
Introduction

Corn (Zea mays L.) is the main energy source in
diets for intensively reared avian species (broilers and
ducks), therefore accurate information on its effective
energy content is of importance to nutritionists. A
number of studies have been conducted to estimate the
metabolizable energy (ME) content of corn based on
its physical characteristics and chemical composition

(e.g. Leeson et al., 1993; Zhao et al., 2008). The energy
content of feedstuffs depends strongly on their
chemical composition. Nutritionists are interested in
using models that predict the nutritive value of poultry
feedstuffs accurately. Recently, artif icial neural
network (ANN) models have received attention among
poultry nutritionists, e.g. for estimating the ME of
poultry offal meal (Ahmadi et al., 2008) and sorghum
grain (Sedghi et al., 2011) based on their chemical
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Abstract

Support vector regression (SVR) is used in this study to develop models to estimate apparent metabolizable energy
(AME), AME corrected for nitrogen (AMEn), true metabolizable energy (TME), and TME corrected for nitrogen
(TMEn) contents of corn fed to ducks based on its chemical composition. Performance of the SVR models was assessed
by comparing their results with those of artificial neural network (ANN) and multiple linear regression (MLR) models.
The input variables to estimate metabolizable energy content (MJ kg–1) of corn were crude protein, ether extract, crude
fibre, and ash (g kg–1). Goodness of fit of the models was examined using R2, mean square error, and bias. Based on
these indices, the predictive performance of the SVR, ANN, and MLR models was acceptable. Comparison of models
indicated that performance of SVR (in terms of R2) on the full data set (0.937 for AME, 0.954 for AMEn, 0.860 for
TME, and 0.937 for TMEn) was better than that of ANN (0.907 for AME, 0.922 for AMEn, 0.744 for TME, and 0.920
for TMEn) and MLR (0.887 for AME, 0.903 for AMEn, 0.704 for TME, and 0.902 for TMEn). Similar findings were
observed with the calibration and testing data sets. These results suggest SVR models are a promising tool for modelling
the relationship between chemical composition and metabolizable energy of feedstuffs for poultry. Although from the
present results the application of SVR models seems encouraging, the use of such models in other areas of animal
nutrition needs to be evaluated.
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composition. However, despite the ability of ANN
models to handle complex nonlinear problems (Faridi
et al., 2012a), this approach is not necessarily simple
and may provide an apparently good fit to the data-set
from which predictive equations are derived, but a poor
predictive performance on newly introduced data.

Support vector machines (SVM), i.e. supervised
learning models with associated learning algorithms,
can be used for classification, regression or other tasks
(Cortes & Vapnik, 1995; Vapnik et al., 1997). In recent
years, they have been introduced as a new technique
for solving a variety of learning, classif ication and
prediction problems (Cristianini & Shawe-Taylor,
2000). Support vector regression (SVR), the regression
version of SVM, was developed to estimate regression
functions (Drucker et al., 1997) and similar to SVM,
it is capable of solving non-linear problems (Nandi
et al., 2004). SVR models have been successfully
applied across a broad range of areas in engineering,
science and economics (e.g. Kara et al., 2011) but, to
our knowledge, application to animal nutrition studies
has not been investigated. Therefore, the objectives of
this study were 1) to test the ability of SVR models to
estimate apparent ME (AME), apparent ME corrected
for nitrogen (AMEn), true ME (TME), and true ME
corrected for nitrogen (TMEn) of corn for ducks based
on its chemical composition, and 2) to compare the
predictive performance of SVR to that of ANN and
multiple linear regression (MLR) models.

Material and methods

Data sources

Data used to develop the SVR and ANN models for
AME, AMEn, and TMEn were taken from Zhao et al.
(2008), and information reported by Zhao et al. (2008)
and Zhou et al. (2010) was used to develop the TME
prediction models. There were 36 records of
observations for AME, AMEn and TMEn and 42 for
TME. For AME, AMEn, and TMEn, the models
investigated (SVR, ANN, and MLR) used 27 randomly
selected observations for calibration, and the
remainder (n = 9) as the testing data set, whereas for
TME, 29 and 13 randomly selected records were used
for calibration and testing, respectively. Ranges on the
data used to develop the SVR and ANN models for
AME, AMEn, TME, and TMEn are presented in Table 1.
Quantitative examination of the predictions pro-
duced was made using R2 (amount of variance of the
dependent variable explained or accounted for by the
model), mean square error, and bias.

Support vector regression model
development

As SVM is a non-parametric statistical learning
technique, no assumptions about the underlying data

Table 1. Ranges of the data used to develop support vector regression, artificial neural network, and multiple linear regression
models to estimate metabolizable energy (AME: apparent metabolizable energy, AMEn: apparent ME corrected for nitrogen,
TME: true ME, TMEn: true ME corrected for nitrogen) of corn for ducks

Model
Input variable (g kg–1) Output

Crude protein Ether extract Crude fibre Ash (MJ kg–1)

AME (n = 36)
Range 81-130 23-53 11-37 8-22 13.4-16.1
Mean (SD) 100.2 (11.6) 38.7 (6.8) 24.8 (7.6) 12.4 (2.3) 14.8 (0.68)

AMEn (n = 36)
Range 81-130 23-53 11-37 8-22 13.2-15.8
Mean (SD) 100.2 (11.6) 38.7 (6.8) 24.8 (7.6) 12.4 (2.3) 14.5 (0.69)

TME (n = 42)
Range 81-130 33-53 11-37 8-22 14.6-17.2
Mean (SD) 98.4 (11.7) 39.6 (6.8) 24.0 (7.4) 12.9 (2.6) 15.9 (0.67)

TMEn (n = 36)
Range 81-130 23-53 11-37 8-22 13.9-16.5
Mean (SD) 100.2 (11.6) 38.7 (6.8) 24.8 (7.6) 12.4 (2.3) 15.2 (0.68)
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distribution are required (Cristianini & Shawe-Taylor,
2000). The SVM formulation, which follows the
principle of structural risk minimization, has been
demonstrated to be superior to the empirical risk
minimization principle employed by conventional
ANN models (Yang & Shieh, 2010). Structural risk
minimization minimizes the upper bound on the
expected error whereas ANN minimizes the error on
the calibration data set. This difference gives SVM
greater ability to generalize, which is the goal of
statistical learning (Vapnik, 1995). The basic idea in
SVR is to map the input data onto a higher
dimensional plane via nonlinear mapping. A linear
regression problem is then obtained and solved in this
space (Scholkopf & Smola, 2002). A kernel function
is introduced to make the support vector algorithm
nonlinear. The algorithm performs the regression
estimation by risk minimization where risk is
measured by a loss function (for details see Vapnik et
al., 1997). Before calibrating the SVR models, the
type of kernel function needs to be chosen and three
parameters (υ, C, and ε) need to be determined. The
υ is the kernel parameter, C is the regularization
parameter, and ε is the radius of a tube within which
the regression function must lie after the successful
learning. Parameter ε is the accepted deviation (error)
between observed and predicted values in the ε-
insensitive loss function. If the predicted value is
within the ε-tube, the loss is zero. If the predicted
value is outside the tube, the loss equals the magnitude
of the difference between the predicted value and the
radius ε of the tube. Therefore, ε is a precision
parameter representing the radius of the tube located
around the regression function, and the region
enclosed by the tube is known as ε-intensive zone
(Lahiri & Ghanta, 2008). These three parameters may
be set empirically by the user. A detailed explanation
of kernel functions and parameters can be found in
Cheng et al. (2011).

To use all the data for calibration and testing, a
subset-swapping method is commonly applied
(Cristianini & Shawe-Taylor, 2000). This technique is
known as cross-validation, the statistical practice of
partitioning a data sample into subsets such that the
analysis is initially performed on a single subset, while
the other subset(s) are retained for subsequent use in
conf irming and validating the initial analysis. The
technique estimates the generalization error of a given
model and uses all the data to construct and test the
model (Witten et al., 2011). In this study, we used a

10-fold cross-validation algorithm to f ind the best
value of the SVR free parameters. The 10-fold cross
validation procedure splits the calibration data set
equally into 10 smaller subsets. During each fold of
the calibration stage, every subset is used as the testing
data set once and the remaining sets are used for
calibration. The total number of misclassified samples
is accumulated to compute f inal accuracy. This
algorithm is provided in the software Statistica
(StatSoft, 2009). There are several kernels that can be
used for SVM model construction including linear,
polynomial, radial basis function and sigmoid. Radial
basis function is by far the most popular choice of
kernel type (StatSoft, 2009). Since SVR only deals
with one output at a time, one prediction model must
be constructed for each objective. In this study,
therefore, four SVR models were constructed to
estimate the AME, AMEn, TME, and TMEn (MJ kg–1)
of corn fed to ducks. The variables of interest for
constructing the models were crude protein (CP), ether
extract (EE), crude fibre (CF), and ash (g kg–1). Two
different random data groups (calibration and testing
sets) were used to develop the models. Statistica
Machine Learning version 8.0 was used to construct,
calibrate and validate the SVR models (StatSoft, 2009).
The configuration of each SVR model developed is
summarized in Table 2.

Artificial neural network model development

In this study, feed-forward multilayer perceptron
models (the most common type of ANN model) were
constructed to estimate AME, AMEn, TME, and TMEn

(a separate model for each variable). The configuration
of all the models developed consisted of one hidden
layer, and the hyperbolic tangent and identity were
employed as activation functions in hidden and output
units, respectively. The quasi-Newton method with 400
cycles was used as the calibration algorithm while the
hidden and output weight decays were set at default
values of 0.001 and 0.0001, respectively. The number
of hidden neurons was determined using a trial and
error method to achieve best predictive performance
in both the calibration and testing sets. The network
randomization was set to normal with mean and
variance of 0 and 0.1, respectively. This option
specifies how the weights should be initialized at the
beginning of the calibration process (Faridi et al.,
2012b). Statistica Neural Networks version 8.0
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software was used to construct and calibrate the ANN
models (StatSoft, 2009). The calibration and testing
data sets used for the ANN models were the same as
those used to develop the SVR models.

Multiple linear regression model
development

MLR models were constructed to estimate AME,
AMEn, TME, and TMEn and compared with the SVR
and ANN models. The data investigated were subjected
to MLR analysis using the REG procedure of SAS
(2003). All the input variables (CP, EE, CF, and ash)
were considered in developing the MLR models. The
models were developed on the same calibration data
set used for the SVR and ANN models, and the testing
data were used to evaluate their performance.

Results and discussion

Predictive ability of the SVR models and their
configuration (kernel function and parameters) are
summarized in Table 2. Results for the ANN and MLR
models are also shown in Table 2. R2 values for the
SVR models ranged from 0.856 to 0.982 compared
with 0.708 to 0.943 and 0.666 to 0.930 for the ANN
and MLR models, respectively. The MLR equations to
estimate metabolizable energy from chemical compo-
sition (CF, CP, EE and ash) are shown in Table 3. The
parameter estimates and variance inflation factor (VIF)
for the MLR models are summarized in Table 3. VIF
is a common measure of multi-collinearity. Observed,
predicted, and residual values for TME of the mo-
dels investigated are shown in Table 4. Only results for
the TME models are reported owing to limitations of
space.

Table 2. Statistics and information on support vector regression, artificial neural network, and multiple linear regression
models developed to estimate metabolizable energy (AME: apparent metabolizable energy, AMEn: apparent ME corrected
for nitrogen, TME: true ME, TMEn: true ME corrected for nitrogen) of corn for ducks

Item
AME

�
AMEn

�
TME

�
TMEn

Calibration Test All Calibration Test All Calibration Test All Calibration Test All

No. of observations 27 9 36 27 9 36 29 13 42 27 9 36

Statistics for support vector regression models

R2 0.954 0.920 0.937 0.982 0.910 0.954 0.856 0.943 0.860 0.949 0.927 0.937
Mean square error 0.050 0.037 0.030 0.008 0.068 0.024 0.076 0.055 0.069 0.025 0.051 0.031
Bias 0.037 0.046 –0.023 –0.004 0.007 –0.001 –0.064 0.055 –0.027 0.017 0.072 0.031

Information
Kernel function radial basis function radial basis function radial basis function radial basis function
Kernel parametersa

υ 0.90 0.95 0.96 0.63
C 10 10 10 10
ε 0.001 0.001 0.001 0.001

Statistics for artificial neural network models 

R2 0.916 0.932 0.907 0.927 0.942 0.922 0.708 0.912 0.744 0.927 0.943 0.920 
Mean square error 0.041 0.038 0.043 0.035 0.042 0.037 0.136 0.065 0.114 0.035 0.046 0.038
Bias –0.007 0.065 0.011 –0.007 0.067 0.012 –0.017 0.136 0.030 0.000 0.071 0.018

Information
Type of network three layer perceptron three layer perceptron three layer perceptron three layer perceptron
No. of hidden neurons 5 5 5 5 5 5 5 5 5 5 5 5

Statistics for multiple linear regression models

R2 0.898 0.907 0.887 0.910 0.930 0.903 0.666 0.840 0.704 0.911 0.927 0.902
Mean square error 0.049 0.064 0.053 0.043 0.060 0.047 0.155 0.078 0.131 0.043 0.054 0.046
Bias 0.002 0.108 0.029 0.011 0.123 0.039 0.001 0.151 0.047 –0.027 0.085 0.001 

a υ: kernel parameter, C: regularization parameter, ε: error in ε-insensitive loss function.
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In this paper, the machine learning approach SVR
is introduced and used to develop models for
estimating the ME of corn for ducks based on its
chemical composition. The motivation for this study
is threefold. First, SVR is not so well-known as other
alternatives (e.g. conventional statistical methods of
MLR and ANN) in the field of animal nutrition. Se-
cond, its performance seems well-suited to problems
in poultry nutrition yet no reference information is
available in the literature. Third, determination of ME
of poultry feedstuffs can be an expensive and time-
consuming task. Therefore, developing flexible
efficient models to estimate the ME of feedstuffs is of
primary interest to nutritionists.

Although SVR models have shown excellent
generalization performance, a problem that faces the
user of the technique is how to choose a kernel and
specify its parameters. In our study, radial basis
function was used as the kernel function as it tends to

give better performance. In order to conduct the
present study, four SVR, four ANN, and four MLR
models were developed to estimate the AME, AMEn,
TME, and TMEn of corn for ducks. Model performance
was assessed after generating output by the models.
Previous studies have shown the ability of ANN to
estimate the TMEn of poultry feedstuffs based on their
chemical composition (Ahmadi et al., 2008; Sedghi
et al., 2011). The results of our study reveal that the
SVR approach offers a competitive alternative to
existing powerful ANN models. Comparison of the
predictive ability of SVR, ANN and MLR showed that
the performance of SVR (in terms of R2) on the whole
data set was greater than that of both ANN and MLR.
The same f indings were obtained for the calibra-
tion data set, where the goodness-of-fit attained with
SVR was greater than that with ANN and MLR.
However, the results were different for the testing set.
Predictive ability of SVR was less than (AMEn, AME,

Table 3. Variable estimates and variance inflation factor of multiple linear regression models developed
to estimate metabolizable energy (AME: apparent metabolizable energy, AMEn: apparent ME corrected
for nitrogen, TME: true ME, TMEn: true ME corrected for nitrogen) of corn for ducks

Entitya Estimate SEb t-value p-value Tolerance VIFc

AME
Intercept 16.608 0.649 25.57 <0.001 — 0,000
CF –0.935 0.084 –11.11 <0.001 0.576 1.734
CP 0.015 0.054 0.29 <0.773 0.737 1.357
EE 0.0101 0.098 1.03 <0.314 0.581 1.721
Ash –0.064 0.246 –0.30 <0.767 0.581 1.722

AMEn

Intercept 16.547 0.606 27.28 <0.001 — 0,000
CF –0.918 0.078 –11.68 <0.001 0.576 1.734
CP –0.014 0.049 –0.29 <0.773 0.737 1.357
EE 0.101 0.091 1.11 <0.281 0.581 1.721
Ash –0.030 0.230 –0.13 <0.896 0.581 1.722

TME
Intercept 17.215 0.990 17.39 <0.001 — 0,000
CF –0.779 0.163 –4.77 <0.001 0.433 2.307
CP 0.064 0.079 0.82 <0.422 0.630 1.586
EE –0.052 0.183 –0.28 <0.780 0.477 2.097
Ash 0.051 0.448 0.11 <0.910 0.408 2.448

TMEn

Intercept 17.293 0.605 28.55 <0.001 — 0,000
CF –0.916 0.078 –11.66 <0.001 0.576 1.734
CP –0.016 0.049 –0.32 <0.752 0.737 1.357
EE 0.102 0.091 1.12 <0.277 0.581 1.721
Ash –0.400 0.229 –0.18 <0.862 0.581 1.722

a CF: crude fibre; CP: crude protein; EE: ether extract. b SE: standard error. c VIF: variance inflation factor.
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and TMEn), or greater than (TME) that of ANN. Accu-
racy of SVR for the testing set was less than (AMEn),
close to (TMEn) or greater than (AME and TME) that
of MLR.

These results reveal that SVR models are a
promising tool for estimating the ME of corn. In this
study VIF was calculated to determine the level of
correlation among the variables. Usually, values larger

Table 4. Observed, predicted, and residual values of true metabolizable energy (TME, MJ kg–1) based on support
vector regression (SVR), artificial neural network (ANN), and multiple linear regression (MLR) models

Model

Group Observed SVR
�

ANN
�

MLR

Predicted Residual Predicted Residual Predicted Residual

Calibration 16.212 16.213 0.000 16.333 –0.121 16.352 –0.139
Calibration 15.400 15.401 0.000 15.333 0.067 15.418 –0.018
Calibration 14.965 15.181 –0.216 15.148 –0.183 15.104 –0.139
Calibration 15.417 15.417 0.000 15.271 0.146 15.398 0.018
Calibration 17.209 17.209 0.000 17.290 –0.082 16.863 0.345
Calibration 14.555 15.059 –0.504 15.143 –0.588 14.949 –0.394
Calibration 15.794 15.877 –0.083 15.880 –0.086 15.996 –0.202
Calibration 15.668 15.668 0.000 15.662 0.007 15.770 –0.102
Calibration 14.714 15.295 –0.581 15.174 –0.460 15.041 –0.327
Calibration 15.651 15.571 0.081 15.543 0.109 15.592 0.059
Calibration 15.400 15.400 0.000 15.386 0.015 15.148 0.251
Calibration 15.610 15.609 0.001 15.531 0.078 15.590 0.019
Calibration 15.651 15.651 0.000 15.909 –0.258 15.943 –0.292
Calibration 16.024 16.024 0.000 15.736 0.288 15.687 0.336
Calibration 15.409 15.164 0.245 15.208 0.201 15.074 0.334
Calibration 15.744 15.695 0.048 15.616 0.127 15.586 0.157
Calibration 15.497 15.497 0.000 15.549 –0.052 15.479 0.017
Calibration 15.564 15.273 0.290 15.198 0.365 15.147 0.416
Calibration 15.806 15.807 –0.001 15.731 0.076 15.812 –0.006
Calibration 15.430 15.676 –0.246 15.688 –0.258 15.781 –0.352
Calibration 16.648 16.647 0.001 16.415 0.232 16.447 0.200
Calibration 16.417 16.417 0.001 16.359 0.058 16.426 –0.009
Calibration 17.104 16.895 0.209 16.671 0.433 16.666 0.437
Calibration 16.870 16.870 0.000 16.576 0.294 16.593 0.276
Calibration 17.083 17.083 0.000 16.925 0.158 16.754 0.328
Calibration 16.078 16.156 –0.078 16.163 –0.084 16.222 –0.144
Calibration 16.309 16.191 0.117 15.577 0.732 15.495 0.813
Calibration 15.869 15.869 0.000 16.220 –0.351 16.291 –0.422
Calibration 14.818 15.948 –1.129 16.181 –1.363 16.253 –1.435
Test 15.991 15.959 0.031 15.925 0.066 16.046 –0.055
Test 14.793 15.107 –0.314 15.011 –0.218 14.795 –0.002
Test 15.522 15.601 –0.080 15.181 0.340 14.994 0.527
Test 15.982 15.850 0.132 15.865 0.117 15.924 0.057
Test 15.584 15.762 –0.178 15.733 –0.149 15.857 –0.273
Test 15.769 15.722 0.046 15.702 0.067 15.516 0.252
Test 15.442 15.793 –0.350 15.638 –0.196 15.612 –0.170
Test 15.991 15.953 0.038 15.856 0.135 15.822 0.168
Test 16.459 16.170 0.290 16.145 0.315 16.151 0.308
Test 16.489 16.240 0.249 16.369 0.120 16.422 0.066
Test 17.146 16.782 0.364 16.650 0.495 16.620 0.525
Test 16.535 16.159 0.376 16.237 0.298 16.309 0.225
Test 16.480 16.367 0.113 16.106 0.374 16.151 0.328

Bolded residual values indicate absolute highest residual for each model for calibration and testing data sets.
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than 10 suggest that multi-collinearity might be
causing estimation problems (Chatterjee et al., 2000).
Variables with VIF > 10 should be eliminated or
utilized in separate models or both. However, in this
study, severe multi-collinearity was not observed
among the variables (Table 3). Our results indicated
that, in the MLR models, crude fibre was negatively
correlated with AME, AMEn, TME, and TMEn, while
regression coefficients for CP, EE, and ash were not
statistically significant (Table 3). The same findings
were reported by Zhao et al. (2008). SVR models are
known as universal approximations of any function to
a desired degree of accuracy (Kecman, 2005). SVM
and SVR models are particularly appealing due to their
ability to handle small data sets successfully, often
producing better classification or predictive accuracy
than traditional methods (Mantero et al., 2005).
However, it is worth pointing out that SVR like ANN
are highly data-based models, and therefore the use of
different data sets is required to prove the effectiveness
of SVR in poultry and animal nutrition generally.

In summary, metabolizable energy content of corn
for ducks can be predicted from chemical composition
with a high degree of accuracy using SVR models, with
a statistical performance comparable to or better than
that attained with other approaches (ANN or MLR).
The SVR approach offers a promising alternative to
ANN and MLR in poultry nutrition to predict the
energy value of feedstuffs from chemical composition.
Although the application of SVR in this study was
promising, further evaluation of this methodology in
other areas of animal nutrition is suggested.
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