
Introduction

The identification and traceability of cattle in many
advanced countries is an essential stage in handling
animal safety policies, food production management
and demands of consumers (Bowling et al., 2008). Due
to the relevance of the considered problem, at the be-
ginning of the seventies of last century, several uni-
versities and research institutes have worked and deve-
loped the first electronic animal identification systems
(Rossig, 1999; Schroeder & Tonsor, 2012). The Bovine

Spongiform Encephalopathy (BSE) crisis in 1996
brought about a reduction in beef consumption in
Europe. A consequence of this was that the EU
Commission decided to introduce the Beef Labelling
Regulation 1760/2000, aiming to recover the confi-
dence of consumers in beef products (EC, 2000). These
norms lay out that it would be necessary to ensure the
traceability of beef cattle, using proper labelling which
would inform consumers about the origin of the
product. Traceability is the “ability to maintain a credi-
ble custody of the animal identification or animal pro-
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ducts through all stages within the food chain” (McKean,
2001; Schroeder & Tonsor, 2012). According to Regu-
lation 820/97 of the European Parliament (EC, 1997),
bovine cattle traceability needs the following elements:
(a) two individual ear-tags for identifying each animal,
(b) an individual passport called the Bovine Identi-
f ication Document (BID) containing the relevant
information of each animal, (c) a register book for each
holding (i.e. the farm) and (d) a computer database that
at a national level registers all the animals’ movements,
so as to identify them. This database must hold the follo-
wing information for each head of cattle (Shanahan et
al., 2009): identification code (i.e. the ear-tag number),
sex, breed, date of birth and herd of origin. Identifying
and tracing bovine cattle is especially important for
controlling the animals in the case of infectious di-
seases.

Individual animal identification can be made through
different methods (Evans & Van Eenennaam, 2005).
According to Marchant (2002), these methods can be
classif ied as: mechanical, electronic and biometric
ones. Typical mechanical methods include branding,
tattoos, ear notching, and ear tags. The first three men-
tioned mechanical methods are considered insufficient
for traceability purposes. Since all animals in a herd
are branded identically this procedure is not useful to
distinguish the animals. Moreover, it is not recognized
internationally as a valid form of identification. The
use of tattoos is restricted to small herds due to the time
and work required. Finally, ear notching has limited
use in large-scale identification programs. Mechanical
ear tag-based methods include metal clips and plastic
tags with bar codes. Metal ear clips are cheaper than
plastic tags but their bad application can produce
animal infections.

Electronic identif ication technologies for animal
identification (Voulodimos et al., 2010), usually based
on radio frequency identification (RFID), rely on a de-
vice that contains a unique identif ication number
associated with the animal, an activation reading devi-
ce that initiates communication and interprets the code,
and software which compiles and collates identif i-
cation codes with other collected information (Marchant,
2002; Shanahan et al., 2009). As external electronic
tags (i.e. ear tags or neck chains) could to be lost,
removed or damaged, the usage of internal devices (i.e.
injectable or intra-ruminal transponders) has been
adopted.

Accurate biometric identification methods used for
animal identif ication include: iris scanning, retinal

images and DNA analysis. The f irst two modalities
result intrusive for the animals. Iris scanning involves
an acquisition of the iris pattern based on images or
on a video-sequence. Retinal imaging is based on the
uniqueness of the vascular pattern in the retina vessels
(Allen et al., 2008). DNA technologies can also be
applied to identify the meat products derived from each
specific animal (Dalvit et al., 2007). In general, these
biometric modalities when applied to animal identifi-
cation can produce high identification rates, but they
present the problem of their high cost compared to
other approaches.

Due to their reduced cost and also because of being
less intrusive for the animals, machine vision-based
solutions have been applied to cattle identification in
farms (Ahrendt et al., 2011). These solutions present
as advantages: (a) accurate cattle recognition results
in real production conditions (in particular, they reduce
the number of identification errors while the animals
are in the slaughterhouses); (b) there is no need of in-
corporating any additional elements in the body of the
animals that are to be slaughtered (i.e. electronic
transponders), so it is better adapted to the traditional
way the animals are handled in slaughters; (c) moreover,
there is no need to modify the legal framework for beef
traceability in slaughterhouses, since the proposed
solution is based on the current EU legislation.

This work describes an imaging-based framework
for the identif ication of each individual beef cow at
the slaughterhouse. It is common for large slaughter-
houses to butcher more than 400 animals per day. The
development of an automatic system for beef identifi-
cation must adapt to the conditions in slaughterhouses
and should also become cost-effective. Shipments of
beef livestock are transported to the slaughterhouse
into trucks that can transport between 15 and 20 ani-
mals. Then, the beefs are placed into holding pens
before they are slaughtered. The animals move indi-
vidually along some corridors until they arrive at the
abattoir room. After that, each animal is slaughtered
and hung before the quartering commences. At this
stage, one must ensure that each beef is properly iden-
tified by means of their both ear-tags and its BID. The
proposed solution requires the automatic identification
and matching of some numerical information contai-
ned in the animal ear tag with the one included in the
BID of the same animal. After that, identif ication
labels are generated for each piece resulting from the
butchering of the beef. Before the proposed system
was installed, the respective processes were done ma-
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nually by a human operator who occasionally produced
some annotation errors.

Material and methods

In this section, we first describe an overview of the
processes involved in the beef identification solution
presented. Next, we detail the hardware/software com-
ponents in the Computer Vision system proposed for
the considered problem.

Two types of tests were performed to validate our
proposal: laboratory and slaughterhouse tests. Supervi-
sed tests in the laboratory consisted in simulating the
implemented system using image samples provided by
the slaughterhouse (i.e. outside the production line).
Slaughterhouse tests were carried out in practical
working conditions and they considered the whole
implemented system which has been in use for more
than three years in the slaughterhouse of Fribin
(http://www.fribin.com/en), situated in Binéfar (Huesca,
Spain). This company, with more than 400 employees,
has one of the largest industrial slaughterhouses in

Spain, and produces about 20,000 t of beef meat and
65,000 t of pig meat per year.

Proposed solution for beef identification 
in slaughterhouses

Our proposed solution requires the following
processes that are represented in the Unified Modeling
Language (UML) Activity Diagram (Fowler & Scott,
2003) of Fig. 1: (a) Optical Character Recognition
(OCR) reading of the BID and storing it in a database,
(b) detection and analysis of some numerical informa-
tion contained in the beef ear-tag and (c) matching of
both of the respective pieces of extracted information
for each animal.

Bovine Identification Document (BID) processing
using an OCR system

Suppl. Fig 1 (pdf online) shows the structure propo-
sed by the Spanish government for BID documents. A
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Figure 1. High-level UML activity diagram for the proposed beef recognition system in slaughterhouses.
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BID contains three bar codes that incorporate the most
relevant information in the document. So that an
untrained person can read the information, this BID
also includes most of its information (but not all of it)
in the form of alphanumeric characters. Obviously, the
goal of the bar codes is to make the automatic reading
of the information easy. All this being so, the pro-
cessing of these types of documents is based on the correct
recognition of the three bar codes, as well as in the alpha-
numeric information contained in them. For the auto-
matic reading of the BID, we have used the Atril Soft-
ware (IPSA, 2011). Atril allows the conversion of paper
documents in useful digital information, which is
stored into an intermediate database (see Fig. 1).

The most relevant information in a BID for beef
traceability is the Identification Number appearing on
top of the document. That number is represented by a
bar code type Code 128 which incorporates an error
detection method. The importance of this Identif i-
cation Number lies in the fact that it makes it possible
to establish a match between the BID Identif ication
Number and the digits of the ear-tag for each animal.

The Exploitation Code, containing the sex, breed,
date of birth and herd of origin (related to the farm) of
the animal, is codified as an Interleave 2 of 5 bar code.
Since it does not contain any error detection codifi-
cation, this bar code type is less reliable. In fact, as
these documents contain different types of noise; many
errors arise during the reading of these bar codes. For
the validation of the bar code information reading it
thus becomes necessary to compare it with the alpha-
numeric information also contained in the BID. If this
comparison is not performed automatically, manual
intervention by a human operator is required.

Optical segmentation of an ear-tag

An initial proposal consisted in using the video se-
quence of the animal passing through a corridor towards
the abattoir. The deficient lighting conditions in the
corridors, as well as the rapid and unpredictable head
movements of the animals while running along the
corridor, determined that this proposal was not feasible.

The final developed solution used the hardware sys-
tem shown in Fig. 2 that was designed for the automatic
ear-tag image capture. This device consisted in a con-
veyor belt where the ear-tag is placed by a human ope-
rator once the animal has been slaughtered and the ear-
tag was cutting off. The ear-tag on the belt passes

through a dark hood which contains a vertically-placed
camera at about 30 cm distance from the belt. We used
a Sony XC-55 monochrome camera which has a pro-
gressive charge-coupled device (CCD) scan to provide
full frame images (640 × 480 pixels, by achieving a 200
DPI effective resolution). The device also contains its
own controlled lighting system (a 15 watt light bulb)
for a better capture of the images.

The device works in two different stages, as follows.
In the first stage, the conveyor belt is on and any ear-
tag that is placed on it moves towards the dark hood
component. When the system detects the presence of
an ear-tag, the belt is automatically stopped in order
to capture a good-quality image. On this image, the
larger-sized digits contained in the ear-tag will be
recognized. The analyzed ear-tags can present some
variability (i.e. in some countries there are 4 larger-
sized digits, while in others there can be 5 or more di-
gits). Moreover, the dirt and deterioration of ear-tags
also hinders their correct recognition.

Matching the information extracted from a BID 
to the corresponding information from an ear-tag

Ear-tag reading becomes a difficult task because of
two main problems. One is the low resolution of the
printed information in conventional ear-tags: due to its
low cost, ear-tag information is commonly poorly-
printed on a plastic card. The second problem is the
dirt that is on the tag (mainly straw and mud). These
difficulties mean that it is not easy to read smaller-size
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Figure 2. Diagram of the hardware system components for au-
tomatic ear-tag recognition. 
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alphanumeric characters and bar-codes (if they appear).
For the current version of our system, it is important
to highlight that just the larger-size numbers on the
ear-tag need to be read. Only these digits are put in
correspondence with the final four digits which appear
in the Identification Number information of the BID
[see Suppl. Fig. 1 (pdf online)]. After this process, we
choose as the matching BID for a given ear-tag the one
whose Hamming distance between the last digits of BID
Identification Number and the corresponding ear-tag di-
gits is the smallest one. If there exist several pairs having
the same distance, operator intervention is required.

In the cases where there are ambiguities, we check
whether or not a BID corresponds to another animal
of the same shipment, since they are all slaughtered at
the same time. This ambiguity is not usually produced
among the animals belonging to the same shipment,
since it contains only about 20 animals, and supposing
that there are 4 larger digits, the collision probability
is 1 in 500, so the probability of a shipment with no
collisions is greater than 98%. We should underline
that this digit-matching process takes only a few milli-
seconds; it is carried out while the ear-tag is passing
through the dark hood; when that takes place, the con-
veyor belt is stopped.

If the ambiguity was unsolvable within the ship-
ment, this situation is controlled by our system (see
Fig. 1). In this case, the conveyor belt is started again,
but the movement is now in the opposite direction. So,
a human operator can retrieve this problematic ear-tag
and he/she takes the appropriate action (i.e. clean the
ear-tag and try again or solve the problem manually).
Once a given beef ear-tag is correctly recognized, a set
of identification labels are put on the slaughtered ani-
mal during its cutting process.

Ear-tag recognition using machine vision
techniques

The automatic reading task of larger-sized digits in
ear-tags (see Fig. 3) can be broken down into two main
stages: ear-tag detection (where the conveyor belt is in
movement) and digit recognition (where the conveyor
belt is stopped).

Ear-tag detection

This task is based on the analysis of the histogram pro-
vided by the ear-tag image while the conveyor belt is

in movement. First of all, the intensity level corres-
ponding to the rubber of the moving belt is determined.
After this calibration, when the histogram values from
the captured images are outside a threshold interval
that corresponds to the rubber intensity, the system deci-
des that an ear-tag is detected. As the velocity of the con-
veyor belt is constant, it is easy to adjust the system so
it can be stopped automatically in order to capture good
ear-tag images which make it easy to analyze them later.

False positives are commonly due to some dirt
accumulated on the conveyor belt (i.e. straw residues).
That makes it important to adjust the brightness
thresholds for each installation properly, depending on
the lighting conditions inside the dark hood device
containing the camera.

Ear-tag recognition

The recognition of the large-sized digits appearing
in an ear-tag image is solved by the application of the
processes presented in Fig. 4. First, an adaptive
threshold-based binarization of the image is computed.
Then, a low-pass f iltering to remove some noise is
carried out. The next step consists in detecting the ear-
tag base for orientation correction and large-sized
digits segmentation. Finally, the recognition of the
large-sized digits is carried out. We will now go on to
describe each of these steps in detail.

Image thresholding

As the original ear-tag image is a grey-level one, an
initial thresholding step is applied to convert it into

Beef indentification in industrial slaughterhouses using machine vision techniques 949

Figure 3. Spanish ear-tag and description of the information
contained on it. The background color of the ear-tag can vary
from one country to other country.
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binary: the printed characters and pixels of the con-
veyor belt are turned to black, and the remaining ear-
tag background pixels are turned to white ones.

For the case of Spanish ear-tags, as shown in Fig. 3,
the pixels corresponding to the alphanumeric charac-
ters have an intensity value of around 40, while the
pixels corresponding to the plastic material of these
pieces present an intensity value of around 135. So, a
f ixed threshold value of 110 produces acceptable
binarization results. However, we need an adaptive
thresholding approach to handle ear-tags from different
countries, since their color variability produce varia-

tions in their histograms. In general, an ear-tag image
histogram can be modeled by three Gaussian distri-
butions where one corresponds to the pixels of the belt,
the second one to the ear-tag plastic background pixels,
and the third one to the pixels of ink-printed informa-
tion. To convert our images into binary ones, we consi-
dered two additional approaches: one is based on the
Logarithm Likelihood-Ratio Test (Log LRT) and the
other on the k-means algorithm.

The Log LRT test binarization approach is based on
the hypothesis that the pixel intensities of the three
classes considered have Gaussian distributions. To
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Figure 4. Stages in the ear-tag recognition process.

Image digitalization

Capture imagen

Image preprocessing

Yes

No

No

More thresholding methods

Empty segmentation

Recognition and validation

Recognized BID database

Object Action Initial state Final state Condition 

Image binarization

Low pass filter

Segmentation of
larger size digits

Digits
recognition

Match BID and
ear-tag numbers

Ear-tag base
line detection

Apply other
thresholding method

Video camera



model these distributions, a Log LRT is applied (Tse
& Viswanath, 2005). Fig. 5 illustrates the threshold
value selection using Log LRT. Three distributions are
thereby obtained: N1(µ1,σ1), N2(µ2,σ2) and N3(µ3,σ3),
where N1 corresponds to the belt pixels, N2 corresponds
to the ink ear-tag pixels and N3 corresponds to the
plastic-background ear-tag pixels. After some
experimentation, the f inal binarization threshold T
was chosen as: T = µ2 + 2σ2. Fig. 6c shows the re-
sult produced by this approach on the sample ear-tag
image of Fig. 6a. Common thresholding techniques
like Otsu-based and median were also tested but they
produced poor results. In consequence, a specif ic
image binarization method was developed. Fig. 6b
illustrates the application of Otsu method to the image
of Fig. 6a.

The k-means binarization approach uses the k-means
algorithm (with k = 3) to find the three clusters of pixels
considered (belt, ear-tag printed information and ear-
tag background, respectively) which are related to their
intensity values. To minimize errors coming from ran-
dom elections, the k-means initial points are set to the

values: 0, 128 and 255, respectively. Finally, the thre-
shold is set using the mid-point value between the
centroid of the two clusters, corresponding to ear-tag
ink-pixels and ear-tag foreground pixels, respectively.
Fig. 6d shows the result produced by the k-means
approach on the test image. The visual results produced
by the Log LRT and k-means were, in general, similar.

Low-pass filter application

The accumulated dirt and deterioration of ear-tags
produced some noise in the original images after their
binarization. A filtering stage for removing all connec-
ted components which have a size smaller than N in
the image was applied (our experiments determined
that a value N = 100 was appropriate for the resolution
of our images). This f iltering aims to take off those
non-ink pixels of the binary image which have a value
similar to the characters to be recognized and which
could interfere in the ensuing segmentation and recog-
nition processes. Fig. 7b shows the result of this fil-
tering on a sample ear-tag image.

Ear-tag base detection

The skew angle of the ear-tag base in the image is
detected and corrected. To achieve this, we first search
for the perimeter pixels corresponding to the ear-tag
base. A hit-and-miss morphological operation (González
& Woods, 2008) using a binary mask of 10 × 1 pixels
as shown in Fig. 7a is applied on the binary image to
detect these contour pixels, as seen in Fig. 7b. After
that, we used the Hough transform (González &
Woods, 2008) on the pixels detected to extract the most
probable line forming the ear-tag base (we also use the
Hough transform to correct its skew). This line appears
in red colour on the image of Fig. 7c.
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Figure 5. Selection of threshold T using the image histogram
by the Log LRT approach.
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Large digits ear-tag detection

Once the ear-tag base line is found correctly, the num-
bers to recognize correspond to the connected objects
that are intersected by a parallel line to the base line,
which is situated at an approximate distance of one
centimeter above it (see green line of Fig. 7c). If any
of these objects is touching the image borders, it means
that the ear-tag is placed incorrectly on the conveyor belt.
In this case, the conveyor belt movement reverses and
the ear-tag is sent back so that it can be placed correctly.

Ear-tag digit recognition

Initially, we tried to use several generic OCR
software tools. In particular, we made tests with
ABBYY FineReader (http://f inereader.abbyy.com) 
and Tesseract-OCR tools (http://code.google.com/p/ 
tesseract-ocr). However, these OCR systems were
discarded due to the errors performed in the digit
recognition task. Many problems were caused by the
types of digit fonts and the noise present in the ear-
tags. Generic OCR software uses the context (i.e.
dictionaries and standard fonts) to avoid this type of
errors but in ear-tag image such context information
is missing. Consequently, this recognition stage was
carried out using machine learning techniques. In
particular, as the problem of low-quality printed digit
recognition has been successfully solved using
different types of neural networks (Trier et al., 1996),
we explored the application of this classif ier. After
some experimentation, a trained feed-forward neural
network with one hidden layer was used (and the corres-
ponding parameters determined) for our approach. The
images of the ear-tag digits resulting from the previous
stage are now the inputs to the network. To fill possible
holes, a morphological dilation using a 3 × 3 structu-

ring element mask is applied previously on the images.
Now, each ear-tag number detected is directly segmen-
ted into its corresponding digit images.

The network used has an input layer with 256 neu-
rons (corresponding to the pixels of a 16 × 16 ear-tag
digit image to be classified), one hidden layer with 80
neurons and one output layer with 10 neurons (corres-
ponding to the 10 possible digits to be recognized).
Before the ear-tag digit image is presented to the
network, it is re-scaled using bilinear interpolation.
The scaled images maintain the original aspect ratio,
but its height is fixed to 16 pixels.

The set of input neurons are partitioned into s = 4
disjoint subsets corresponding to four 8 × 8 disjoint
sub-images (see Fig. 8). Each of the neurons of a sub-
image are fully-connected to the corresponding subset
s of k neurons in the hidden layer (where k = 20). The
units of the hidden layer are fully-connected to the 10
neurons of the output layer. This network architecture
decreases the training times since the number of links bet-
ween the input and the hidden layer is reduced by s = 4
with respect to a fully-connected configuration. The
architecture of the network used is presented in Fig. 8.

The network was trained using a sample consisted
of 200 images of each of the 10 digits to be classified.
These images were processed as described previously.
The network was trained for 5,000 iterations until a
0.01 Mean Square Error (MSE) value was achieved.
In the training process, the back-propagation algorithm
with 0.1 for the learning rate parameter (µ) was used.
When a new digit image is presented to the network,
the highest value of the output neurons is used to
determine the class assigned to such image. The value
of the output neuron is used as a confidence level in
such a digit character. The mean of the digit character
confidences in a numeric string is used as the confi-
dence of the string (i.e. the ear-tag string of digits).

Results

In this section, we present separately the tests per-
formed in the laboratory from those tests carried out
directly in the slaughterhouse.

Supervised experiments in the laboratory

These tests consisted in using the implemented
system in an off-line mode (i.e. not working in practical
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Figure 7. Ear-tag base detection: (a) morphological hit-and-
miss mask used, (b) detected pixels (in red) using this mask over
the result achieved after applying the low-pass filter described,
and (c) corresponding straight line (also in red) detected by the
application of Hough transform and parallel line (in green) at
a distance of 1-cm from the ear-tag base.
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conditions at the slaughterhouse) for a sample of 9,970
ear-tags that correspond to 50 working days. These tags
were previously washed and very few of them still kept
some remains of straw and mud. After that, the ear-
tags were placed in different positions at the conveyor
belt (i.e. with varying inclinations), in order to emulate
the further performance of the human operator at the
slaughterhouse, for their digitization into images.
Table 1 shows the different types of analysed ear-tag
images that can be grouped into the following classes:
correct (or intact), incomplete (due to bad placement
of the ear-tags in the conveyor belt or to early stopping
of the belt), dirty ear-tags, and bad-printed/damaged
ones.

The main goals of the laboratory tests were to
compare the different proposed ear-tag recognition
approaches and also to adjust the binarization threshold
T for the best classifier to be used at the slaughterhouse
in practical conditions. In consequence, we have used
the set of 9,970 images to create the Error-Reject (ER)
curves (Simeone et al., 2011) presented in Fig. 9. These

curves plot the error rate against the reject rate and
they respectively correspond to each of the different
threshold-based binarization methods described in the
previous section: (a) fixed threshold, (b) adaptive Log
LRT, (c) adaptive k-means, and (d) the method that
combines the three previous ones. This hybrid or
combined method consists in using the result with
highest confidence for the three previous binarization
approaches. From the ER curves of Fig. 9, it can be
noticed that the combined method produced the best
ear-tag recognition results. For the collection of labo-
ratory images and using the combined classifier, we
experimentally adjusted the string confidence level
threshold T to the value 0.93 (Fig. 9) and achieved for
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Figure 8. Structure of the feed-forward neural network used for the digits recognition task.
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Table 1. Classification of ear-tag image samples for the la-
boratory tests

Type of ear-tag image Number of images Percentage (%)

Correct 8,913 89.40
Incomplete 1,045 10.48
Dirt 3 0.03
Bad-printed/Damaged 9 0.09

Total 9,970 100.00



this value: a correct ear-tag recognition rate of 89.4%
(i.e. those OCR results greater than or equal to T that
are correct when compared to human visual ins-
pection), a 7.7% of rejection (i.e. those results smaller
than the confidence threshold T) and a 2.9% of error
(i.e. those cases when the OCR values are greater than
or equal to T that are incorrect when compared to hu-
man inspection).

System experiments in the slaughterhouse

The slaughterhouse tests aim to demonstrate the
validity of the prototyped laboratory system when it is
operative in practical conditions. For these experi-
ments, we used 3,145 images corresponding to 10
working days. Table 2 presents the raw data correspon-
ding to each day. Table 3 shows the number of error
causes for the ear-tags images and also shows how
many of them have generated rejections and errors. 
In short, 2,845 images correspond to correct ear-
tag recognition cases (90.68%), 203 images to
rejections (6.45%) and 90 images to errors (2.86%),
respectively. This last error percentage is drastically
reduced to 0.012%, being transformed into rejection,
when the ear-tag recognition result is checked against
with the BID recognition result by considering the
collision probability (1/500), as explained in the M&M
section.

Regarding the experiments carried out in the
slaughterhouse, their corresponding results coincide
with the simulated experiments in the laboratory
(90.68% of correct ear-tag recognition in the slaughter-
house compared to 89.4% in the laboratory). Human

supervision of the system in the slaughterhouse was
only required for 9.31% of the images (i.e. in the
rejection cases), while key typing by the supervisor for
6.45% of the ear-tags. This last percentage corresponds
to problems that cannot be solved by retries of the ope-
rators. Mainly, they are rejections due to bad-printed
or damaged ear-tags (55 + 36 cases), and other cases
correspond to misclassifications due to undetermined
classifier errors (94 + 18 cases), as observed from Table 3.

To validate the concordance between laboratory and
slaughterhouse results, we applied the statistical sig-
nificance p-value test with the predetermined signifi-
cance level of 0.05. Since the correct recognition rate
in the laboratory was 89.4%, we assumed that the null
hypothesis H0 was “mean of correct recognition greater
or equal than 90%” (and consequently the alternative
hypothesis H1 was “mean of correct recognition smaller
than 90%”). As the achieved p-value is 0.39, we cannot
reject the null hypothesis.

According to the slaughterhouse operators, who
used the proposed system, it worked properly and they
did not report any adverse incidents throughout the
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Table 2. Daily raw ear-tag image cases in the laboratory tests

Day
Number

Correct Rejection Error
of images

1 397 369 21 7
2 140 123 10 7
3 305 275 19 11
4 519 479 25 15
5 239 201 24 14
6 189 171 16 2
7 221 207 7 7
8 137 111 18 8
9 504 451 41 12

10 494 465 22 7

Total 3,145 2,852 203 90

Table 3. Rejection and error causes of ear-tag image sam-
ples in the slaughterhouse tests

Error cause
Rejection cause Error cause

Cases (#) % Cases (#) %

Incomplete image 21 10.34 29 32.22
Dirt image 33 16.26 7 7.78
Bad-printing/Damaged 55 27.09 36 40.00
Other problems 94 46.31 18 20.00

Total 203 100.00 90 100.00

Table 4. Solutions to possible problems when the system is
working

Error situations Proposed solutions

Problems Detection of an ear-tag Clean conveyor belt
related to where none exists
ear-tag (false positive)
detection Ear-tag not detected Revise system 

by the computer vision componnents
system installed (i.e. light bulb)

Problems Ear-tag recognition System asks the operator
related to produces a number to key in the complete
BID with no correspondence number (delete ambiguities)
identification to recognized BID If the problem persists
number There are two ear-tags the affected register is

with the same digits analyzed offline



whole working time of the system. Table 4 presents
some possible operational problems when the system
is working in practical conditions in the slaughterhouse
and the corresponding proposed solutions given. Fribin
reported us that human supervision of the system was
only required in around 10% of the cases, and key
typing in around 6% of the cases.

Discussion

This paper describes an operative machine vision-
based solution for individual beef identification and
traceability in slaughterhouses which includes the
development of a specialized hardware system. The
main tasks in the identification of the animals are the
automatic extraction and further matching of some
numerical information from the beef ear-tags to the
information from the BID. Practical working condi-
tions in slaughters (i.e. dirt or bad illumination)
influence greatly the identif ication results. In these
conditions, our recognition results are around 90. As
we did not found published results on the same con-
sidered problem, we used the Automatic Number Plate
Recognition (ANPR) problem for comparison purpo-
ses. The aspect of digits to be recognised could be
compared to the digits of the car plate recognition pro-
blem, although the digits in the ear-tags are usually
much dirtier. A paper from Parking Trend International
(Keilthy, 2008) reported that system customers
achieved below 80% of success in practical conditions
using the implemented ANPR system, and conse-
quently our presented results for ear-tag recognition
are higher. Further, for the digit identification task in
ear-tags, a validation method is applied which allowed
to get a False Acceptance Rate (FAR) near to 0%. In
consequence, the human operator can clean the tag and
repeat the recognition process, which usually failed
due to dirt problems.

Furthermore, it could be thought that the use of other
referred animal identification methods could improve
the recognition rates. Perhaps, a trade-off alternative
is those based on RFID. Remote reading stations (i.e.
antennas) are situated in strategic places in the slaughter
house, such as the place where the cattle is weighted,
the holding pen or the abattoir room. Some different
types of passive tags (i.e. electronic ear-tags, ruminal
boluses and injectable transponders) could be used
(Marchant, 2002; EC, 2011). However, several problems
arise when using RFID systems for beef identification.

These transponders are not “visible”, without there
being an appropriate electronic reading device.
Conventional ear-tags are always “visible” in absence
of antennas. Moreover, a RFID system can not fully
replace the use of physical ear-tags systems to identi-
fy each bovine, since this is the current legal solu-
tion adopted in Spain (and also in the EU). Con-
sequently, the deployment of RFID devices to replace
or complement the current solution would require a
modification of the current legislation and would push
up the economic costs of tracking each animal (EC,
2011).

It could be argued that the use of RFID technology
seems a more accurate solution for the considered
application, but it must be remarked that in slaugh-
terhouses exists a big problem with interferences
(IPSA, 2003; Scottish Government, 2008). For example,
in the conveyor belts for transporting the animal pieces
(i.e. when these have been quartered cut into pieces)
or due the machinery present in these installations
which makes the practical deployment of an RFID
solution in these places very difficult. As reported in
2008 in a study of Scotland’s Environment and Rural
Affairs Department (Scottish Government, 2008), the
acoustic conditions in abattoirs produce short, high-
intensity sound peaks (i.e. resulting from steel gates).
These loud sounds seriously affect tag reader systems,
such that their performance is degraded or completely
inhibited. Moreover, the cost of using RFID could
reduce the producers’ razor-thin margins.

The use of near f ield communication technology
presents similar problems (i.e. in relation to visibility,
cost and interference problems) for the considered
application. Other works have pointed to the appli-
cation of biometric solutions (Dalvit et al., 2007; Allen
et al., 2008). These biometric proposals can produ-
ce high identification rates, but at the same time they
present the problem of their high economic cost.
Perhaps, these could be the reasons why the ear-tags
are the main group of elements presented to the ICAR
conformance test (ICAR, 2009) for animal identi-
fication.

The main advantages of our proposed system for
automatic beef identification in industrial slaughter-
houses are the following ones: (a) more accurate beef
identification results in real production conditions (in
particular, it reduces the number of identif ication
errors while the animals are in the slaughterhouses);
(b) there is no need of incorporating any additional
elements in the body of the animals that are to be
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slaughtered (i.e. electronic transponders), so it is better
adapted to the traditional way the animals are handled
in slaughters; (c) there is no need to modify the legal
framework for beef traceability in slaughterhouses,
since the proposed solution is based on the current
Spanish and EU legislation.

Our framework considers the current legislation for
beef traceability and does not increase the cost of indi-
vidual beef identification. And, the presented applica-
tion-oriented solution is general and it can be easily
adapted to the common BID and ear-tag variations of
the different countries. The complete system has de-
monstrated its effectiveness for a Spanish abattoir
installation with practical working conditions, over a
period of more than three years.
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