = k + a(Z) and rLR = b + c(Z), respec-
tively. Coefficient c(Z) for areas B and C was significant,
which indicates that the effect of age in these areas
differed from that in area A. The effect of age did not
differ between areas B and C (P = 0.8408, Wald), i.e.,
the Z × E interaction was significant because of area A.
Thus, the model was reduced to describe DPCs with a
common rate of increase of AMV incidence with age
(rR) for areas B and C, different from that of area A.
Intercepts for areas B and C were significantly different
(P < 0.0001) and are presented in Table 5 in terms of
the initial amount of disease (Y0

*).
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Table 4. Step-wise f itting of logistic regression models by maximum-likelihood method to data of Alfalfa mosaic virus
(AMV) incidence

Model(1) d.f.(2) G(2) P(2)

I. Logit (Y) = k 25 1,263.7955 < 0.0001
II. Logit (Y) = k +  a(Z) 23 1,103.9491 < 0.0001

III. Logit (Y) = k + b · E 24 768.3234 < 0.0001
IV. Logit (Y) = k + a(Z) + b · E 22 615.9390 < 0.0001
V. Logit (Y) = k + a(Z) + b · E + c(Z) · E 20 596.4962 < 0.0001

(1) Y: frequency of AMV-infected plants: Logit (Y) = Ln[Y/(1–Y)]. k, a(Z), b and c(Z): intercept and coefficients for explanatory va-
riables Z and E (see Materials and Methods for details). (2) Hypothesis testing for the models: d.f., degrees of freedom; G, maxi-
mum-likelihood ratio statistic for goodness of fit; P, probability of significance test. 



Discussion

Generalized linear models allow modelling of a
random categorical or continuous dependent variable
in terms of categorical or continuous explanatory va-
riables. This is usually performed by maximum-likeli-
hood regression, which maximizes the likelihood for
the distribution of the dependent variable in the fitting
process, so that this distribution is not necessarily res-
tricted to normality, contrary to least-squares regression
(Agresti, 2002). This is the case of logistic regression,
a method specially suited for bivariate, binomial
distributions. This type of statistical distributions are
frequent in human, animal or plant epidemiology, in
which response dependent variables such as presence
or absence of disease need to be explained by catego-
rical variables such as breed of an animal or strain of
a pathogen, and/or continuous variables such as age of
a patient or time from infection. Logistic regression
has been extensively used in medicine, for example in
clinical studies (Petrie and Sabin, 2000). However, in

spite of its potential for many types of studies, its use
is not generalized in plant epidemiology (Mila et al.,
2003; Musaka et al., 2003; Weiland et al., 2003;
Thebaud et al., 2006; Harikrishnan and Del Río, 2007).
We have compared logistic regression with three func-
tions frequently used in plant epidemiology: the logistic,
Gompertz and log-logistic growth functions (Campbell
and Madden, 1990; Jeger, 2004). The comparison was
done for the analysis of data on AMV incidence in lucerne
fields from different ecological areas and with different
ages. The three growth models, fitted by least-squares
regression, showed a poor fit to the data, as indicated
by their back-transformed coefficient of determination
(R2*), which explained about 50-60% of the data varia-
bility according to the model. The maximum-likelihood
fitted logistic regression model V, did neither show a
good fitting to the data. The poor fit of all models is
probably due to the high variability contained within
data, in which lucerne fields of the same ecological
area and age presented quite different AMV incidences.
The purpose of the temporal analysis of a particular
data set is what determines the degree of precision
needed for such an analysis (Campbell and Madden,
1990). The goodness of f it obtained for our data is
probably not enough accurate for predictive purposes
or for a highly precise description of the DPC. However,
it is sufficiently good to represent the observed field
variability and to analyze the level of interdependence
of certain epidemiological factors in AMV epidemics.
In fact, models that differed in goodness of fit, as the
logistic and Gompertz models, yielded similar conclu-
sions regarding comparisons of rates of increase of
AMV incidence with age of lucerne f ields among
different ecological areas. Other comparisons, however,
would require a better fitting of models to the data for
the detection of significant differences. For example,
logistic, Gompertz and log-logistic models were fitted
assuming the same rate of increase of incidence for all
the ecological areas, as no significant differences were
found for rates of increase. Thus, the initial amount of
disease in the different areas could be compared, and
only the best fitted models (Gompertz and log-logistic)
detected significant differences between areas A and
B, on one side, and area C. Logistic regression also
provided a useful methodology for this type of compa-
risons. Model V in Table 4, which showed a clear lack
of fit, was sensitive enough for detecting significant
differences in the rate of increase of incidence with
age between ecological area A and areas B and C,
contrary to logistic, Gompertz or log-logistic growth
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Table 5. Parameter estimates and their standard errors of a
logistic regression model fitted by maximum-likelihood me-
thod to data of Alfalfa mosaic virus (AMV) incidence

Model(1): Logit (Y) = k + a(Z) + b · E + c(Z) · E

Model parameters(1,2) Coefficient(3) STE(3)

k –2.219** 0.229

a(Z) Z = A 0.0 —
Z = B –0.987** 0.326
Z = C 0.107 0.290

b 0.489 0.067

c(Z) Z = A 0.0 —
Z = B 0.372** 0.098
Z = C 0.353** 0.089

rR Z = A 0.081 —
Z = B, C 0.142 —

Y0* Z = A 0.098 —
Z = B 0.040 —
Z = C 0.106 —

(1) Y: frequency of AMV-infected plants: Logit (Y) = Ln[Y/(1 – Y)].
k, a(Z), b and c(Z): intercept and coefficients for explanatory
variables Z and E (see Materials and Methods for details). 
(2) rR: weighted mean absolute rate of increase of incidence with
age after Richards’ correction: rR = rLR / (2m + 2), with m = 2.
Y0*: initial amount of disease after back-transformation of Y0 =
k + a(Z). (3) Significance Wald test for coefficient estimates (**
significance at 99% confidence level); STE, standard error of
coefficient estimates.



models. This may be attributed to the only difference
between the logistic-regression model V (Table 4) and
the logistic growth model (Table 3): the statistical
method for f itting the distribution of the dependent
variable, maximum-likelihood regression for model V
and least-squares regression for the logistic growth
model. As was the case for the Gompertz and log-logistic
models, logistic-regression model V detected significant
differences in the initial amount of disease between
ecological areas B and C, once it was assumed that the
rate of increase of incidence was the same for these
areas.

In summary, four different generalized linear re-
gression models were fitted to field data of AMV inci-
dence in lucerne fields located in different ecological
areas and with different ages, resulting in roughly com-
parable poor fits. Logistic regression was useful for
the analysis of epidemiological factors associated to
estimated parameters in the model, and provided more
sensitive analyses than traditional least-squares regression
of growth functions. Thus, logistic regression should
be considered a good method with application to a
wide variety of statistical analyses in the field of plant
epidemiology.
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