
Introduction

The European Union (EU) has been engaged in a
process of market integration for a long period of time.
A key element of that process was the adoption of the
Single Market Programme which resulted in the re-
moval of all barriers (tariff and non tariff ones) between
national markets by January 1993. The idea behind the
Single Market Programme was that the establishment
of a large European market would foster competition
and innovation, would increase the speed of adjustment
and the resilience to economic shocks, and would
benefit consumers through wider choices and lower
prices. Soon, however, it became evident that the eli-
mination of trade barriers was not enough and that a
new impetus was necessary to fully exploit the poten-
tial of the market integration process. In response to
the new challenges, the European Commission (EC)
launched in 2006 the Single Market Review. The new
strategy has placed its emphasis on understanding the
price adjustment mechanisms to changing economic
conditions making, thus, the single market policy more
impact-driven and result-oriented (EC, 2012a). The
cornerstone of the Single Market Review is market mo-

nitoring including benchmarking of price differences
among the EU member states. A pilot study, conducted
in the context of the Single Market Review, has indi-
cated that the Food and Beverage industry was among
the EU industries having potentially serious problems
with regard to market integration (EC, 2008). The re-
sults of that pilot study appear to be in agreement with
earlier survey evidence from supermarkets around the
EU pointing to substantial and persistent price diver-
gence for homogeneous products even in neighboring
or in comparable countries (e.g. EC, 2004; Borchert &
Reineke, 2007).

The analysis of spatial price interrelationships enable
researchers to assess whether geographically separated
markets are segmented (regionalized) or globalized (inte-
grated). Economic Theory predicts that in the absence
of trade barriers, spatial arbitrage activities will ensure
that the price difference of a homogeneous commodity
in two geographically separated markets will be, at most,
equal to transportation/transaction costs [the weak version
of the Law of One Price (LOP)]. Under spatial market
segmentation, profitability opportunities are not fully
exploited resulting into efficiency losses (e.g. Asche
et al., 1999; Serra et al., 2006; Reboredo, 2011).
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Although market globalization, in general, and food
market integration in particular, has been an issue of
great importance for both economists and policy ma-
kers, the number of recent formal studies on the price
interrelationships and/or on the validity of the LOP for
spatial EU agri-food markets has been rather small.
Serra et al. (2006) investigated price adjustment
(which is a necessary but not a sufficient condition for
the LOP to hold) among four major EU pork markets
using both the parametric Threshold Autoregressive
Model (TAR) and the non parametric Local Linear
Regression (LLR) models. They found evidence of
asymmetries in price transmission. Fousekis (2007)
assessed the validity of the LOP for pork and poultry
in fourteen EU markets using multivariate linear
cointegration tests. He obtained some evidence of the
LOP in the pork markets but very limited evidence of
it in the poultry markets. Emmanouilides & Fousekis
(2012) also examined the validity of the LOP in four
major pork markets using bivariate non linear statio-
narity tests. According to their results the LOP holds
for the markets considered.

Against this background, the objective of the present
work is to assess the degree and the structure of price
dependence in the principal EU olive oil markets. To
the best of our knowledge, there are no publicly avai-
lable econometric studies that address price dependen-
ce in these particular markets. To provide a formal ana-
lysis, we utilized price data from Spain, Italy, and
Greece, and the statistical tool of copulas. In the recent
years the EU production of olive oil has been approxi-
mately 3.5 million tonnes (75% of the world produc-
tion). The three principal producers (Spain with 60%,
Italy with 21%, and Greece with 14%) account for
about 95% of the EU production. The EU is also the
world’s biggest consumer of olive oil (with a share of
66%); Spain, Italy, and Greece account for about 80%
of the EU consumption.

In statistics, copula is a joining function; it brings
together the marginal distributions of individual ran-
dom processes to obtain their joint distribution. The
use of copulas for modeling dependence among ran-
dom processes gained momentum in the late 1990s es-
pecially in engineering, risk management, and finance
but only very recently has found its way into applied
and agricultural economics. Standard tools for the ana-

lysis of multivariate structures assume that the margi-
nal distributions belong to the same family (typically
the normal distribution) and often that the dependence
structure follows a linear relationship. A distinct
advantage of copulas is that they allow the joint
behavior of random processes (which is of primary
interest) to be modeled independently of the marginal
distributions – an approach that offers considerable
flexibility in empirical research (e.g. Nelsen, 2006;
Patton, 2012; Requenta et al., 2013). With regard to
spatial price interrelationships, the notion behind
employing copulas to characterize co-movement (de-
pendence) is that in well-integrated markets, prices
move together; specifically, they boom and they crash
together. Copulas are especially suitable for modeling
the joint behavior of random processes during extreme
events, making it possible to assess whether prices are
linked with the same intensity at both extreme market
upturns and downturns (Reboredo, 2011).

To date, there have been few studies employing co-
pulas to analyze market integration. Goodwin et al.
(2011) examined spatial price adjustments in four
timber markets of North America and found evidence
of asymmetries at the tails of the joint distributions.
Reboredo (2011) assessed price dependence in four
regional crude oil markets. He reported symmetric tail
co-movements, something which suggests that the
markets under consideration constitute one great pool.
Serra (2012) investigated dependence between biodie-
sel, diesel, and crude oil prices in Spain. According to
her results, there has been symmetric price co-move-
ment for the crude oil-diesel pair but only lower-tail
dependence for the crude oil-biodiesel pair.

Material and methods

Copulas and dependence measurement

Let X = (X1,X2) be a random vector with distribution
function H(x1,x2); let also H1(x1) and H2(x2) be the
marginal distribution functions of X1 and X2 respec-
tively1. Then, according to Sklar’s (1959) theorem,
there exists a copula function C:[0,1]2 → [0,1] such
that for all (x1,x2) ∈R2 it is the case
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1 For the sake of simplicity we consider the bivariate case. The results, however, can be readily extended to a p-variate case with
p > 2. Details related to the construction and the properties of copulas can be found in Joe (1997), Nelsen (2006), Genest & Favre
(2007), and Patton (2012).
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For continuous marginal distributions, the copula
function is unique and has the representation

[2],

where Hi
–1 (i = 1,2) are the inverse distribution func-

tions (marginal quantile functions) and are quantiles
(probabilities) of the uniform distribution function,
U[0,1]. The joint density function associated with C is

[3],

where h is the joint density function of H, h1 and h2

are, respectively, the marginal density functions of H1

and H2. From [3] follows

[4].

A joint probability density function of two random
variables contains information on the marginal
behavior of X1 and X2 and on the dependence between
them. In c(F1(x1),F2(x2)) each random variable is fed
on its own distribution function. As a result, all infor-
mation contained in the marginal distribution functions
is swept away and what is left in c (and in C) is pure
joint information about X1 and X2. From [4] it is clear
that the copula fully characterizes the co-movement
(dependence) of the random variables by capturing the
information missing from the marginal distributions
to complete the joint distribution (Meucci, 2011). The
converse of Sklar’s theorem holds and it states that
given H1 and H2 and any copula function C, the func-
tion H in [1] defines a valid joint distribution function
with margins H1 and H2.

Conducting inference on dependence (co-move-
ment) using copulas offers a number of advantages.
First, just as marginal distributions provide an
exhaustive description of the behavior of two random
variables when considered separately, copulas fully
and uniquely characterize the dependence structure
between X1 and X2. Second, copulas are able to model
co-movement independently of the marginal distribu-
tions. This follows from the converse of Sklar’s theorem.
Third, copulas provide information on the degree as
well as the structure of dependence; as known, standard
measures of co-movement such as Pearson’s correla-
tion coefficient provide information regarding whether
X1 and X2 are linearly related. Copulas, in contrast, allow
for more general forms of functional dependence bet-
ween the two variables, with linear co-movement being

a special case. Fourth, because copulas are based on
the ranks of X1 and X2, they are invariant to continuous
and monotonically increasing transformations of them.

A standard rank-based measure of functional de-
pendence is Kendall’s , defined as

[5],

where N is the total number of observations, and PN

and QN are the number of concordant and discordant
pairs, respectively; two pairs (x1j,x2j), (x1k,x2k), j,k = 1,
2,…, N, are said to be concordant (discordant) when
(x1j – x1k)(x2j –x2k) > 0 (< 0). Kendall’s τ provides infor-
mation on co-movement across the entire joint dis-
tribution function (at the center, as well as at the tails
of it).

The relevant notion for the study of co-movement
between extreme values is that of tail dependence, rela-
ting to the amount of dependence in the upper-right
and/or the lower left quadrant tails of a bivariate dis-
tribution. Tail (extreme) co-movement is measured by
the upper,λU, and the lower, λL, dependence coeff i-
cients defined as

[6]

and

[7].

λU measures the probability that X1 is greater than the
100u-th percentile of F1, given that X2 is also greater
than the 100u-th percentile of F2 as u approaches 1
from below; λL measures the probability that X1 is less
than the 100u-th percentile of F1, given that X2 is also
less than the 100u-th percentile of F2 as u approaches
0 from above. In other words, the two coefficients of
tail dependence provide information about the like-
lihood for the two random variables to boom and to
crash together, respectively. Note that since λU and λL

in [6] and [7] are expressed via copula, certain pro-
perties of copulas (e.g. invariance to monotonically
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increasing transformations of the underlying random
variables) apply to tail coefficients as well.

Commonly used families of bivariate copulas:
parameters and implied dependence structures

Given that multivariate stochastic processes may
have quite different properties, it is highly desirable
for a researcher to have at her (his) disposal a variety
of copulas to capture adequately the salient charac-
teristics (e.g. asymmetries, heavy tails) of the processes
to be modeled. According to Durante & Sempi (2010),
a “good” family of copulas is: (a) interpretable,
meaning that its members have a probabilistic inter-
pretation suggesting “natural” situations where this
family could be considered; (b) flexible, meaning that
its members are capable of representing many possible
types and degrees of co-movement; (c) easy-to-handle,
meaning that the family members are expressed in a
closed form or, at least, are easily simulated by means
of some known algorithm. The investigations on the
topic have led to a very large number of copula families
with desirable properties. In the following, the paper
presents and discusses only those typically employed
in f inance, risk management, and economics (e.g.
Embrechts et al., 2002; Goodwin et al., 2011; Reboredo,
2011; Czado et al., 2012; Patton, 2012; Serra & Gil, 2012).

The Gaussian and the t-copula are members of the
elliptical family of copulas. The Gaussian involves a
single dependence parameter, ρ (the linear correlation
coeff icient corresponding to the bivariate normal
distribution). The t-copula involves two parameters,
the correlation coeff icient ρ and the degrees of
freedom (denoted as v). When v ≥ 30 the t-copula
collapses to a Gaussian one. The Clayton, the Gumbel,
the Frank, the Gumbel-Clayton, and the Joe-Clayton
are members of the family of Archimedean copulas.
The first three contain a single dependence parameter
(denoted as θ) while the last two contain two dependen-
ce parameters (denoted as θ1 and θ2).

Table 1 presents the relevant dependence pa-
rameter(s) and their relationship to Kendall’s as 
well as to the upper and lower dependence coeff i-
cients2. The Gaussian copula is symmetric and exhibits
zero tail dependence. That is, irrespective of the degree
of the overall dependence, extreme changes in one

random variable are not associated with extreme
changes in the other random variable. The t-copula
exhibits symmetric non-zero tail dependence (joint
booms and crashes have the same probability of
occurrence). The Clayton copula exhibits only left co-
movement (lower tail dependence); the Gumbel copula
exhibits only right co-movement (upper tail depen-
dence); the Frank copula exhibits zero tail dependence;
the Gumbel-Clayton and the Joe-Clayton copulas allow
for (potentially asymmetric) both right and left co-
movement.

The semiparametric approach

In our empirical analysis we use the semiparametric
approach (Chen & Fan, 2006). In the first stage of this
approach, the original series are transformed into the
so called copula data (meaning data with approxima-
tely uniform marginal distributions on [0,1]) using
their respective empirical distribution functions. In the
second stage, the estimation of parametric copula
models is carried out by applying the maximum like-
lihood estimator on the copula data (method of ma-
ximum pseudo-likelihood). The Suppl. Table 1 [pdf
online] presents technical details on the construction
of the copula data and on the method of maximum
pseudo-likelihood.

The semiparametric estimator of the copula para-
meter vector θ̂ is consistent and asymptotically normal.
It is, however, inefficient when the original series are
not i.i.d., something that it is often the case with time
series data. This problem has been typically addressed
in the relevant literature in two alternative methods:
(a) Parametric GARCH models, one for each series,
are fit to the original data and the empirical distribution
functions are obtained from the resulting series of
standardized innovations; (b) standard errors of the
parameters of interest (e.g. those of average and tail
dependence) are approximated using resampling
methods (e.g. Choros et al., 2010). Here, we employ
the second methodology. As shown by Kim et al.
(2007) an inappropriate choice of the parametric
models in the first stage may have a detrimental effect
on the estimation of the dependence parameters per
se. Moreover, the first method renders inference on co-
movement very difficult because any hypothesis about

2 Joe (1997) and Nelsen (2006) offer functional forms for the family of the elliptical copulas and generator functions for the family
of Archimedean copulas.
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the dependence structure becomes composite, as it
actually concerns both the employed parametric
GARCH models and the employed parametric copula
model (Genest et al., 2009).

The selection among the seven alternative copula
families, presented above, is carried out in the follo-
wing way. In a first step, the the Akaike Information
Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) are applied to each family3. In the case
where the two criteria are in agreement, the selection
process is terminated with the appropriate (the best
fitting) model being the one that gives the lower AIC
(and BIC) value. In the case of disagreement, the

goodness of fit of the two competing models is further
assessed using the rank-based versions of the Kol-
mogorov-Smirnov(KS) and the Cramer-von Mises
(CvM) tests (Suppl. Table 2 [pdf online]). All estima-
tions and tests have been carried out using the CDVine
package in R (Schepmeier & Brechmann, 2012).

The data and the empirical models

The data we use for the empirical analysis are
monthly olive oil prices (expressed in Euros per 100 kg)
from Spain, Italy, and Greece4. In particular, we con-

Table 1. Copula parameters, Kendall’s τ, and tail dependence(1)

Copulas Parameters Kendall’s τ
Tail dependence
(lower, upper)

Gaussian (0,0)

t-Copula

Clayton

Gumbel

Frank(2) (2) (0,0)

Gumbel-Clayton

Joe-Clayton

(1) Brechmann & Schepsmeier (2013). (2) D(θ) =
c /θ

exp(x) −1
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3 The values of the AIC and the BIC criteria are computed from

where k is the number of the estimated dependence parameters.
4 Obtained from the EC (2013). They correspond to the prices received by producers at the factory gate for olive oil in bulk.
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sider the prices of two quality differentiated olive oil
grades; extra virgin and lampante. On the basis of the
relevant EC Regulation, the extra virgin category refers
to olive oils obtained from the fruit of the olive tree at
the optimum stage of ripening, solely by mechanical
or other physical means that do not lead to alteration
of the oil, and which have not undergone any treatment
other than washing, decantation, centrifugation or
filtration. Extra virgin oil has a maximum of 0.8 g oleic
acid per 100 g of oil. Lampante oil refers to olive oils
obtained from the pressing of rotten olives, gathered
from the ground when fermentation has already set in;
it has from 2 to 5 g of oleic acid per 100 g of oil5. Be-
cause of its acidity and its bad taste, lampante oil is
not suitable for consumption. It has to be ref ined
through a chemical process using phosphoric acid,
caustic soda, clays, and very high temperatures, and
also to be blended with some (between 5% and 20%)
extra virgin olive oil to give it taste and color.

Fig. 1a presents the natural logarithms of prices of
extra virgin olive oil and Fig. 1b those of lampante
olive oil over the period 2002:1 to 2012:12. With
respect to extra virgin olive oil, Italy (IT) has been the
spatial market with the higher price. Prices of this
commodity in Greece (GR) and in Spain (ES) have
been quite similar to each other. The observed price
differences reflect primarily differences in supply and
demand conditions; prices tend to be higher in a deficit
market (IT) relative to those in surplus markets (ES
and GR). Overall, the three price series appear to be

moving together with the exception of (approximately)
the period October 2010 to December 20116. With
respect to lampante olive oil, Greece has been the
spatial market with the lower price, while the prices 
of this commodity in Italy and Spain have been very
close to each other. The three price series appear to be
moving together throughout the period considered here.

Among the three principal EU olive oil markets
there are certain differences both in terms of the olive
quality produced as well as in terms of consumption
models. In Spain, 35% of the total olive oil production
is extra virgin, 32% is virgin, and 33% is lampante.
The respective f igures for Italy are 59%, 18%, and
24%. In Greece, more than 80% of total production
consists of extra virgin olive oil. With regard to con-
sumption models, Italy and Greece consume primarily
extra virgin olive oil whereas in Spain this category
represents less than 50% of the total olive oil consump-
tion (EC, 2012b).

As far as the Intra-Community trade is concerned,
72% of Spain’s exports and 88% of Greece’s exports
have Italy as their destination; 98% of Italy’s imports
from EU members come from Spain and Greece (EC,
2012c). The exports of Spain and Greece to Italy con-
sist to a large extent of extra virgin and virgin olive oil,
sold in bulk; these are subsequently bottled and/or
blended by a small number of major Italian companies
(the downstream level of the olive oil chain in Italy is
highly concentrated) and are sold at the international
markets. It is noteworthy that although Italy is a deficit

Figure 1. Natural logarithms of (a) virgin olive oil prices and (b) lampante olive oil prices. GR = Greece. SP = Spain.
IT = Italy. 
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2002 2004 2006 2008 2010 2012
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5 There are other categories or subcategories of olive oil: the virgin olive oil with acidity from 0.8 to 2, the olive-pomace oil, and
the refined olive oil. These have been left out of the analysis because of data problems (incomplete time series for the most recent
years).
6 The hike in price at the Italian market has been attributed to a rise in production costs (Advisory Group on Olives and Derived
Products – Report of the 7th of June 2011 Meeting, Brussels).
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market within the EU, it is a major olive oil exporter
in the world with a share of about 30%; Spain’s share
is 18%. There are trade flows between Spain and
Greece but they are very limited when compared with
those of the two countries with Italy.

Following earlier works on price dependence (e.g.
Reboredo, 2011; Serra & Gil, 2012) we focused on the
co-movements between the rates of price change at the
three spatial markets. In particular, we denoted p̂it and
p̂jt the rates of price change, at time t, in markets i and
j, respectively (i,j = IT,GR,ES), and we analyzed the
joint distribution of these two random variables with
copulas. In this framework, an empirical finding (say)
that a t-copula adequately represents the dependence
structure of the bivariate random process will imply
that positive and negative price shocks are likely to be
transmitted from one spatial market to the other with
the same intensity. However, an empirical finding that
the Joe-Clayton copula adequately represents the same
dependence structure will imply that positive and
negative shocks are transmitted from one spatial
market to the other with different intensities.

Figs. 2 (a-c) and 3 (a-c) present scatterplots of nor-
malized ranks for ES-IT, ES-GR and IT-GR price
change pairs, for extra virgin and for lampante olive

oil, respectively. Starting with Fig. 2, the majority of
rank pairs lies along the respective positive diagonals,
suggesting positive association between the rates of
price change in the three spatial markets. The disper-
sion, however, of rank pairs along the positive diagonal
appears to be greater for IT-GR compared to IT-ES and
to ES-GR. This is an indication that Italian and Greek
markets are not interconnected as strongly as the other
two country pairs. The information conveyed from the
examination of the scatterplots for lampante olive oil
is simlar; the interconnection between Italy and Spain
appears to be stronger while that between Italy and
Greece appears to be weaker.

Results

Focusing on the spatial markets for extra virgin olive
oil first, both the AIC and the BIC criteria have selected
the one-parameter Gumbel copula for ES-IT and IT-
GR and the two-parameter t-copula for ES-GR. Table 2
presents parameter estimates from the selected copula
models.

For the pair IT-ES, the Gumbel copula points to de-
pendence in the upper-right-quadrant tail only; virgin

Figure 2. Scatterplots of normalized ranks. Extra virgin olive oil.
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Figure 3. Scatterplots of normalized ranks. Lampante olive oil.
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olive oil prices in those two markets are likely to boom
together but not to crash together. The value of the
upper tail dependence coefficient suggests that with a
(statistically significant) probability of 0.522, a strongly
positive rate of price change in one of the two markets
will be matched with a similarly strong positive rate
of price change in the other market. Kendall’s τ has a
value of 0.436, indicating that although the concordant
pairs well exceed the discordant ones, the overall
strength of the relationship between the rates of price
change is not very high.

For the pair ES-GR, the t-copula points to fat tails
and to symmetric tail dependence; the degrees of
freedom is about 3.2 (well below 30), suggesting a very
strong departure from normality, while Kendall’s τ is
very close to 0.5. The tail dependence coefficients are
statistically signif icant at any reasonable level and
suggest that with a probability of 0.458, prices in
Greece and in Spain boom and crash together.

For the pair IT-GR, the Gumbel copula indicates co-
movement in the upper-right-quadrant tail, only. The
(statistically significant) probability of a mutual boom
in prices is 0.398, while the Kendall’s τ is 0.32, in-
dicating that co-movement over the entire distribution
function is lower compared to the other two market pairs.

With respect to the spatial markets of lampante olive
oil, both the AIC and the BIC criteria selected the one-
parameter Gumbel copula for ES-IT and ES-GR; they
were, however, in disagreement for IT-GR. In particu-
lar, the AIC criterion selected the two-parameter 
t-copula and the more conservative BIC criterion
selected the one-parameter Gumbel copula. To eli-
minate this ambiguity, the f it of the two competing
copulas was further assessed using the rank-based
versions of the KS and the CvM tests. The KS and the
CvM tests (shown in Table 3) did not reject the 
t-copula. The KS test, however, rejected the Gumbel
copula at the 10% level. Moreover, the p-values of both

tests for the t-copula were twice as high as those for
the Gumbel copula. It appears, therefore, that the 
t-copula has a better fit on the data compared to the
Gumbel one.

Table 4 presents parameter estimates for the selected
copula models. For IT-ES, the Gumbel copula points
to dependence in the upper-right-quadrant tail only.
The value of the upper dependence coefficient suggests
that with a (statistically signif icant) probability of
0.695, a strongly positive rate of price change in one
of the two markets will be matched with a comparably
strong positive rate of price change in the other market.
Kendall’s τ has a value of 0.616, indicating that the
overall strength of the relationship between the two
spatial rates of price changes is quite high. For ES-GR,
the upper tail dependence coefficient was 0.486 and
the Kendall’s τ was 0.402. For IT-GR, the symmetric
coefficients of extreme co-movement have been 0.323
(and statistically significant at the 10% level) while
Kendall’s τ has been substantially lower compared to
the other two pairs (0.285).

To assess the plausibility of the empirical results
from the copula models and to elaborate about their
likely implications, it is necessary to bring several
pieces of information together. Specifically, it is im-
portant to: (a) identify the causal market(s) —as
known, causal is the market from which price shocks

Table 2. Extra virgin olive oil. Copula parameter estimates(1)

Spatial
Selected

market
copula

Parameters Kendall’s τ λL λU

pairs

ES-IT Gumbel θ = 1.775 (0.129) 0.436 (0.049) 0 0.522 (0.05)

ES-GR t-Copula θ = 0.690 (0.052)
θ = 3.178 (1.298) 0.485 (0.047) 0.463 (0.083) 0.463 (0.083)

IT-GR Gumbel θ = 1.471 (0.103) 0.320 (0.052) 0 0.398 (0.057)

(1) Standard errors for Kendall’s τ and for the tail dependence coefficients have been obtained using the jackknife method (Efron, 1979).

Table 3. Lampante olive oil. Rank-based CvM and KS tests
for the pair IT-GR(1)

Copula t-Copula Gumbel

test Statistic p-value Statistic p-value

CvM 0.107 0.232 0.130 0.124
KS 0.843 0.186 0.925 0.098

(1) Based on 500 samples using the bootstrap proposed by Ge-
nest et al. (2009).
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are originated—, (b) consider which are the surplus
and the deficit markets, (c) take into account the form
in which olive oil is traded among the three spatial
markets (as mentioned above, it is largely traded in
bulk and it is bottled, blended or refined in the deficit
market, i.e. Italy), and (d) consider whether producers
in surplus markets have alternative market outlets when
faced with a price crash in the deficit market.

Here, to identify the causal markets we conducted
Granger (1969) causality tests for the time series of
the rates of price changes. Table 5 presents the results.
For both extra virgin and lampante olive oil the test
suggested that the causal order flows uni-directional
from IT to ES and GR and from ES to GR. It appears,
therefore, that the olive oil importer (IT) among the
three countries is the causal market leading price chan-
ges in ES and in GR. Spain (the main producer and
exporter), however, leads price changes in Greece.

A positive price shock in Italy (possibly because of
shortage in domestic supply) will increase import
demand for extra virgin olive oil in both Spain and
Greece. Given a less than perfectly elastic supply in

the short run, the price of the commodity in the surplus
markets will tend to rise. The extent to which a negative
price shock in the importing country (possibly because
of ample domestic production) will be transmitted to
Spain and Greece will depend on whether: (a) produ-
cers in the exporting countries have alternative market
outlets, and (b) blenders in Italy keep importing large
quantities of virgin olive oil from Spain and Greece
because of its taste profile. With regard to (a), Spain
has a sizable share of 18% in the world exports of olive
oil and, therefore, access to alternative market outlets.
With regard to (b), f irms in oligopolistic industries
(such as the olive oil bottling and blending industry in
Italy) often use product differentiation as a tool for
market segmentation (e.g. Sexton et al., 1991; EC,
2001). Hence, they may be reluctant to alter blends
even when domestic supply of olive oil becomes
cheaper. When conditions (a) and/or (b) hold, prices
of virgin olive oil in Spain and in Greece will not fall
together with the price of this commodity in Italy. The
empirical f inding, therefore, that a Gumbel copula
describes price dependence for the pairs IT-ES and IT-

Table 4. Lampante olive oil. Copula parameter estimates(1)

Spatial
Selected

market
copula

Parameters Kendall’s τ λL λU

pairs

ES-IT Gumbel θ = 2.604 (0.191) 0.616 (0.031) 0 0.695 (0.028)

ES-GR Gumbel θ =1.673 (0.118) 0.402 (0.046) 0 0.486 (0.048)

IT-GR t-Copula θ = 0.438 (0.079) 0.285 (0.061) 0.323 (0.196) 0.323 (0.196)
ν = 4.247 (2.036)

(1) The Kendall’s τ and the tail dependence coefficients with their respective standard errors have been obtained using the jackk-
nife method (Efron, 1979).

Table 5. Granger causality tests(1)

Null hyphothesis price changes
in i do not cause price changes Extra virgin Lampante

in j (i,j = ES,IT,GR)

i j F-Statistic p-value F-Statistic p-value

GR ES 0.709(1) 0.401 1.315(2) 0.272
ES GR 13.902(1) 0 19.842(2) 0

IT ES 10.498(1) 0.002 12.567(1) 0
ES IT 1.315(1) 0.254 1.228(1) 0.270

GR IT 0.009(1) 0.923 0.318(1) 0.574
IT GR 9.216(1) 0.003 35.204(1) 0

(1) The lags, appearing in parentheses, have been selected using the BIC criterion. Prior to conducting the Granger causality tests
the series of price changes have been subjected to stationarity (ADF) tests. In all cases the null (non stationarity) has been strongly
rejected.



12 C. Emmanouilides et al. / Span J Agric Res (2014) 12(1): 3-14

GR is likely to be consistent with underlying market
dynamics. Also, the empirical finding that the symme-
tric t-copula describes price co-movement in Spain and
in Greece may simply reflect the fact that both coun-
tries serve as a huge input to the blending/bottling in-
dustry in Italy.

Since positive price shocks in Italy are transmitted
to Greece and Spain, virgin olive oil blenders/bottlers
in those two countries are likely to experience an
increase in their costs when there is a shortage in Italy.
Also, consumers in Spain and Greece are likely to face
higher prices for virgin olive oil. Primary producers of
virgin olive oil in the surplus markets, however, are
likely to benef it from higher prices in the def icit
market. When there is an ample supply in Italy, how-
ever, blenders/botlers, consumers, and primary produ-
cers in the two exporting countries are not likely to be
affected.

Turning now to lampante olive oil markets, the
Gumbel copula for the pair IT-ES suggests that extreme
positive price shocks from Italy are transmitted to
Spain, but extreme negative shocks are not. This
appears to make sense given that most ref iners are
located in Italy, while the importance of lampante in
total olive oil production of the country is relatively
small (its share is 24%). To utilize fully their produc-
tion capacity and to achieve economies of scale, refi-
ners in Italy may have to keep importing lampante olive
oil from Spain (the main producer) even when prices
in Italy fall. The finding that the same copula family
(Gumbel) best describes price co-movements in Italy
and Spain for the two olive oil grades studied here
(extra virgin and lampante), both characterized by
considerable quality differentiation, is quite interes-
ting; we conjecture that a similar (i.e. Gumbel) price
dependence pattern may be relevant for other olive oil
grades (such as the virgin or the refined) as well. How-
ever, these grades have not been considered here due
to the lack of data.

The t-copula for the pair IT-GR indicates that both
extreme positive and extreme negative shocks in Italy
are transmitted to Greece with the same intensity. As
noted above, lampante olive oil is an important input
for the Italian refining/bottling industry. This grade,
however, constitutes only a small part of olive oil
production in Greece. Bottlers/refiners in Italy cannot
rely on Greek exports of lampante to fully utilize their
production capacity or to exploit economies of scale.
They appear to have no reason to keep importing lam-
pante olive oil from Greece when prices in the do-

mestic market decrease. The symmetric price co-move-
ment, therefore, appears to be consistent with the
residual nature of lampante olive oil production in
Greece.

The Gumbel copula for the pair ES-GR indicates
that extreme positive shocks from Spain are trans-
mitted to Greece, but extreme negative shocks are not.
This statistical result appears to be counter-intuitive
and difficult to interpret. Given the residual nature of
lampante olive oil production in Greece and the high
share of this grade in Spain, a symmetric price co-mo-
vement would be expected.

Discussion

Spatial price interrelationships have considerable
interest for both researchers and policy makers since
smooth transition of price shocks across geographi-
cally separated markets is a necessary condition for
economic eff iciency. At the EU level, the European
Commission has pursued vigorously the goal of the
integration of national markets over the last 30 years
through a number of initiatives, policies, and programs.

In this context, the objective of the present work has
been to investigate price interrelationships in the
principal EU olive oil markets (Spain, Italy, and Greece).
This objective has been pursued using copulas. The
statistical tool of copulas offers considerable flexibility
by dispensing with the need to make any specif ic
assumptions about the joint distribution of prices at
the different spatial markets and it is especially suitable
for modeling dependence during extreme market events
like booms or crashes.

According to the empirical results, over the period
2002 to 2012 there has been a variety of degrees and
intensities of price co-movement in the three geogra-
phically separated markets. Depending on the market
pair and the olive oil grade considered, Kendall’s tau
(the rank-based measure of overall dependence) ranged
from 0.285 to 0.616, indicating that the tendency of
prices to co-move was not particularly high. This result
can be, to a certain extent, attributed to the presence
of transaction costs in international trade. These tend
to differ among countries because they use non tradable
inputs, which may create a wedge (e.g. EC, 2001).
Therefore, measures of overall price dependence are
not expected to take very large values (i.e. close to 1).
In two out of the six market pairs studied, tail depen-
dence was symmetric, while for the other four pairs
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tail dependence was asymmetric; prices boomed to-
gether but they did not crash together. This was espe-
cially true for prices in Italy and Spain, which are by far
the most important players in the EU olive oil market.

To explain the estimated price dependence patterns
and to elaborate about their potential implications for
primary producers, processors, and final consumers,
we relied on information about the causal markets,
about the form in which olive oil is traded, as well as
about the location and the structure of the bottling/ 
blending and ref ining industry. It appears that the
empirical results are generally consistent with econo-
mic theory and the particular characteristics of the
markets examined. The relatively low overall degree
of dependence, and, more importantly, the evidence in
favor of asymmetric price co-movements, suggest that
the three principal EU olive oil markets cannot be
thought of as one great pool. In this regard, the findings
of the present work are in line with those of Serra 
et al. (2006), who reported evidence of asymmetric
price transmission in four major EU pork markets, and
Fousekis (2007), who found considerable segmentation
in 15 geographically separated markets of the EU.

Finally, it is important to note that the Gaussian
copula family turned out to be irrelevant for all six
price pairs analyzed. This implies that empirical in-
vestigations relying on the assumption of multivariate
normality for the price processes in the major EU olive
oil markets could probably suffer from misspecif i-
cation.

As with all similar previous empirical works on
price transmission, the present study relies on bivariate
copulas. Future works may consider multivariate copu-
las. Certain progress towards developing and imple-
menting multivariate copulas models has been made
recently by Czado et al. (2012). For this reason, further
research on this elaborate topic is certainly warranted.
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