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Abstract

Administration of exogenous progesterone is widely used in hormonal protocols for estrous (re)synchronization of
dairy cattle without regarding pharmacological issues for dose calculation. This happens because it is difficult to
estimate the metabolic level of progesterone for each individual cow before administration. In the present contribution,
progesterone pharmacokinetics has been determined in lactating Holstein cows with different milk production yields.
A Bayesian approach has been implemented to build two probabilistic progesterone pharmacokinetic models for high
and low yield dairy cows. Such models are based on a one-compartment Hill structure. Posterior probabilistic models
have been structurally set up and parametric probability density functions have been empirically estimated. Moreover,
a global sensitivity analysis has been done to know sensitivity profile of each model. Finally, posterior probabilistic
models have adequately recognized cow’s progesterone metabolic level in a validation set when Kullback-Leibler based
indices were used. These results suggest that milk yield may be a good index for estimating pharmacokinetic level of
progesterone.

Additional key words: progesterone pharmacokinetic; Hill equation; metabolism, milk yield; Bayesian modeling.

Introduction

Getting a good rate of calves per cow and per year
makes profitable a dairy farm. Taking into account that
a postpartum cow is the best milk producer in a dairy
herd, how to get pregnant these cows is an important
studied topic for both veterinarians and dairy produ-
cers. Unfortunately, factors related with high milk
yield, low body condition, high feed intake, low sexual
hormone concentrations in the bloodstream, and
health problems are associated with low fertility du-
ring postpartum (Butler, 2000, 2003; Sangsritavong et
al., 2002; Vasconcelos et al., 2003; Ghavi Hossein-
Zadeh, 2013). These factors are well interrelated each
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other making very difficult to predict them. Despite
this, administration of exogenous progesterone is wi-
dely used in hormonal protocols for estrous (re)syn-
chronization of dairy cattle without regarding pharma-
cological issues for dose calculation. This happens
because it is difficult to estimate the progesterone me-
tabolic level for each individual cow before adminis-
tration. Recent kinetic analysis revealed a sigmoid sa-
turation pattern of the progesterone depuration curve
in lactating Holstein cows. In fact, by non-linear
regression analysis, the Hill model has proved to be
better than Michaelis-Menten kinetic model for des-
cribing such behavior (Turino et al., 2010). An enzy-
me-catalyzed metabolism of progesterone involving

Abbreviations used: AIC (Akaike information criterion); AICm (modified version of Akaike information criterion); Cx (plasma-
tic progesterone concentration); DMI (dry matter intake); GSA (global sensitivity analysis); 4 (Hill coefficient); K (enzyme-subs-
trate interaction constant); NEBAL (negative energy balance); PDF (probability density function); Si (principal sensitivity index);
SSQ (residual sum of squares); STi (total sensitivity index); Vm (volume in which progesterone is distributed).
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cooperative substrate-binding sites is suggested by the
implementation of Hill equation. Moreover, this kine-
tic model was successfully used for modeling the lin-
kage of plasma progesterone concentrations with the
hormone released from bovine intravaginal inserts
(Mariano et al., 2010).

Bayesian modeling is the incorporation of Bayes
theorem into modeling framework (Andradéttir &
Bier, 2000; Kamath & Pakkala, 2002; Pefia et al.,
2009). A probabilistic model is the output of the Ba-
yesian approach in modeling (Martinez et al., 2011).
Firstly, Bayesian analysis begins with a mathematical
model which attempts to describe the dynamic of ob-
served experimental data. However, unlike classical
significance testing, the uncertainty about the para-
meters in the model is described using probability dis-
tributions. In a Bayesian analysis, a prior distribution
must be supplied for each model parameter which has
to reflect the probability that one parameter might
assume certain values. These prior distributions can
be based on results from historical experimental da-
ta, they can be defined by physical or economical
constraints, or they might reflect an expert experien-
ce and/or intuition. This prior distribution is then up-
dated by the newly acquired data to form a posterior
distribution which is used to make inferences about
the parameters. In Fig. 1, the difference between a
prior and posterior estimated probability density func-
tions is shown. Typically, the posterior distribution is
narrower compared to the prior one, which reflects the
information gained by considering the data gathered
in the evaluation run. In fact, the concept of probabi-
listic model would help to reduce intra-individual va-
riability which appears as a consequence of adopting
a deterministic point of view in modeling. As a pro-

babilistic model has an estimation domain, it could
explain more suitable natural variability occurring in
live systems. The Bayesian approach is symbolized by
the following equation:

f(0)©0)
[1(vpr0®)d0

where f(y|0) is the probability density function (PDF)
of observed data y given the parameters 0; ©(0) is the
prior PDF; and p(0]y) is the posterior PDF which shows
the PDF changes associated with information introdu-
ced by using new data (Carlin & Louis, 2009). These
and other Bayesian based tools have been applied in
different scientific disciplines as genetic evaluation of
dairy sheep breed (Legarra et al., 2005), civil engi-
neering (Yuen, 2010), compositional analyses of trans-
genic crops (Harrison ef al., 2011), and exposure to
Bovine viral diarrhoea virus in beef cow-calf herds
(Lewis et al., 2011).

In the present contribution, we propose to use a sim-
ple measure of daily milk yield of postpartum cow to
evaluate its progesterone metabolism. First, progeste-
rone pharmacokinetic behaviors of two milk produ-
cing groups are analyzed. Information provided by cow
progesterone pharmacokinetic assays are used to em-
pirically estimate prior PDFs of parameters in Hill mo-
del. Moreover, the effect of incorporating experimen-
tal information for two levels of milk-producing cows
is evaluated. The resulting posterior probabilistic mo-
dels have been validated using independent plasmatic
progesterone profiles from cows belonging to both
high and low milk production groups. Finally, a pro-
gesterone metabolic level recognition method based
on daily milk yield of cows is proposed. We hypothe-
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Figure 1. Schematic differences between prior and posterior estimated probability density functions (PDFs) when bootstrapping

is done after adding new information to original data.
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sized that studied tools could provide a useful starting
point for predicting progesterone metabolic rate by lin-
king milk yield of cows with their plasmatic progeste-
rone concentrations after hormone exogenous admi-
nistration.

Material and methods
Animals and general procedures

In order to avoid endogenous progesterone produc-
tion, ovarian function of lactating Holstein cows from
Experimental Station INTA Rafaela (Santa Fe, Argen-
tina) was monitored and synchronized as previously
described (Turino et al., 2010). Cows having basal pro-
gesterone concentration greater than 1 ng mL~! in a
pretreatment blood sample were specifically excluded
from the study. The resulting 19 cows [with a median
of two calving (interquartile range =3)] were used for
progesterone pharmacokinetic data acquisition. Cows
were milked twice a day, fed ad libitum, weighed
(601 = 85 kg), their body condition evaluated [me-
dian=2.75 (2.25-3.25), 1 =lean, 5 =fat] and their milk
production recorded for 7 days before commencement
of the pharmacokinetic assay.

Pharmacokinetic assays

The equivalent to 100 mg progesterone (99.2%, USP
grade) of a sterile solution based on benzyl alcohol
(4% v v1), 2-pyrrolidone (56% v v!) and physiologi-
cal saline solution (40% v v') was injected into the ju-
gular vein of each cow. Serial blood samples for phar-
macokinetic modeling were collected from coccygeal
vessels into tubes containing 0.07 mL of EDTA solu-
tion (0.342 mol L', pH 7.2, Wiener, Argentina) at 1,
3,6,10, 15,30, 60 and 90 min and at 2, 3 and 6 hours
after injection. The time needed to blood collection
was monitored and never exceeded 10 s. After centri-
fugation of blood at 2,000 rpm for 10 min, plasmatic
samples were stored at —20°C until progesterone analy-
sis by RIA using a commercial, solid phase, I'? kit
(Coat-A-Count®, Siemens Medical Solutions Diagnos-
tics, USA). Duplicate analysis was performed on each
sample. The intra-assay and inter-assay coefficients of
variation were both <7% for concentrations between
0.1 and 40.0 ng mL', and the sensitivity of the method
was 0.01 ng mL™".

Probabilistic model statement

Probabilistic model structure

In a previous work it has been shown the successful
use of a simple one-compartment model to describe
the dynamic of pharmacokinetic data within a large
plasmatic progesterone concentration (Cx) range. Ex-
perimental observations and kinetic modeling support
the occurrence of a saturated metabolism of progeste-
rone following a sigmoidal behavior, which is well des-
cribed by Hill model (Turino et al., 2010):

h
@=_L—VmVIh/Cx = 0st=<t [2]
dt Vx (KW )" +Cx !
where Vx is the volume in which progesterone is distri-
buted; Vm is the maximum rate of hormone elimination;
W is the weight of the individual considered; K is a cons-
tant for characterizing enzyme-substrate interaction and
h is the Hill coefficient, whose value define positive
(h>1) or negative (h < 1) cooperation in kinetic profiles.

Parameterization of probabilistic models

Initially, two groups of cows have been built accor-
ding to milk production. Each group contained 5 ani-
mals. Experimental data sets had 52 points for high
producing cows (35.4-48.2 L day ') whereas only 48
for low producing cows (14.6-23.8 L day™).

Models for plasmatic progesterone concentration
(Cx) have been mathematically defined following Hill
pharmacokinetic model (Eq. [2]) and taking into
account Egs. [3] and [4]:

Cx(0)=C, (3]
V= % [4]

where D and C, have been experimentally found sin-
ce D is the administered dose (see section Pharmaco-
kinetic assays) and C;is determined as the coordina-
te-intercept from linear regression on the concentration
data in the initial linear range of the Cx(¢) curve.
Using such mathematical structure and above data sets
two prior probabilistic models were built. Consequently,
PDFs of three parameters of Hill model (Vm, K and h)
were empirically bootstrapped (Efron & Tibshirani,
1993; Joshi et al., 2006; De Martini & Rapallo, 2008)
using pharmacokinetic data from each group of cows.
As initial values for parameter estimations a random pa-
rameterization was generated using the Marsaglia’s Sub-
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tract-with-Borrow algorithm (Marsaglia & Zaman, 1991)
associated to a wide initial parameter domain. Once em-
pirical distributions were obtained, frequency histograms
were used to compute the expected values of parameters
of Hill model among Eq. [5]:
k

ET6] =219,~p,- (5]
where 0; is the mid-value of each bin in the empirical
histogram and p; is its probability.

Afterwards, posterior probabilistic models were ob-
tained using the same Bayesian tools that prior proba-
bilistic models but adding sets of two extra cows for
each milk producing group (33.2-40.9 and 14.8-20.7
L day™! for high and low groups, respectively) which
had 18 experimental Cx measures along time. The fi-
nal number of cows was 7.

Computational model implementation and Bootstrap
method

Pharmacokinetic models were fitted by non-linear
regression analysis against the experimental data using
the residual sum of squares (SSQ) for each individual
parameter set estimation in bootstrapping. The boot-
strap method is a simulation method for statistical in-
ference using re-sampling with replacements (Efron
& Tibshirani, 1993). A main application of the method
is approximating non-parametric distributions for sta-
tistical variables in model fitting. To build a histogram
for some parameter set of a model, bootstrapping si-
mulates the effect of artificially excluding some data
points in the data set when parameters are estimated.
We randomly sampled » data points with replacement
from the current data set, where the probability of each
data point being selected is n~!. These n data points are
regarded as a re-sampled training data. Accordingly,
even though the number of samples in each replicated
data set is the same, most of the re-sampled data sets
will provide a different estimation of model parame-
ters (see Fig. 1). Histograms for each model parame-
ter are obtained using these alternative estimators ac-
quired using a given fitting criterion, e.g. SSQ.

Analysis of probabilistic models

Once posterior probabilistic models have been pa-
rameterized, a Global Sensitivity Analysis (GSA) was
done taking into account empirically estimated PDF

of each set of parameters (Saltelli et al., 2000; Kamath
& Pakkala, 2002; Xu & Gertner, 2007; Cristaldi et al.,
2011; Martinez et al., 2011). Both principal (S7) and
total (S77) effect indices were computed into the
attempt to identify sensitivity profiles of probabilistic
model and parameters interactions. For the i parame-
ter, Si gives an idea of the proportion of variability
which might be explained if the true parameter value
was known. On the other hand, the difference bet-
ween S7i and Si reflects the degree of interaction of
the i" parameter in the whole model structure.

Recognition of physiological state using
probabilistic models

Pharmacokinetic assays from five cows (63 + 12
postpartum days) with levels of milk production ran-
ging from 23.4 t0 29.6 L on assay day were carried out
and their plasmatic progesterone profiles were used to
evaluate discrimination capability of posterior proba-
bilistic models for recognizing between milk produc-
tion-physiological states.

Two Kullback-Leibler distance based indices were
computed taken into account PDF from both probabilis-
tic models: the Akaike Information Criterion (4/C) and
its modified version for low experimental point (7)/mo-
del parameters number (P) ratios (4/Cm) (Akaike, 1973, 1978;
Burman & Nolan, 1995; Burnham & Anderson, 2002):

AIC = nlog(G ) +2P [6]
AlCm = 410+ 22 E+D [7]
n-P-1
G2 = S50 [8]

n

Both indices are relative measures and smaller va-
lues reflect better model fit. 4/C has been previously
used as model selection criterion to analyse first lac-
tation daily milk yield data in Holstein-Friesian cattle
(Lopez-Romero & Carabaiio, 2003), to model the fi-
nal scores in US Holsteins to assess genetic changes
over the years (Tsuruta et al., 2004) and, to estimate
test-day milk yield genetic parameters of Holstein
cows (Bignardi et al., 2009).

Results

In Figs. 2 and 3 empirical prior (a-b) and posterior
(c-d) PDFs for Vm and K in high (a, ¢) and low (b, d)
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Figure 2. Probability density functions (PDFs) of the maximum rate of hormone elimination (¥m) for (a,c) high and (b,d) low milk
producing cows. (a,b) Prior and (c,d) posterior probabilistic models.
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Figure 3. Probability density functions (PDFs) of the constant for characterizing enzyme-substrate interaction (K) for (a,c) high
and (b,d) low milk producing cows. (a,b) Prior and (c,d) posterior probabilistic models.
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Table 1. Statistics from empirical probability density functions for low and high milk producing groups

Prior models Posterior models

Parameter! Unit
High Low High Low
Vm mg (min kg) ~! Minimum 0.0112 0.0102 0.0113 0.0102
Maximum 0.0174 0.0160 0.0174 0.0141
Median 0.0131 0.0130 0.0151 0.0102
E[Vm] 0.0135 0.0131 0.0152 0.0107
K ng (mL kg) ! Minimum 0.0936 0.1242 0.0936 0.1322
Maximum 0.2040 0.2246 0.1723 0.2005
Median 0.1287 0.1701 0.1307 0.1476
E[K] 0.1339 0.1719 0.1316 0.1520
h Dimensionless Minimum 1.7455 1.6450 2.0683 1.6450
Maximum 2.6605 2.2214 2.6605 1.8687
Median 2.1937 1.8756 2.5325 1.6834
E[h] 2.2082 1.8773 2.4811 1.7047

' ¥m is the maximum rate of hormone elimination; K is a constant for characterizing enzyme-substrate interaction; / is the Hill co-

efficient. E =expected value.

milk producing groups, respectively, are presented.
In Table 1, 95 percentile ranges, median and expec-
ted values (Eq. [5]) for parameters in prior and pos-
terior models are shown. Estimation domains of ki-
netic parameters are highly overlapped if prior PDFs
are analyzed. However, a better probabilistic models
discrimination is achieved when posterior parameter
PDFs are computed. As it can be seen, all confiden-
ce intervals of parameters have been narrowed as a
consequence of introducing experimental data for
posterior PDF estimations, especially whether PDFs
for K are considered. Furthermore, shapes of para-
meter PDFs have dramatically changed: whereas in
prior models all distribution of parameters could be
approximated to normal, in posterior probabilistic
models only K PDFs could hardly support such hypo-
thesis.

a) High milk yield
150

7100 1

Cx (ng mL™"

50

—
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Fig. 4 presents estimation domains of posterior mo-
dels for both high and low milk producing cows. Ba-
sed on such figure, two posterior probabilistic models
for differentiating between milk production levels in
cows have been achieved suggesting two distinctive
progesterone metabolic rates associated with different
milk yields. Moreover, it is worth to note that experi-
mental data of the two animals added to posterior mo-
del were found in areas of high probability for both
low and high milk producing models.

In Table 2, sensitivity profiles of posterior probabi-
listic models are shown. According to GSA, # is the
less relevant parameter in both probabilistic models.
This fact can be explained because both posterior PDFs
presented narrow intervals where parameter values
could be found with high probability (see Table 1). On
the other hand, posterior models highly differ in their

Low milk yield b)

T 1
100 120

Time (min)

Figure 4. Plasmatic progesterone concentration (Cx) data points of two extra animals and estimation domains (red color indicates
areas of high probability) of posterior probabilistic models for both (a) high and (b) low milk producing cows.
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Table 2. Principal (S7) and total (S77) sensitivity indices for
posterior probabilistic models

Milk producing group

Parameter! High Low

Si STi Si STi
Vm 0.53 0.87 0.36 0.60
K 0.12 0.48 0.38 0.64
h 0.02 0.02 0.02 0.02

' Vm is the maximum rate of hormone elimination; K is a cons-
tant for characterizing enzyme-substrate interaction; 4 is the
Hill coefficient.

sensitivity when the other two parameters are consi-
dered. As an example, K could be analyzed: if its exact
value was known, a large reduction in the variances of
estimations would be expected in low production pos-
terior probabilistic model (57 =0.38); however, having
the same level of knowledge only a marginal improve-
ment on estimation domain for high production pos-
terior probabilistic model could be gained (Si=0.12).

It is worth to note that in both models a high degree
of interaction between Vm and K has been identified
since there are enormous differences between their Sis
and STis. This could be explained taking into account
model structure (see Eq. [2]) since at low plasmatic
progesterone levels the ratio Vm (KW) ™" define proges-
terone elimination rate and both parameters are invol-
ved in such ratio.

In Table 3, 4/C and A/Cm indices for prior and pos-
terior probabilistic models are shown to test milk pro-
duction levels in a validation set of cows. In general,
except for cow N° 4429, the distance between proper
model and experimental data is reduced when compa-
ring prior and posterior indices. The opposite is obser-
ved when indices evolution against incorrect physio-

logical model is considered. In this way, both Akaike’s
indices could associate milk production below 23.4 L
day~! with a low milk yield level and remaining cows
with values above 26.5 L day! with a high milk yield
level when the posterior probabilistic models were
used. Consequently, both A/C and 4/Cm indices for
posterior probabilistic models might be used to select
a milk production limit to distinguish between low and
high milk producing cows.

Discussion

The empirically estimated parameter PDFs in pos-
terior probabilistic models are in well agreement with
previous results where a deterministic modeling pers-
pective was implemented (Turino et al., 2010). In this
way, 95 percentile ranges for both high and low milk
yields include or overlap confidence intervals already
reported (except for Vm of low producer group), re-
vealing their capability for discriminate different me-
tabolic rates of progesterone between high and low
milk producing cows.

An analysis of one the most important metabolic
enzyme involved in progesterone metabolism (cP450
enzyme) could explain the differences observed bet-
ween parameters of probabilistic models for both
groups of cows. In the present study, / values were po-
sitive, i.e. the affinity and reaction rate of a vacant si-
te for a progesterone molecule increase when a prior
progesterone molecule has bound to enzyme. From this
recognition, we cannot reject that the relative increa-
sed & value in cows with high levels of milk produc-
tion may further result from a higher cooperativity and
interaction between enzyme binding sites and proges-
terone molecules (see Eq. [2]). Otherwise, K was hig-
her for low producing animals when Table 1 and Fig. 3

Table 3. Akaike Information Criterion (4/C) and its modified version (4/Cm) for milk production-physiological states

classification for both probabilistic models

Prior probabilistic model

Posterior probabilistic model

Milk
yield Cow N° High production Low production High production Low production
-1

(L day™) AIC AICm AIC AICm AIC AICm AIC AICm
29.6 4,443 33.21 37.22 34.47 38.47 32.86 36.86 34.66 38.66
28.3 4,429 24.99 29.79 27.47 30.27 27.26 32.06 28.66 33.46
27.9 3,793 35.54 38.54 35.23 39.23 33.99 37.99 36.44 40.44
26.5 4,401 27.66 33.66 28.90 34.90 26.38 32.37 29.74 35.73
23.4 4,576 37.27 40.70 34.53 38.00 39.15 42.59 32.49 35.92
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(c,d) are analyzed. This parameter is more a mean inter-
action constant for all drug-cP450 intermediates than
a unique binding constant by itself (Denisov et al.,
2009). We cannot reject the possibility that other va-
riables besides milk yield, e.g. dry matter intake (DMI)
and nutritional condition, could affect the performan-
ce of this parameter and the pharmacokinetic of pro-
gesterone as discussed below.

The maximum rate of metabolism (¥m) for high pro-
ducing dairy cows was greater than for the low produ-
cing cows. Turino et al. (2010) have previously dis-
cussed this fact and suggested that it is caused not only
by an increase in blood flow as a consequence of a
greater DMI as it is usually reported (Sangsritavong et
al., 2002), but also by a greater negative energy balan-
ce (NEBAL) associated with a major abundance of
cP450 subunits. Additionally, it was proved that serum
insulin concentration is reduced whereas NEBAL in-
creased (Butler, 2000; 2003), which concomitantly ri-
ses the relative abundance of hepatic Cyp2C and
Cyp3A subunits (Lemley et al., 2008; 2010). From the-
se outcomes, a larger production of Cyp2C and Cyp3A
could be expected in high producing dairy cows, as we
ascertain from the Vm values obtained in the present
kinetic study.

Progesterone metabolism discrepancies among high
and low milk producing cows are also reflected in es-
timation domains of posterior probabilistic models (see
Fig. 4). Main differences are identified during the first
100 min after progesterone injection: for high produ-
cing cows, a sharper plasmatic progesterone decrease
is expected during the first 25 min and it is predicted
basal levels would be achieved around 50 min. How-
ever, for low producing cows, it would take more than
75 min to eliminate injected progesterone. Moreover,
low producing cows take around 50 min to reach plas-
matic progesterone levels of about 20 ng mL~!, while
high producing cows take only 25 min. In addition,
good agreement between experimental data points and
areas of high probability in Figure 4 might corrobora-
te the improvement of posterior probabilistic models
by the addition of experimental information.

Both Akaike’s indices (see Table 3) have demons-
trated that posterior probabilistic models could iden-
tify milk-production physiological state of cows when
a validation data set was used. This result can be appre-
ciated when A/C and 4A/Cm for cow N° 3793 are con-
sidered: results are unclear when cow’s physiological
stage classification is attempted using prior probabi-
listic models. However, milk level is well differentia-

ted when posterior models are used. Additionally, the
relationship between milk production yield and pro-
gesterone metabolic rate in dairy cows might be used
as a tool to estimate progesterone metabolic level with
a very simple measure of daily milk production. In this
way, both Akaike’s indices (see Table 3) could associa-
te milk production values below 23.4 L day! with a
low progesterone metabolic level and values above
26.5 L day™' with a high progesterone metabolic level
when posterior probabilistic models were used. We
suggest that dairy yield could be a direct measure for
progesterone pharmacokinetic profile recognition with
a production limit ranging from 24 to 26 L day™' for
dairy Holstein cows. This information could be taken
into account when a drug intervention program for
synchronizing the estrous cycle of dairy cattle is used.
This will allow the selection of progesterone dose
according to milk daily yield, increasing hormone bio-
availability. We recognize, however, that the validity
of this assertion has to be corroborated with progeste-
rone metabolism information of cows with milk yields
included in the postulated limit level.

In summary, the above mentioned features would
distinguish a more important positive cooperative
effect during progesterone metabolism for high than
for low milk producing cows. Posterior probabilistic
models demonstrated to improve prior models by the
addition of experimental information and being com-
petent tools for distinguishing progesterone metabo-
lism between high and low milk producing cows.
Additionally, both Akaike’s indices could associate
milk production values below 23.4 L day™' with a low
progesterone metabolic level and values above 26.5 L
day~! with a high progesterone metabolic level when
the posterior probabilistic models were used. Based on
the above results we suggest that dairy yield could be
a direct measure for progesterone metabolic level re-
cognition in dairy Holstein cows and could be taken
into account before progesterone administration du-
ring hormonal protocols.
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