
Introduction

Not only in the field of valuation in general, but al-
so in a more specific field such as that of agricultural

valuation, the two distribution functions method is well-
known. This was an original idea of Ballestero (1971,
1973) and was later developed by Caballer (1993) and
Romero (1977), who contributed some practical ap-
plications, and is described in several textbooks: Ba-
llestero (1991a, 1991b) and Caballer (1994). Moreo-
ver, it has been studied in several doctoral theses such
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Abstract

In the literature on PERT methodology, four subfamilies of beta distributions have appeared: classical, of constant
variance, mesokurtic and Caballer. To date, these four subfamilies have been used independently to resolve economic
valuation problems. The only differences between using one or another lie in the means or variances obtained by each.
For example, following a criterion of prudence the maximum variance is required, and for a riskier criterion the mi-
nimum variance is preferred. With respect to the mean, we are interested in the one closest to the centre of the inter-
val, i.e. the model that provides a more centered expected value and hence more moderate estimations. This work fo-
cuses on the f ield of valuation, more specif ically on the valuation method of the two distribution functions
(recommended when there are limited data). The aim of this work was to develop an iterative process that uses the four
families of beta distributions simultaneously with the objective of using all the information provided by each of them.
The practical application of this process can conclude either with an interval of possible values or a precise valuation.
Then the concepts of stability and convergence of the valuation process appear.

Key words: classical beta, constant variance, mesokurtic, Caballer, confidence interval.

Resumen

Proceso iterativo de valoración en el método de las dos distribuciones beta

En la literatura sobre la metodología PERT han aparecido cuatro subfamilias de distribuciones beta: clásica, de va-
rianza constante, mesocúrtica y Caballer. Hasta ahora, estas cuatro subfamilias han sido utilizadas independiente-
mente en la resolución de problemas de valoración económica, discriminándose su uso sólo en función de las medias
y las varianzas obtenidas en cada uno de ellas. En efecto, podemos utilizar un criterio de prudencia en cuyo caso con-
sideraremos la varianza máxima, o una posición más arriesgada en cuyo caso preferiremos la varianza mínima. Con
respecto a la media, nos interesa la más cercana al centro del intervalo, es decir, el modelo que proporciona un valor
esperado más centrado y por tanto más moderado en sus estimaciones. Este trabajo se enmarca en el ámbito de la va-
loración, concretamente en el método de valoración de las dos funciones de distribución (aconsejable cuando se dis-
pone de pocos datos). El objetivo de este trabajo fue desarrollar un proceso iterativo que emplee simultáneamente las
cuatro familias de betas con el propósito de utilizar toda la información proporcionada por cada una de ellas. En la
aplicación del proceso, que puede concluir con una valoración por intervalo o una valoración puntual, aparecen de
forma natural los conceptos de estabilidad y convergencia del proceso de valoración.

Palabras clave: beta clásica, varianza constante, mesocúrtica, Caballer, intervalo de confianza.
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as Lozano’s (1996) and Herrerías’ (2002). In the last
few years, a series of papers have been published which
present new distributions (García et al., 1999a, b; He-
rrerías et al., 1999, 2001), or where the method is ex-
panded to the multi-index or multivariate case (García
et al., 2000, 2002b).

Nowadays, some works currently under review at-
tempt to introduce statistical tests for the representa-
tiveness of the indices and the adaptation of the dis-
tributions that model them (García et al., 2003b). All
these works and others included in the references of
these papers attempt to introduce mathematical mo-
dels in the discipline of valuation. This is illustrated
by Segura et al. (1998) according to whom: «Research
in the field of valuation should not only pay attention
to a rigorous formulation of the concepts and methods
of the real state valuation and their extension to other
fields, but incorporate to the theoretical body of the
discipline the use of mathematical models, introducing
in the valuation a methodology that has been shown
productive in other fields.»

We can, therefore, ask ourselves if the valuation pro-
cess of a building or a property (in general, an asset)
must conclude with obtaining a specific value or with
the establishment of an interval where the value we try
to obtain lies with a certain probability. Therefore,
should we value in a punctual way or should we value
by interval? For example, in the field of fiscal valua-
tion whose final objective, according to Segura et al.
(1998, op. cit.), is «the verification of the value decla-
red by the liable person since this value will be the taxa-
ble base in certain taxes», if the valuation fixed by the
Treasury is a punctual valuation, the probability that
the value declared by the taxpayer coincides with the
one reached by the Treasury is zero, if we consider that
the domain of possible values is the set of real num-
bers. The fact is that the Treasury only issues a para-
llel liquidation when the deviation between the decla-
red value and the checked one exceeds a certain
percentage (20% in many cases), but we wonder if it
would not be more convenient to obtain a confidence
interval for the value of the good and then to check if
the one declared by the taxpayer lies in this interval.
The problem of verifying values of an agricultural na-
ture has been discussed by García (1995) and Olmeda
(1977, 1978).

The method of the two distribution functions is ap-
propriate for works of massive valuation (Lozano,
1996), with limited information, motivated by the be-
haviour of certain objective indexes that guarantee the

taxpayer’s defence. But this method, as known to da-
te, produces a punctual value of the good or asset to
be valued. Only the case of the econometric applica-
tion in the multi-index model (García et al., 2002b, op.
cit.) includes a procedure, which can generate a con-
fidence interval, using the prediction.

Estimate by interval has never been used in the two
distribution functions method in the field of valuation,
even when other methods of valuation have been used
with different econometric models. For example, Ca-
latrava and Cañero (2000) and Segura et al. (1998, op.
cit.) estimate the models with different methods, using
data of different origin, although they do not consider
the possibility of estimating the final value using an
interval with a certain confidence.

The aim of this work is to develop, in the method of
the two distribution functions, a poly-stage model of
valuation that generates a confidence interval for the
value to be determined, which will be called the ne-
gotiation interval. On the other hand, reiteration of the
process will lead to a concrete value that could be use-
ful for the purpose of some reports.

The poly-stage valuation process uses, as the only
family of distribution functions, the family of beta dis-
tributions from which different subfamilies are selec-
ted: classical, mesokurtic, of constant variance and Ca-
baller. The practical application is done by compu-
ter program. This paper has the following organisa-
tion: Section 2 describes the different subfamilies 
of betas to be used; Section 3 presents the algorithm
of valuation eliminating the need for tables; Section 4
presents the poly-stage valuation method in the 
context of the two distribution functions method 
and, finally, Section 5 describes the solution of a prac-
tical case. Section 6 summarises and concludes the 
findings.

Description of the families of beta distributions
determined by the classical values a, m and b

This Section synthesises the use of the different sub-
families of beta distributions. A complete justification
and development can be found in García et al. (2002a,
2003a). After the expert or the available data have con-
tributed to values a (maximum), m (most likely) and b
(minimum), the standardised mode M must be calcu-
lated:

,M =
m − a

b − a
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where we can estimate µ and σ2 as follows:
1. Classical model:

.

2. Caballer model:

If , then and if ,

then . So:

.

3. Constant variance model: Starting from the cu-
bic equation (see Herrerías et al., 1999a, op. cit.):

,

the unique positive value of k is obtained and hence:

.

4. Mesokurtic model (only for values of M grea-
ter than 0.723606 or less than 0.27639): Starting from
the cubic equation (see Herrerías et al., 1999a, op. cit.):

and, from the unique positive value of k, we obtain:

.

An algorithm of valuation through beta
distributions

The well-known two betas valuation method or, in
general, the two distribution functions valuation me-
thod, introduced by Ballestero (1971, op. cit.), co-
rresponds to an improvement of the synthetic method
and was formalised later on by its author; Ballestero
(1973, op. cit.) who describes it as follows: «Statisti-
cally, the variable market value of a good will follow
the distribution function F. On the other hand, the in-
dex, parameter or explicative variable will statistically
follow another distribution function G. Assuming that
the density functions F′ = f and G′ = g are bell-shaped
or similar, then the method of the two betas states a re-
lationship between both variables.»

To do this, it is necessary to accept the following
hypothesis: if the index Li corresponding to an asset Fi

is greater than the index Lj corresponding to another
asset Fj, the market value Vi of the first asset will be
also greater than the market value Vj of the second one.
Starting from this assumption, once the distributions
F and G corresponding to the market value and the in-
dex, respectively, are known, the market value Vk co-
rresponding to an index Lk is determined through the
transformation:

.

Palacios et al. (2000) have presented a rigorous for-
malisation of this method. Given an asset to be valued,
two random variables related with the asset are consi-
dered: the variable L which represents a quality index
of the asset, and the variable V, the market value of the
asset. It is assumed that V is a function of its quality,
i.e. V = φ(L), where φ is a strictly increasing function
in a given interval [L1, L2], the range of variable L. If
L has the distribution function G(l), then V is a ran-
dom variable with the distribution function:

or, equivalently,

,

where φ is strictly increasing. It is obvious that if F is
strictly increasing in the interval [φ(L1), φ(L2)], then F
is invertible in this interval, hence, starting from the
last expression, the function [L1, L2] → [φ(L1), φ(L2)]
is obtained such that φ(l) = F–1 (G(l)), that is a bijec-
tion which transforms qualities into market values.
Thus, if L0 is the quality of a good, then its market va-
lue would be:

.

We are now going to estimate the value (x) of an as-
set according to the value (x′) of an index, starting from
the values a, m and b, for the asset, and a′ , m′ and b′
for the index (with x′ ∈ (a′ ,b′)), by using any of the be-
ta distributions determined with the classical estima-
tions, i.e.: classical, of constant variance, mesokurtic
and Caballer. In all cases, we can proceed as follows:
by standardising the original values through the trans-

formation (or ), the values a, m and

b would become 0, M and 1, and the values a′ , m′ , b′
and x′ become 0, M′ , 1 and Z′ , so the distribution func-
tion corresponding to the standardised index would be:

′t =
′x − ′a

b − a
t =

x − a

b − a

V0 = φ(L0) = F−1(G(L0))

G(l) = P L ≤ l[ ] = P φ(L) ≤ φ(l)[ ] = P V ≤ φ(l)[ ] = F(φ(l))

F(v) = P V ≤ v[ ] = P φ(L) ≤ v[ ] = P L ≤ φ−1(v)[ ] = G(φ−1(v))

Vk = φ(Lk ) ⇔ F(Vk ) = G(Lk )

µ M =
1+ kM

k + 2
  and σ M

2 =
k 2M (1− M ) + (k +1)

(k + 3)(k +2)2

k 3(5M 2 − 5M +1) + k 2(16M 2 −16M + 2) − 5k − 4 = 0

µ CV =
1+ kM

k +2
  and σ CV

2 =
k 2M (1− M ) + (k +1)

(k + 3)(k + 2)2

k 3 + k 2 7 − 36(M − M 2)[ ] − 20k − 24 = 0

µ C =
(2h − 2) M +1

2h
  and σ C

2 =
h2 − 2

2h 2(2h +1)

h = 1−
2

2M − 1

��

M <
1

2
h = 1+

2

2M −1

��
M >

1

2

µ =
4M +1

6
and σ2 =

1

36
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.

Hence, it would therefore be possible to determine
G(Z′) and, setting out the problem in the usual way
(Fig. 1).

The problem would be reduced to one of solving the
integral equation:

,

in which the unique unknown value is Z.
Before continuing our approach, we are going to

present the following considerations on how to obtain
G(Z′). If we wish to obtain tables relating M′ and Z′ at
our disposal, for each of the models, we must proceed
as follows1: Given a′ , m′ , b′ and x′ , we standardise the
values and obtain 0, M′ , 1 and Z′ . Starting with M′ , we
determine p′ and q′ , depending on the model we want
to use (Table 1).

So we would obtain G(Z′), starting from M′ and Z′
as can be observed in Table 2.

On the other hand, starting with the asset values a,
m and b, we obtain 0, M and 1, and, making F(Z) equal
to G(Z′), we can find the value of Z in the tables, star-
ting from M and F(Z), and later on the value of x, star-
ting from the value of Z.

Nevertheless, our aim is to solve the previous inte-
gral equation through an iterative process, and, at the
same time, to automate the choice of the model to be

used, following either the maximum variance criterion
(MVC) or the minimum variance criterion (mvc). The-
refore, let us now see how p and q could be obtained
in an automatic way, if previously we had decided to
work either with the MVC (Table 3) or with the mvc
(Table 4) (see García et al., 2003a, op. cit.):

Let us illustrate, in a diagram (Fig. 2), the design of
a computer program which will allow us to obtain the
value x of the asset, according to the values a, m and
b and a′ , m′ , b′ and x′ , by just deciding on the criterion
to be used, i.e. MVC or mvc, both for the asset and the
index. Next (Table 5), we standardise the values, by
subtracting the smaller one and dividing by the range.

Next we calculate:

,

where . Starting from

M, we repeat all the previous process to obtain the va-
lues of p and q corresponding to the asset. Now we ne-
ed to solve the integral equation:

,

where G(Z′) is a known value. To do this, we have ela-
borated a computer program using Matematica 4.0
(see, for example, García et al., 2002a, op. cit.). The
theoretical foundations of this program are as follows:
If p and q are the parameters corresponding to the as-

F(Z) =
t p−1(1− t)q−1

β( p, q)0

Z∫ dt = G( ′Z )

β( ′p , ′q ) = ′t ′p −1(1− ′t ) ′q −1d ′t
0

1∫

G( ′Z ) =
′t ′p −1(1− ′t ) ′q −1

β( ′p , ′q )0

′Z∫ d ′t

F(Z) =
t p−1(1− t)q−1

β( p, q)0

Z∫ dt = G( ′Z )

G(ω) =
′t ′p −1(1− ′t ) ′q −1

β( ′p , ′q )
d ′t

0

ω∫
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1 These tables, in which M′ and Z′ have perfectly determined their range in the interval [0,1], would cover all the possibilities: it
would be enough with fixing the required precision and this does not happen with the tables presented by Caballer (1993) which
have been developed according to p and q being unknown their ranges, so they would be always some incomplete tables.

0 M Z ? 1 0 M’Z’ 1

Asset Index

Figure 1. Method of two beta distributions.



set distribution function, the objective is to solve the
integral equation:

,

where Z is the unknown value. We can calculate

and set out the integral

equation as follows:

.

The iterative process is organised as follows: Star-
ting from ω0 = 0, we define:

.

and the equation:

So Aω0
= 0 and for k = 1, we obtain the following:

and hence

.

For k = 2:

.

Thus, for every value of k (k = 0, 1, 2, ...) the corres-
ponding value of ωk is obtained by adding or sub-

tracting from the previous term, ωk–1:
1

2k

ω2 = ω1 − Sign (Aω1
− H ( ′Z )) ⋅

1

22
=

1

2
±

1

22

Aω1
= t p−1(1− t)q−1dt

0

1 /2∫

ω1 = ω0 − Sign (Aω1−1
− H ( ′Z )) ⋅

1

21
=

1

2

ωk = ωk −1 − Sign (Aωk−1
− H ( ′Z )) ⋅

1

2k

Aωs
= t p−1(1− t)q−1dt

0

ωS∫

t p−1(1− t)q−1dt
0

Z∫ = G( ′Z ) ⋅β ( p,q ) = H ( ′Z )

β( p,q ) = t p−1(1− t)q−1dt
0

1∫

t p−1(1− t)q−1

β (p ,q )
dt

0

Z∫ = G( ′Z ) > 0

Iterative valuation process in the method of the two beta distributions 9

Table 1. Obtaining the index distribution function

Standardised mode Alternative models Values of p’ and q’ Distribution function

′k →
′p = 1+ ′k ′M

′q = 1+ ′k (1− ′M )





Mesokurtic (k’)

M’ ⇒

Caballer (h’)

Constant
variance (k’)

Classical

G(ω) =
′t ′p −1(1− ′t ) ′q −1

β( ′p , ′q )
d ′t

0

ω∫

′M > 1/2 →
′p = ′h + 2

′q = ′h − 2





′M < 1/2 →
′p = ′h − 2

′q = ′h + 2





��

��

��

��

′k →
′p = 1+ ′k ′M

′q = 1+ ′k (1− ′M )





′p = 1+ 4 ′M

′q = 1− 4(1− ′M )





Table 2. Obtaining G(Z’) from M’ and Z’

M’/Z’ 0.01 0.02 ... ... 0.99

0.01

0.02

1.00

G(Z’)

�

�

...

...



.

Therefore,

and, taking into account that , {ωk} is a

Cauchy and, therefore, a convergent sequence, whe-
reby convergence of the iterative process is guaranteed.
The number of steps in the iteration would depend on
the degree of adjustment, which we try to obtain. If it

was a millionth (0.000001), provided that |Aωk
– H(Z′)|

is greater than 0.000001, we would go to the following
value of k. If |Aωk

– H(Z′)| is less than 0.000001, the pro-
gram stops and gives the last value of ωk, as a solution
for Z and thus x = a + (b – a)Z.

Poly-stage iterative process in the two
distribution functions method.
Confidence intervals

Let us suppose that we want to value an agricultu-
ral property (in general, an asset) taking the level of
production per hectare (chosen index) as a reference.

lim
k →∞

1

2k
= 0

ωk − ωk −1 =
1

2k

ω3 =
1

2
±

1

22









±

1

23
,K ,ωk =

1

2
±

1

22
±K ±

1

2k−1









 ±

1

2k
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Table 3. Maximum variance approach (MVC). Obtaining the parameters p’ and q’

1. ′M ∈ (0, Caballer (as ′M < 1
2
), ′h = 1−

2

2 ′M −1

′p = ′h − 2

′q = ′h + 2





2. ′M ∈ (0.14645, 0.85355) Classical

3. ′M ∈ (0.85355, 1) Caballer (as ′M > 1
2

), ′h = 1+ 2

2 ′M +1

�� ��

��

�� ′p = ′h + 2

′q = ′h − 2





��

��

′p = 1+ 4 ′M

′q = 1+ 4(1− ′M )





0.14645 )

Table 4. Minimum variance approach (mvc). Obtaining the parameters p’ and q’

4. ′M ∈ (0,

Mesokurtic → solve :
′k 3(5 ′M 2 − 5 ′M +1) + ′k 2 (16 ′M 2 −16 ′M + 2) − 5 ′k − 4 = 0

We take the unique positive solution of ′k →
′p = 1+ ′k ′M

′q = 1+ ′k (1− ′M )














5. ′M ∈ 0.2763933,
1

2









Caballer ′M < 1

2

′h = 1− 2

2 ′M − 1

′p = ′h − 2

′q = ′h + 2













6. ′M ∈ 1

2
,









Caballer ′M >
1

2

′h = 1+ 2

2 ′M − 1

′p = ′h + 2

′q = ′h − 2













7. ′M ∈ (0.7236067, 1)

Mesokurtic → solve :

′k 3(5 ′M 2 − 5 ′M +1) + ′k 2 (16 ′M 2 −16 ′M + 2) − 5 ′k − 4 = 0

We take the unique positive solution of k →
′p = 1+ ′k ′M

′q = 1+ ′k (1− ′M )














�� ��

��

�� ��

��

0.2763933)

0.7236067



In principle, we will have the values a, m and b for the
asset and a′ , m′ and b′ for the index. Moreover, in this
specific case, the index takes the value x′ and we want
to determine, using the method of the two distribution
functions, the value x of the asset in question. It is well-
known that, where G(x′) is the index distribution func-
tion and F(x) the asset one, the value x will be deter-
mined by the expression:

x = φ(x′),
deduced from the following equality:

F(x) = G(x′).
On the other hand, unless M (the standardised mo-

de) is in the interval (0.27639, 0.723606), one can cho-
ose, as a model for the asset distribution function, from
the classical, Caballer, of constant variance and me-
sokurtic models. Analogously, the same is applicable
to the index distribution function. Therefore, as we
must choose one distribution function for the asset and
another for the index, the number of possible choices
will be the number of variations with repetition of four
elements taken two at a time:

This is illustrated in Table 5.
All in all, the number of possible values for x will be:

— 16, when the mesokurtic model can be used ei-
ther for the asset or for the index.

— 12, when the mesokurtic model can be used for
the asset but not for the index.

— 12, when the mesokurtic model can be used for
the index but not for the asset.

— 9, when the mesokurtic model cannot be used
neither for the asset nor for the index.

Therefore, in a first step of the valuation we could
obtain, starting from the values a, m and b for the as-
set and a′ , m′ , b′ and x′ for the index, the values P1

ij, i,
j = 1,2,3,4, using each of the procedures described in
table 5. Starting from these values (that could be 9, 12
or 16), we calculate again for the asset a minimum va-
lue a1, a modal value m1 and a maximum value b1. Ta-
king these values as a starting point, we can apply each
of the alternatives in Table 5 to the case (a1, m1, b1) and
(a′ , m′ , b′ , x′) with which we will obtain, in a second
phase of valuation, the values P2

ij, i, j = 1,2,3,4, that,
again, can be 9, 12 or 16.

This procedure can be repeated an appropriate num-
ber of times in such that, in the k-th step of the poly-
stage valuation process, the values Pk

ij, i, j = 1,2,3,4
could be again 9, 12 or 16, depending on the circums-
tances.

We should point out that, in steps 2, 3, … of the
poly-stage process, it is not possible to determine the
mode (although we resort to establishing intervals), in
which case we will substitute the mode by the median
(see Troutt, 1989), or, according to the empirical rela-
tion among the mean, the median and the mode (Spie-
gel, 2001), for one-modal distributions which are not
very asymmetric, the following relation holds:

Mean – mode = 3(mean – median),

from which it is deduced that:

Mode = mean – 3(mean – median).

All in all, after applying the k steps of the valuation
process, we will obtain (Table 6):

VR4
2 = 42 = 16
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Figure 2. Design of a computer program to obtain p’ and q’.

�

�

�

� � �� � �

�

Asset Index

a, m, b a’, m’, b’ and x’

x – a x’ – a’
Z = —————— Z’ = ——————

b – a b’ – a’

O, M, 1 0, M’, 1 and Z’

M’

The values of p’ and q’ are obtained

MVC
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Table 5. Possible choices for asset and index distribution
functions

Classical Caballer Mesokurtic
Constant

Asset/Index
(1) (2) (3)

variance
(4)

Classical (1) (1,1) (1,2) (1,3) (1,4)
Caballer (2) (2,1) (2,2) (2,3) (2,4)
Mesokurtic (3) (3,1) (3,2) (3,3) (3,4)
Constant
variance (4) (4,1) (4,2) (4,3) (4,4)



For each of these groups of values we can consider
the following questions:

1. Is it possible to assume that Pk
ij, i, j = 1,2,3,4 

follows a normal distribution in spite of the range being
finite? Observe that the values Pk

ij, i, j = 1,2,3,4 are non-
negative, so only the right tail will be fitted and in a
finite range.

2. Is it possible to assume that the sample of va-
lues Pk

ij, i, j = 1,2,3,4 comes from the same normal po-
pulation as the sample Ph

ij, i, j = 1,2,3,4, with k, h ∈ Z+?
To answer the first of these questions, for small sam-

ples (n < 30), we would recommend the normality test
of Shapiro-Wilks (see Peña, 1993). The statistic to be
used is:

,

where:

— ,

— h is , if n is even, and , if n is odd,

— the coefficients aj,n are tabulated, and
— x(j) is the value of the sample in position j.
The distribution of w is tabulated.
To answer the second question, let us consider steps

1 and 2 of the valuation process for which we have ob-
tained the samples:

and
,

respectively. Denoting:

,

and

,

it is verified that, where x1, x2,...,xn1
come from a nor-

mal population, the random variable:

follows a Student’s t-distribution with n−1 degrees of
freedom, which allows us to obtain both confidence
intervals, with lower and upper endpoints of:

and

On the other hand, we can check whether both sam-
ples come from the same population, i.e. to test the null
hypothesis H0 that (supposing that both populations
have the same variance):

at level 0.05, using the statistic

,

where:

that follows a Student’s t-distribution with n1 + n2 – 2
degrees of freedom.

Finally, considering these confidence intervals for
the mean as intervals of probability for the variable,
the following reasoning can be followed. After deter-
mining both 95 percent confidence intervals I1 and I2,
we know that Pr(v∈ I1) = 0.95 and Pr(v∈ I2) = 0.95, and
can state that:

,

because Pr(I1 ∪ I2) is always less than 1.
This two-stage process, therefore, leads to a confi-

dence interval. On the other hand, the poly-stage pro-
cess is the generalisation of this and should lead to a
value, provided that the sequence of the means obtai-
ned in steps 1, 2,..., k,...:

converges to a real number. To do this, it must be ve-
rified that the variances or the ranges of the intervals

x1 , x2 ,K , xk ,K

− Pr(I1 ∪ I2 ) ≥ 0.95 +0.95 − 1= 0.90

Pr(I1 ∩ I2) = Pr(I1) + Pr(I 2) −

σ̂ =
n1S1

2 + n2S2
2

n1 + n2 − 2������������

t = x − y

σ̂ �������1

n1
+

1

n2

H 0 :µ1 = µ 2

I2 : x2 ±
t
n 2 −1
ε /2

n2
S2

��

I1 : x1 ±
t
n1 −1
ε /2

n1
S1��

t =
(x − µ) n

Sn−1
=

(x − µ) n −1

Sn

�� �����

Sn−1
2 =

1

n −1
(xi − x)2

1

n

∑

Sn
2 =

1

n
(xi − x)2

1

n

∑

x1 , x2 ,K , xn 2

x1 , x2 ,K , xn1

n − 1

2

n

2

ns2 = ( xi − x )2∑

w =
1

ns2
aj ,n x(n− j+1 ) − x( j )( )

j=1

h

∑












2

=
A2

ns2
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Table 6. The k steps in the valuation process

Steps Values

Step 1 P1
11 P1

12 P1
13 ... P1

44

Step 2 P2
11 P2

12 P2
13 ... P2

44
. . . . . .. . . . . .. . . . . .

Step k Pk
11 Pk

12 Pk
13 ... Pk

44



converge to zero. To conclude this Section we give se-
veral definitions that will help to understand the fo-
llowing Section:

Definition 1 (Stability). We describe the iterative
process as being stabilised when, in two consecutive
steps of the poly-stage process, we can accept that the
two samples (composed of the results from each stage)
come from a normal population with the same mean.

Definition 2 (Convergence). We can describe the 
iterative process as convergent when the sequence of
fitted intervals [ai, bi],i = 1,2,...,n is a Cauchy sequence.

Definition 3 (Validity). We describe the iterative
valuation process as valid, for certain initial data, when
it is convergent and stable.

Empirical application

For the practical application, we will take the data
of Alonso and Lozano’s work (1985) on the valuation
of agricultural properties in Valladolid (Spain). The-
refore, the initial data are:

— Asset to be valued: Agricultural property (mar-
ket value, ESP per hectare).

— Index: Income per hectare = 44,010 ESP.
The reference values of both variables are shown in

Table 7.
In both cases, we will calculate the standardised 

modes:

and ,

from which we deduce that it is not possible to apply
the mesokurtic model either for the asset or for the in-
dex, because M and M′ belong to the interval (0.27639,
0.723606). We, therefore, obtain the values in Table 8.

By applying the Shapiro-Wilks’ test to these data,
we obtain the statistic w = 0.859992 which allows us
to accept the hypothesis of a normal population, for
which the mean, median and mode can be determined.

In the following step, we are going to consider, as
reference values for the asset, the ones extracted from
the former table:

— a2 = 423,031
— b2 = 481,294
— m2 = 435,814

where the mode has been calculated from the empiri-
cal formula:

Mode = mean – 3(mean – median).

So and then the meso-

kurtic model can be used to value the asset and thus
another 12 values are obtained in this second step (see
Table 9).

By applying the Shapiro-Wilks’ test again, w =
0.8831, where the normality hypothesis is accepted at
a 5% level. Now let us apply a test to establish whe-
ther both populations have the same mean (assuming
that both populations have the same variance):

To do this, we know that the statistic:

,

where:

σ̂ =
n1S1

2 + n2S2
2

n1 + n2 − 2������������

t = x − y

σ̂ �������1

n1
+

1

n2

H0 : x − y = 0,

H1 : x − y ≠ 0.





M 2 =
m2 − a2

b2 − a2
= 0.219418

′M =
′m − ′a

′b − ′a
M =

m − a

b − a

Iterative valuation process in the method of the two beta distributions 13

Table 7. Maximum, minimum and modal values of an asset
and an index

Values Asset Index

Minimum a = 250,000 a’ = 20,000
Modal m = 325,000 m’ = 32,500
Maximum b = 500,000 b’ = 50,000

Table 8. Values obtained in the first step

P1
11 P1

12 P1
14 P1

21 P1
22 P1

24 P1
41 P1

42 P1
44

433,264 445,833 446,472 475,274 481,014 481,294 423,031 435,380 436,016

Table 9. Values obtained in the second step

P2
11 P2

12 P2
14 P2

21 P2
22 P2

24 P2
31 P2

32 P2
34 P2

41 P2
42 P2

44

462,674 465,903 466,074 478,122 479,103 479,150 454,268 456,942 457,169 461,181 464,367 464,538



follows a Student’s t-distribution with n1 + n2 – 2 de-
grees of freedom. The result is  shown in Table 10.

Since both normal populations do not have the sa-
me mean, we will consider that the valuation process
has still not been stabilised and thus proceed to the
next step starting from Table 9 and obtain:

— a3 = 454,268
— b3 = 479,150
— m3 = 461,775.67

from which . Now, the mesokur-

tic model cannot be used to value the asset and so the new
process will generate 9 values, as is shown in Table 11.

The Shapiro-Wilks’ test gives a value w = 0.8621
for the statistic, which allows us to accept the norma-
lity hypothesis at a 5% level. We now compare these
samples P2

ij and P3
ij to establish whether they come from

the same population. The result is shown in Table 12.
The process continues to be unstabilised and, the-

refore, requires another step. From Table 10, the star-
ting point would be:

— a4 = 471,511
— b4 = 477,261
— m4 = 472,838.26

from which , so the meso-

kurtic beta can be used to value the asset and, there-
fore, this process will generate 12 new values, i.e. (see
Table 13).

The Shapiro-Wilks’ test gives w = 0.90022 and, the-
refore, we can accept the normality hypothesis at a 5%
level. If now the difference of means between the 

populations P3
ij and P4

ij are compared, the result is shown
in Table 14.

We can say that now the valuation process has been
stabilised and proceed to obtain a 95 percent confi-
dence interval for this value. In the first place,

,

from which S3 = 2,206.94 and S4 = 890.28. On the other
hand,

,

and, taking into account that t8
0.975 = 2.31 and t11

0.975= 2.20:

I3 = (472,564; 475,962.70) and I4 =
= (475,138.59; 476,269.40).

The probability that the value we are looking for lies
in I3 is 95%:

the same as for I4:

Therefore:

Hence the value we are looking for lies in the interval

(475,138.59; 475,962.70)

with a probability greater than 90%.
Finally, observe the convergence process of maxi-

mum, minimum and modal values2 (Fig. 3).

− Pr(I3 ∪ I4 ) ≥ 0.95 + 0.95 −1 = 0.90

Pr(I3 ∩ I4 ) = Pr( I3) + Pr(I4 ) −

Pr(v ∈ I4 ) = 0.95

Pr(v ∈ I3) = 0.95

Ik : xk ±
t
n k −1
ε /2

nk
Sk

��

Sk =
1

nk − 1
( xi − x)2

i=1

n k

∑���������������

M 4 =
m4 − a4

b4 − a4
= 0.230806

M 3 =
m3 − a3

b3 − a3
= 0.30
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Table 10. First test on difference of means

Sample 1 size 9
Sample 2 size 12
Mean 1 449,790.82
Mean 2 465,790.9167
Difference –16,060.0967
Statistic A = –2.1919

H0 is rejected at a 5% level

Table 11. Values obtained in the third step

P3
11 P3

12 P3
14 P3

21 P3
22 P3

24 P3
41 P3

42 P3
44

472,535 473,788 473,846 476,658 477,233 477,261 471,51 472,738 472,801

Table 12. Second test on difference of means

Sample 1 size 12
Sample 2 size 9
Mean 1 465,790.9167
Mean 2 474,263.3389
Difference –8,472.4222
Statistic A = –2.8477

H0 is rejected at a 5% level

2 The analytical study of the convergence is not dealt with in this work.



As conclusions, the well-known two betas valuation
method or, in general, the two distribution functions
valuation method, is an emergent theory in the field
of valuation that has arisen in the specif ic f ield of 
agricultural valuation. To apply this method, different
works cited in the references have used the distribu-
tions suitable for the treatment of risk such as the trian-
gular, trapezoidal or beta distributions.

In this work, we have gone one step further in this
valuation method, by including an iterative process that
allows all the well-known betas which can be deter-
mined starting from the three classical values: maxi-
mum, minimum and most likely, to be used simulta-
neously. In this way, the question of determining which
of these betas could best simulate the behaviour of the
asset or the index has been overcome, since now it is
not necessary to answer this question because the pro-
cess itself solves this question.

Two questions have been presented in this work: the
problem of stability, i.e. starting from the moment
when the sets of values obtained from two consecuti-
ve processes can be considered to belong to normal
populations with the same mean. At that moment, we
can say that the process has been stabilised, but the ge-
neral question remains unanswered, i.e. under what
conditions can we verify that the process has been sta-
bilised?

Another point to consider is that of convergence. In
the practical case as illustrated in Figure 3, a rapid con-
vergence of the maximum and minimum values from
each stage can be observed that suggest a Cauchy se-
quence; but this question and the conditions that gua-
rantee the convergence of this sequence of fitted in-
tervals has not yet been formally solved. Both
questions will be dealt with in a future work.

Finally, another novel contribution of this work is
that it can generate either a value for the asset in ques-
tion (it suffices to take the centre of the last interval)
or can produce a confidence interval that, from a for-
mal point of view, in our opinion, is much more ap-
propriate to carry out valuations in situations of un-
certainty such as the case we are dealing with here.
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