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Forecast of frost days based on monthly temperatures
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Abstract

Although frost can cause considerable crop damage, and practices have been developed to mitigate forecasted frost, frost
forecasting technologies have not changed for years. This paper reports on a new method based on successive application
of two models to forecast the number of monthly frost days for several Community of Madrid (Spain) meteorological sta-
tions. The first is an autoregressive integrated moving average (ARIMA) stochastic model that forecasts minimum month-
ly absolute temperature (tmin) and average monthly minimum temperature (µt) following Box and Jenkins methodology. The
second model relates monthly temperatures (tmin, µt) to the minimum daily temperature distribution during one month.
Three ARIMA models were identified. They present the same seasonal behaviour (integrated moving average model) and
different non-seasonal part: autoregressive model (Model 1), integrated moving average model (Model 2) and autoregres-
sive and moving average model (Model 3). The results indicate that minimum daily temperature (tdmin) for the meteorolo-
gical stations studied followed a normal distribution each month with a very similar standard deviation through out the
years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The
application of Model 1 to predict minimum monthly temperatures produced the best frost days forecast. This procedure
provides a tool for crop managers and crop insurance companies to assess the risk of frost frequency and intensity, so that
they can take steps to mitigate frost damage and estimate the damage that frost would cause.

Additional key words: ARIMA, frost days, mean square error, time series.

Resumen

Predicción de días de helada a partir de temperaturas mensuales

Aunque las heladas pueden causar considerables daños a los cultivos y existen prácticas que mitigan las heladas, las téc-
nicas utilizadas no han cambiado en muchos años. Este artículo proporciona un nuevo método para predecir el número de
días de heladas para varias estaciones meteorológicas en la Comunidad de Madrid (España) basado en la aplicación suce-
siva de dos modelos. El primero es un modelo estocástico, autorregresivo integrado de media móvil (ARIMA), que predi-
ce la temperatura mínima absoluta mensual (tmin) y la temperatura media de mínimas mensual (µt) siguiendo la metodolo-
gía de Box and Jenkins. El segundo modelo relaciona las temperaturas mensuales (tmin, µt) con la distribución de
temperaturas mínimas diarias de un mes. Se identificaron tres modelos ARIMA. Todas presentan el mismo comportamien-
to estacional (modelo de media móvil diferenciado) y diferente no estacional: modelo autorregresivo (Modelo 1), modelo
de media móvil diferenciado (Modelo 2) y modelo autorregresivo y de media móvil (Modelo 3). Los resultados indican
que las temperaturas mínimas diarias (tdmin) siguen una distribución normal con una desviación estándar similar a lo largo
de los años. Esta desviación estándar podría utilizarse como índice de riesgo para los meses fríos. La aplicación del Mode-
lo 1 para predecir temperaturas mínimas mensuales mostró la mejor predicción en dias de helada. Este procedimiento pro-
porciona una metodología para prevenir los daños por heladas en cosechas y estimar el incremento en los daños cuando
aparece un escenario inesperado, siendo útil para los agricultores y para las compañías de seguros agrarios.

Palabras clave adicionales: ARIMA, días de helada, error cuadrático mínimo, series de tiempo.
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Introduction

Crop establishment and development are crucial
because of the investment of time and resources
involved. Failure of establishment is mainly due to the
influence of climatic factors that cannot be controlled
(Penning and Van Laar, 1982; Hutchinson, 1991).
Unfortunately, practices to mitigate potential frost da-
mage generally increase crop costs (Hansen et al.,
1999). Since freezing temperatures restricting the length
of the growing season are responsible for reductions in
yield and quality of agricultural crops (Harker, 2002;
Faubion, 2003), then minimum temperatures become
critical.

Many studies have used monthly temperature, rain,
radiation, etc. data to develop models that simulate
agro-climatic scenarios (Kuehl et al., 1976; Andersen et
al., 2001). Temperature is one of the most important
variables in these simulations. Studies with regression
functions by Cao and Moss (1989), Jamieson et al.
(1995) and Landau et al. (2000), among others, high-
light the relevance of temperature in crop growth. Sev-
eral temperature models have been developed in order
to simulate crop response to daily maximums and min-
imums of one specific region (Jamieson et al., 1995), or
with lower accuracy, response to monthly temperatures
(Nonhebel, 1993; Castellanos, 1997) or annual oscilla-
tions (Fernández, 1992).

Stochastic simulation of weather data to forecast crop
yield has become of great importance (Bannayan and
Crout, 1999). Dionne et al. (2002) describe crop da-
mage, due to frost, related to crop phenological phase
and low temperature tolerance. Knowledge of how tem-
peratures affect crops is basic to selecting and managing
crops to avoid risks from extreme temperatures that
would seriously reduce yield and market offer (Yang
and Chen, 1989; Zhang et al., 1991; Harker, 2002).
However, there are very few studies in a given area
modeling temperature in relation to frost days as a
method to prevent crop damage (Staggenborg et al.,
1999).

Air temperature, a temporal series, can be modelled
using various techniques, among them the autoregres-
sive integrated moving average (ARIMA) models
(McMichael and Hunter, 1972; Kantz and Schreiber,
1997; Montgomery and Zarnowitz, 1998). The aim of
this modelling approach is to express current time series
values as a linear function of past time series values (the
autoregressive component) and current and lagged val-
ues of a white noise process (moving average compo-

nent) (Box and Jenkins, 1970). In other words, the aim
of the ARIMA models is to separate the observed ele-
ments into two components: the first, related to the
organized part (including tendency, seasonality, cycles);
and the second, the random residuals or white noise
(García-Barrón and Pita, 2004). For example, Persaud
and Chang (1985) used this type of model to relate max-
imum and minimum daily temperatures with solar radi-
ation.

ARIMA modelling is applicable to stationary series
time. The mean, variance and autocorrelation of a sta-
tionary series are independent of time; otherwise a
series is non-stationary. A non-stationary series may be
transformed into a stationary series by differentiating
consecutive values (Wi = Yi – Yi-1) and/or by differentiat-
ing consecutive seasonal values if the series is seasonal
(Wi = Yi – Yi-s).

ARIMA models could be (p,d,q), or (p,d,q) (P,D,Q)s

if the series is seasonal, where p and P are the orders of
non-seasonal and seasonal autoregressive parameters, q
and Q are the orders of non-seasonal and seasonal mov-
ing average parameters, and d and D are the numbers of
regular and seasonal differences required (as explained
above), respectively. Models constructed in this way
have been widely used in economics, engineering, etc to
explain the time structure of each series and predict its
change. The theoretical basis of the proposed models,
including required conditions, equations and signifi-
cance tests, will be explained in the next section.

The aim of this study is to apply these concepts to
estimate monthly frost days (FD) based on seasonal
ARIMA model forecasted minimum monthly (absolute,
tmin and average, µt) temperatures. This method allows
us to estimate frost risk during months where crops
could be damaged due to low temperatures. In Comu-
nidad de Madrid this scenario is observed from Febru-
ary to May and from September to December. In addi-
tion, no daily temperature series, only monthly
minimum series, easier to obtain from meteorological
stations, are required.

Material and methods

Data

Meteorological data, including average monthly min-
imum temperature (µt), minimum monthly absolute
temperature (tmin) and number of frost days monthly
(FD) corresponding to the study years (1950-2003)
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were obtained from twelve meteorogical stations in
Comunidad de Madrid (Fig. 1) at 3º-4º longitude, 40º-
41º latitude and 523-1000 m altitude (Table 1). Data
missing from the temperature time series at each mete-
orological station were filled in by linear regression
between the monthly values from neighbouring stations
(Guerra-Gómez, 1985), checking the homoscedasticity
of the series (Buendía, 1985; Sobrino et al., 2003) pre-
viously.

The National Meteorological Institute (INM) and the
Regional Meteorological Center of Retiro provided, for
each station, the minimum daily temperature in Celsius
(tdmin). From this the following were calculated:
absolute minimum monthly temperature (tmin), average
minimum monthly temperature (µt) and number of days
monthly with <0ºC (FD).

Data for the last 12 months, corresponding to year
2003, were selected to verify the forecasted set of FD,
tmin and µt.

Modelling temperature series

Monthly temperature series has a certain random
nature, with an evident seasonal component. Fig. 2
shows the actual data used in the model-building
process, and illustrates the high degree of non-linearity
and seasonality in time.

The univariant analysis of time series developed by
Box and Jenkins (1970) (B-J method) was applied to all

the meteorological stations with data from 1950 till
2003. Before starting with this methodology it is essen-
tial to obtain stationary series (Brockwell and Davis,
1987). Normally the differences of the original series
remove the non-stationary features of a time series, such
as the time-varying mean and variance. For most eco-
nomic time series, the values of d and D (mentioned in
the introduction) are 0 or 1. Preliminary data analysis
found that this is also the case for all time series consid-
ered in this work. To determinate the values of D and d
empirically, tests of Franses (1991) and Beaulieu and
Miron (1993) were applied.

The B-J method consists essentially of three steps: a)
identification of possible models, b) model parameter
estimation and c) comparison of forecast versus data.
Each of these steps will be explained below (for more
detail see Bowerman and O’ Connell, 1987; and Brock-
well and Davis, 1987).

Identification of possible models

At this stage we also need to decide how many
autoregressive (p) and moving average (q) parameters

Forecast of frost days 515

Figure 1. Map of Spain, with enlarged Community of Madrid.
The twelve meteorological stations selected are indicated by a
filled circle. The urban area in the central part and the moun-
tain area in the north-west, are bounded by a line.
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Figure 2. Original series of absolute minimum monthly tem-
peratures (A) and average minimum monthly temperatures
(B). Data from station m196, from December 1950 until 2003.
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The general form of the seasonal ARIMA model
(Box and Jenkins, 1970) with periodicity s (s=12 for
monthly data in our case) can be written as:

[4]

where δ is white noise and ai is white noise referred to
that month. B is the backward shift operator, ∆d =
(1-B)d and ∆D

12 = (1-B12)D are, respectively, the opera-
tors for the dth - order monthly difference and the Dth -
order annual difference. For instance, for D = 1, d = 1:

[5]

[6]

The rest are polynomial terms that involve several
unknown parameters to be estimated (φ1…φp, θ1…θq,
Φ1…ΦP, Θ1…ΘQ). The first two polynomials in Eq. [4]
represent, respectively the AR (autorregresive) and MA
(moving average) components. The latter two are the
seasonal AR and MA polynomials respectively. These
components are used to model the cyclical behaviour of
a time series around the time-invariant mean.

Estimation of model parameters

Estimation of model parameters obtained in the previ-
ous section (φ1…φp, θ1…θq, Φ1…ΦP, Θ1…ΘQ) is based
on the squared unconditioned minimums (Harvey, 1990).
Later, model selection is based on parameters and residual
tests such as standard error and t-Student test. Finally, the
residual series, the difference between series estimates and
observable values was analyzed to check that it was
indeed a random series (Harvey and Pierse, 1984), that is,
with a null average and normally distributed.

The model selected will be the one that minimizes
the mean - square error (MSEt) in the series estimation
(Uriel, 1995) defined as:

m100E m109 m117 m129 m169 m170 m175 m195 m196 m200 m229 m342

Longitude 3º38' 3º38' 3º30' 3º32' 3º18' 3º17' 3º27' 3º40' 3º47' 3º43' 3º18' 4º14'

Latitude 40º01' 40º59' 40º44' 40º27' 40º30' 40º31' 40º29' 40º24' 40º22' 40º18' 40º14' 40º19'

Altitude 490m 1000m 654m 582m 613m 610m 611m 667m 687m 617m 592m 523m

Table 1. Location of the 12 meteorological stations used in this study (longitude, latitude and altitude)

are necessary to yield an effective but still parsimonious
model of the process (parsimonious means that it has
the fewest parameters and greatest number of degrees of
freedom among all models that fit the data). In practice,
the numbers of the p or q parameters very rarely need to
be greater than 2.

The identification step is based on the behaviour of
two functions: the simple autocorrelation function, ACF,
and the partial autocorrelation function, ACFP (Aguirre,
1994).

ACF gives the correlation strength between two val-
ues of the series separated by k values [lag (k)], includ-
ing the intermediate values (Box and Jenkins, 1976).
ACF values, between +1 and –1, are calculated as:

[1]

N is the number of data in the series, is the variable
value at a certain month, is the series average, and its
estimator is:

[2]

ACFP gives the correlation strength between two val-
ues of the series separated by k values [lag (k)], but not
the intermediate ones. It is estimated as (Bras and
Rodriguez-Iturbe, 1993):

[3]

Normally a significant interval, 1.92 or 1.96 times
the standard error, is calculated for both functions to
evaluate if the values obtained are significant (Hamil-
ton, 1994).
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[7]

where: tij is the estimated monthly temperature, tij is the
observed monthly temperature, i = month number, j =
year number, N = number of data.

Comparison of forecast with data

Once the simulation is finished, a model has to be
selected from the possible ones based on accuracy
according to B-J methodology.

The forecast for the last year (2003) with the select-
ed model for each series based on data from 1950 to
2002 were made, with a confidence interval of 95%.
The error estimated in this forecast is calculated based
on Eq. [7] restricted to year 2003.

When forecast values are within a certain confidence
limit of the real data, the models can be considered ade-
quate to forecast the series for the following year (Bow-
erman and O’Connell, 1987).

Forecast of temperature series

The estimation process is performed on trans-
formed (differenced) data; before the forecasts are
generated, the series needs to be integrated (integra-
tion is the inverse of differencing) so that the forecasts
are expressed in values compatible with the input
data. This automatic integration feature is represented
by the letter I in the name of the methodology
ARIMA.

At this step, the time series (from 1950 till 2003) is
used to adjust model parameters. Once finished, the
model is used to forecast the following year.

Estimation of number of frost days

A normal probability plot was constructed for each
month and each station to check that the underlying
probability distribution of minimum daily temperature
can be assumed to be normal (Eq. [8]).

[8]

The essence of such a plot is that points plotted from
a normal distribution fall close to a straight line

(Devore, 1995). From these linear regressions the mean
and standard deviation can be calculated.

Once that normality was checked, we can assume that
the absolute minimum monthly temperature (tmin) will
be equal to the average minimum monthly temperature
(µt) minus a coefficient (α) related through the typical
deviation (σt). That is (Tarquis et al., 1993):

[9]

Applying Eq. [9], the coefficient was estimated for
each station and each month.

Estimated FD, the probability of a minimum daily
temperature lower than 0ºC (Diehl et al., 1982), depends
on the parameters of the normal distribution, µt and σt.

[10]

where

Results and discussion

Modelling temperature series

Once that all series have been transformed into sta-
tionary series, ACF and ACFP graph were studied (see
Fig. 3). There were three possible models for the non-
seasonal part and only one model for the seasonal part,
depending on the station and temperature analyzed.
These are specific cases of the general model shown in
Eq. [4].

- Model 1: autoregressive model of order one in the
non-seasonal part, and integrated moving average
model of order one for the seasonal part. In B-J method-
ology this would be: (1,0,0),(0,1,1)12

[11]

- Model 2: integrated moving average model of order
one in the non-seasonal part, and integrated moving
average model of order one for the seasonal part,
(0,1,1),(0,1,1)12:

[12]

- Model 3: autoregressive and moving average model
of order one in the non-seasonal part, and integrated
moving average model of order one for the seasonal
part, (1,0,1),(0,1,1)12 :

[13]
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For both series, and , Model 1 is the most frequent-
ly fitted (Table 2). Model 2 µt time series only fitted
two stations (m109 and m342), a water reservoir
located in mountain area of Madrid and a hydroelec-
tric power station in a valley, respectively. This model
has been fitted for more unstable series than those fit-
ted with Model 1, in which it was not necessary to dif-
ferentiate the non-seasonal part. These two stations
frequently experience temperature inversions due to
cold air accumulation in the valleys. The tmin series
fitted two stations (m109 and m195), a water reservoir
(m109) and the city centre surrounded by forest and
vegetation (m195), a differentiating it from other sta-
tions in the same area. Finally, both time series fitted
the station located at Barajas airport, with its higher
instability due to winds and turbulence created by
aeroplanes.

Coefficient values of autoregressive Model 1 with an
average of 0.4 indicate a low correlation between vari-
able value (Tables 3 and 4). Moving average Model 2
indicates that the possible tendency that could exist is
due to white noise. Coefficient values of an average of
0.86 (Tables 3 and 4) indicate considerable influence of
preceding and present noise.

The seasonal part is always an integrated moving
average model that yields a random and very weakly
auto-correlated series type. Coefficients of this part, of
an average of 0.90 (Tables 3 and 4), indicate consider-
able influence of white noise between consecutive
years.

Forecast of temperature series

Forecast temperatures for the twelve stations were
well adjusted. An average forecast was calculated for
absolute temperatures and minimum averages for the last
year according to the chosen confidence interval (95%).
Absolute minimum temperature average error was
1.3ºC, with a standard deviation (STD) error of 1.03.
Minimum average temperature errors averaged of 1.1ºC,
with STD of 0.64. It is observed in general that, for the
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Stations code
ARIMA models (s =12)

µt tmin

m100E (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m109 (0,1,1), (0,1,1)s (0,1,1), (0,1,1)s
m117 (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m129 (1,0,0), (0,1,1)s (1,0,1), (0,1,1)s
m169 (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m170 (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m175 (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m195 (1,0,0), (0,1,1)s (0,1,1), (0,1,1)s
m196 (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m200 (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m229 (1,0,0), (0,1,1)s (1,0,0), (0,1,1)s
m342 (0,1,1), (0,1,1)s (1,0,0), (0,1,1)s

Table 2. ARIMA models fitted for minimum temperature
series per station: monthly absolute (tmin) minimum and
monthly average minimum (µt)

The ARIMA nomenclature correspond to (p,d,q) (P,D,Q)s, where p
and P are orders of the non-seasonal and seasonal autoregressive
parameters, q and Q are orders of the non-seasonal and seasonal
moving-average parameters, d and D are numbers of regular and
seasonal differences required, and s is the periodicity.

Figure 3. Simple Autocorrelation Function (ACF) and Par-
tial Autocorrelation function (ACFP) of various ARIMA
models identified : A) ARIMA(1,0,0)(0,1,1)12 from station
m196, B) ARIMA(0,1,1)(0,1,1)12 from station m109 and C)
ARIMA(1,0,1)(0,1,1)12 from station m129. The series used
were differentiated average minimum monthly tempera-
tures.



twelve stations, the average minimum temperatures
adjust better than the absolute minimums (Figs. 4 and 5).

As an example, some data with actual temperatures
for three stations are shown in Figs. 4 and 5, each one
with a different model. In these Figures the good adjust-
ment of estimated to actual temperatures can be
observed. In all months, average forecasted tempera-
tures are not outside the limits of the 95% confidence
interval. For m109, as well as for the rest of the stations
modelled by Model 2, there is not a significant differ-
ence between the model forecast and the monthly aver-
age of the series, confirming that this model only
reflects the influence of white noise.

Estimation of number of frost days

Estimation of number of frost days monthly (FD) for
two crop periods with highest risk per month and per
station from the years studied is shown in Table 5.

December is the month with the highest FD at all sta-
tions, followed by February and November. From Feb-
ruary to May, stations m109 and m169 show the highest
accumulated FD value, while from September to
December station m100E does so, in agreement with
their geographic situation (Fig. 1).
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Meteorogical Coefficientsa

Stations φ θ Θ

m100E 0.424 0.926
m109 0.921 0.956
m117 0.502 0.938
m129 0.676 0.451 0.964
m169 0.908 0.950
m170 0.327 0.964
m175 0.187 0.961
m195 0.238 0.917
m196 0.290 0.906
m200 0.293 0.948
m229 0.411 0.843
m342 0.877 0.959

Table 3. Coefficient values of models obtained per station for
monthly average minimum temperature (µt)

a Coefficients correspond to the following models:

(1,0,0)(0,1,1)12

(0,1,1)(0,1,1)12

(1,0,1)(0,1,1)12

Meteorogical Coefficientsa

Stations φ θ Θ

m100E 0.133 0.913
m109 0.938 0.939
m117 0.602 0.921
m129 0.751 0.576 0.955
m169 0.556 0.942
m170 0.308 0.882
m175 0.200 0.956
m195 0.953 0.937
m196 0.088 0.937
m200 0.140 0.966
m229 0.456 0.919
m342 0.523 0.934

Table 4. Coefficient values of the models obtained per station
for monthly absolute minimum temperature (tmin)

a Coefficients: see Table 3.
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m196, m109, m129. Error bars correspond to the selected
confidence interval (95%) in the forecast.



The same study can be carried out on the STD of
FD (see Table 6). One of the first results is that FD
standard values follow the same pattern explained ear-
lier for each FD value. Therefore, the month with the
highest variation of FD is December, followed by Feb-
ruary and then March and November with a similar
STD.

The r2 values obtained from the probability plot
analysis (Fig. 6) are greater than 89% for all cases, con-
firming that a normal distribution can be used to
describe daily minimum temperatures. The range of
estimated a values varies from 4.2 to 0.204 (Table 7). In
general, comparing Tables 5 and 6, an inverse relation
between a and the average number of monthly frost days
can be seen. The lack of any clear relation between fore-
casted coefficient errors and location of stations is an
indication of the complexity due to several simultane-

ous influencing factors (water reservoirs, urban centre,
mountain area, etc).

The number of monthly frost days is calculated using
forecasted temperatures (tmin and µt) and estimated σt

and α, as explained previously.
Some of the forecasted frost days are shown in Fig.

7, where for each month studied the monthly average
and standard deviation of FD are also presented. For
the three stations of Fig. 7, the highest error is in Feb-
ruary and November, as in the rest of the stations ana-
lyzed.

To evaluate the adjustment of forecasted to actual
data, a coefficient error is calculated to compare the dif-
ference between both and the monthly standard devia-
tion found (Table 8). We can observe that almost all
errors are smaller than 0.5 STD. Only twelve values are
larger than STD, mainly in February and November.
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Figure 5. Absolute minimum monthly temperature series in
2003: original data represented by an empty square () and
forecasted, represented by an empty circle (o) for stations
m196, m109, m129. Error bars correspond to the selected
confidence interval (95%) in the forecast.
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Figure 6. Accumulated normal probability plot based on daily
minimum temperatures (tdmin) for two different months at sta-
tion m100E. Actual data represented by a filled square ()
and the fitted normal probability is represented by a continu-
ous line: A) April 1995 average 3.99, STD 3.3 and r2= 0.98 B)
December 1995 average 4.18, STD 4.5 and r2= 0.99.



Forecast of frost days 521

Month m100E m109 m117 m129 m169 m170 m175 m195 m196 m200 m229 m342

February 7.59 4.54 6.01 5.52 5.63 5.54 5.52 5.55 5.03 4.72 6.19 3.66

March 5.21 6.24 4.53 4.62 6.64 5.94 4.00 2.69 3.53 3.15 6.24 2.36

April 3.41 3.54 2.79 1.65 3.38 3.23 1.94 0.77 1.21 0.92 2.72 0.00

May 0.34 1.24 0.67 0.24 1.54 0.88 0.36 0.00 0.36 0.48 0.88 0.00

September 0.00 0.17 0.00 0.18 0.34 0.26 0.17 0.00 0.00 0.00 0.41 0.00

October 2.67 2.46 1.30 0.81 2.60 1.61 0.65 0.13 0.24 0.74 2.28 0.00

November 5.70 6.37 5.17 4.51 6.13 5.60 3.91 2.14 3.38 3.29 6.06 1.54

December 7.60 5.80 7.12 7.29 8.21 7.61 6.89 5.14 6.19 6.95 9.13 4.28

Table 6. Standard deviation (STD) values of the number of monthly frost days (FD)

Month m100E m109 m117 m129 m169 m170 m175 m195 m196 m200 m229 m342

February 1.300 0.600 0.400 0.204 1.000 0.400 1.000 1.63 1.52 1.501 0.500 1.344
March 0.745 0.900 1.579 1.149 1.013 1.184 1.300 1.60 1.67 1.794 0.600 1.388
April 1.413 1.571 1.596 1.770 1.518 1.667 1.741 1.72 1.78 1.875 1.690 4.200
May 1.739 1.668 1.741 2.032 1.608 1.799 1.785 4.20 1.80 1.644 1.623 2.600
September 2.600 1.682 4.200 1.577 1.472 1.665 1.484 2.60 2.60 2.600 1.564 1.800
October 1.440 1.556 1.664 1.832 1.476 1.434 1.902 1.78 1.89 1.612 1.500 2.600
November 0.800 1.074 1.362 1.265 1.300 0.800 1.435 1.58 1.46 1.466 1.213 1.453
December 0.900 1.200 1.400 1.200 0.560 0.342 1.504 1.42 1.40 0.629 0.600 1.277

Table 7. α coefficient values estimated per month and per meteorological station

Meteorological Stations
Month

m100E m109 m117 m129 m169 m170 m175 m195 m196 m200 m229 m342

February 14 17 15 13 17 14 9 5 7 9 16 3
March 12 13 10 7 12 10 5 2 3 3 9 1
April 4 5 4 1 5 4 1 0 1 1 4 0
May 0 1 0 0 1 1 0 0 0 0 1 0
September 0 0 0 0 0 0 0 0 0 0 0 0
October 2 1 1 0 2 1 0 0 0 0 1 0
November 12 11 8 7 11 9 4 2 3 4 10 1
December 19 17 17 15 18 15 12 6 8 13 16 4
Total I 31 37 28 21 34 29 16 8 11 13 29 4
Total II 32 29 25 22 30 25 16 7 11 17 27 5
Total I+II 63 66 53 43 64 54 32 15 22 30 56 9

Table 5. Estimation of number of monthly frost days per station at various periods: monthly, from February to May (total I),
from September to December (total II) and sum of the months shown (total I+II)
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Month m100E m109 m117 m129 m169 m170 m175 m195 m196 m200 m229 m342

February 0.66 1.76 0.50 0.54 1.42 1.26 1.09 0.54 0.20 0.85 1.45 1.64
March 0.19 0.80 0.22 0.43 0.15 0.17 0.25 0.00 0.28 0.32 0.48 0.85
April 0.29 0.00 1.08 0.00 0.89 0.62 0.52 0.00 0.00 1.09 0.37 0.00
May 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
September 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
October 0.00 0.81 0.00 1.23 0.38 1.24 0.00 0.00 0.00 0.00 0.88 0.00
November 0.53 0.00 0.19 0.22 0.65 0.18 0.00 0.00 0.30 0.30 0.17 0.65
December 1.32 0.00 0.56 0.69 0.85 0.39 0.58 0.00 0.48 1.15 0.22 0.47

Table 8. Monthly coefficient error between forecast and monthly real data corresponding to year 2003

Observing all the stations, there are only three that pre-
sent an error larger than 1.5 STD in one month (m109
and m342), and in two stations all months show less
than 0.6 STD (m196 and m195).

Comparing the results given in Figs. 6 and 7, it is
obvious that the increase of the forecasted error
occurs when the average minimum monthly temper-
ature is very close to 0ºC. In this case, an error in the
forecasted temperature of 1ºC varies the number of
frost days much more than the same error in another
month where the value is farther from the 0ºC
threshold value. On the other hand, when the temper-
ature series follows Model 2, almost the same fore-
cast can be obtained with average monthly tempera-
ture.

Conclusions

Application of B-J methodology to analyze and pre-
dict temporary monthly temperature series is effective.
The twelve Community of Madrid stations studied yield-
ed three different models: (1,0,0 )(0,1,1)12 (Model 1),

(0,1,1)(0,1,1)12 (Model 2) and (1,0,1)(0,1,1)12 (Model 3).
Elevated values of the moving-average coefficient in the
seasonal part of the three models indicate influence of
noise in the seasonal series (from year to year). In gene-
ral, the forecast for minimum temperatures is in good
agreement with the data. However, Model 1 series yield-
ed better results than Model 2 series.

The estimation of FD starting from the minimum
absolute temperatures and the monthly average of min-
imums, assuming a normal distribution of minimum
daily temperatures, is an effective method. Of the twelve
stations studied, the forecast for eleven are very close to
the actual values. The estimated FD for February and
October show the higher forecasted errors, while
March, April and May were much better adjusted. The
reason for this is the size of the forecasted error of the
average minimum temperature when close to 0ºC. In
that situation the error generated in the forecasted frost
days increases, more than the error in the value of the a
parameter.

This study indicates that it is possible to transform
temperatures into a risk index for various crops, due to
the possibility of calculating the number of days below
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Figure 7. Series of number of monthly frost days series, 2003: original data represented by a filled square () and forecasted,
represented by an empty circle (O) for stations m196, m109, m129, for two crop periods with highest frost risk in Comunidad de
Madrid, from February to May and from September to December, with error bars corresponding to the monthly standard devia-
tion.



a certain temperature, not only 0ºC. Although this
methodology was carried out in the Community of
Madrid area, it may be applied to other locations where
the minimum daily temperature (tdmin) can be assumed
to be normally distributed.
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