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Abstract
The spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf) at farm and paddock scale is usu-

ally very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, 
we evaluated whether apparent electrical conductivity (ECa), a widely used proximal soil sensing technology, is a potential estima-
tor of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was 
negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM) content, pH, 
the saturation extract electrical conductivity (ECext), available phosphorous (P), and anaerobically incubated Nitrogen (Nan). 
Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA), and 
stepwise regression. Principal components (PC) and the PC-stepwise were used to determine which soil properties have an impor-
tant influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext 
exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively). Whereas P and Nan showed a lower correlation (R2=0.54 
and 0.11 respectively). The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total 
variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they 
substantially influence the relationship between the PC1 and the ECa (loading factors>0.4). Results showed that ECa is associated 
with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific 
management in soils for livestock use.

Additional key words: multivariate techniques; soil properties; geographic information system; lowland soils; spatial variability.
Abbreviations used: ECa (apparent soil electrical conductivity); ECext (electrical conductivity of the saturation extract); GWR 

(geographically weighted regression); Nan (anaerobically incubated nitrogen); OM (soil organic matter content); P (available phos-
phorous); PCA (principal component analysis); PC (principal component).

Citation: Peralta, N. R.; Cicore, P. L.; Marino, M. A.; Marques da Silva, J. R.; Costa, J. L. (2015). Use of geophysical survey 
as a predictor of the edaphic properties variability in soils used for livestock production. Spanish Journal of Agricultural Research, 
Volume 13, Issue 4, e1103, 8 pages. http://dx.doi.org/10.5424/sjar/2015134-8032.

Received: 14 May 2015. Accepted: 30 Oct 2015
Copyright © 2015 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution-Non 

Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Funding: This work was supported by Instituto Nacional de Tecnologia Agropecuaria (INTA) and Faculty of Agricultural Sciences - 
National University of Mar del Plata (FCA- UNMdP).

Competing interests: The authors have declared that no competing interests exist.
Correspondence should be addressed to Pablo L. Cicore: cicore.pabloleandro@inta.gob.ar

Introduction

The Argentinean pampas is a vast plain region of 
about 50 Mha and it is considered one of the most suit-
able areas for grain crop production in the world (Satorre 
& Slafer, 1999). However, on its southern portion (Floot-
ing Pampas), the predominant soils of the region belong 
to the great group Natraquoll and Natraqualf (Soil Sur-

vey Staff, 2010). These soils exhibit a distinctive char-
acteristic, which is the presence of a natric horizon (Btn), 
locally called ‘‘sodic’’ (Soil Survey Staff, 2010). Also, 
they have a poorly developed drainage system, nor-
mally situated in flat landscapes, with a strong textural 
contrast between horizons and with halomorphism and 
hidromorphism processes (Taboada, 2006). For these 
reasons these soils are used for livestock production 
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within-field variability of the edaphic properties in 
Natraquoll and Natraqualf soils. Knowledge of these 
variations is essential if one intends to analyze the po-
tential benefits of adopting a site specific approach to 
grassland and pasture field management in these soils. 

The main objective of this study was to determine 
whether soil ECa is a potential estimator of the edaph-
ic variability in Natraquoll and Natraqualf soils, which 
are characteristic of many livestock production systems 
around the world.

Materials and methods

Experimental site

This study was conducted at Balcarce, in the south-
east of the Buenos Aires Province, Argentina (37°45´ 
S, 58°18´ W; mean annual rainfall: 930 mm; mean 
annual temperature: 13.7°C) (Figure 1). The experiment 
was established in a paddock of 16 ha that sustained a 
permanent pasture dominated by Thinopyrum ponticum 
(Podp.) Liu & Wang. The site contains various soil 
series: Chelforó (Typic Natraqualf), Las Armas (Typic 
Natraquoll) and Tandileofú series (Mollic Natraqualf) 
(Soil Survey Staff, 2010). These soils are characterized 
by a clay loam texture (0-0.30 m).

Geophysical surveys

Data collection using the Veris 3100

Soil ECa measurements were made using the Veris 
3100® sensor system (Fig. 2), at a low soil moisture 

(Vazquez et al., 2001). Furthermore, they are managed 
extensively and homogeneously, which in turn can re-
duce the system sustainability. A way to improve this 
type of management could be based on site specific 
agriculture technologies, improving soil-plant interac-
tions knowledge and efficient production factors usage 
at farm and paddock level (Serrano et al., 2013). 

Previous research has shown that the amount of soil 
variability across a farm and within a field of agricul-
tural soils (high productivity) is of key importance for 
determining potential benefits of adopting precision 
farming (King et al., 2005; Bullock et al., 2009). How-
ever, relatively little is known about the degree of 
within-field spatial variation in soils used for livestock 
production (Serrano et al., 2013). Typically, soil sam-
pling of the field and mapping, comprises grid-sampling 
and mapping approach as well as laboratory work. This 
is impractical at the farming scale because it is labor 
intensive, time consuming and expensive (King et al., 
2005; Peralta et al., 2013). Therefore, it is desirable to 
find other more rapid and low cost means of obtaining 
information for detailed soil mapping (King et al., 2005). 
Measurements of apparent soil electrical conductivity 
(ECa) can be intensively recorded in an easy and inex-
pensive way, being one of the most reliable techniques 
to characterize within-field variability of edaphic prop-
erties (Moral et al., 2010; Peralta et al., 2015).

There are two types of electrical conductivity sensors 
currently on the market to measure soil ECa in the field. 
The first type of sensor (contact method) uses elec-
trodes, in the shape of coulters that make contact with 
the soil to measure the electrical conductivity. The 
second type of sensor (non-contact method) is based 
on the principle of electromagnetic induction and does 
not contact the soil directly (Moral et al., 2010). ECa 
has been frequently used in the establishment of soil 
management zones and in the inference of several 
edaphic physicochemical properties and their respective 
spatial variation (Sudduth et al., 2005; Peralta et al., 
2013). In agricultural soils, ECa has been used to char-
acterize soil salinity (Rhoades et al., 1989); soil texture 
(Sudduth et al., 2003); soil depth (Peralta et al., 2013); 
soil moisture (Hossain et al., 2010); soil organic matter 
(OM) (Corwin & Lesch, 2005a) and cation exchange 
capacity (Kitchen et al., 2000). However, various au-
thors have shown inconsistent relationships between 
ECa and soil characteristics, probably due to the fact 
that ECa is influenced by complex site dependent soil 
properties interactions (Corwin et al., 2003; Sudduth 
et al., 2005). Some studies have shown that ECa values 
are related to soil properties variability in extensive 
livestock production systems and are also related to 
pasture productivity (Serrano et al., 2010, 2014a,b). 
However, there is no information on the degree of 
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Figure 1. Location of the experiment field (indicated as a white 
dot) in Balcarce, Buenos Aires province, Argentine. 
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content. The Veris 3100 device has six disc-shaped metal 
electrodes (coulter), which penetrate approximately 6 
cm into the soil. One pair of electrodes passes electrical 
current into the soil, while the other two pairs measure 
the voltage drop. The measurement depth is based on 
the distance between the emitting and receiving coulter-
electrodes. The system can be set up to work in con-
figuration A (0-0.30 m) or B (0-0.90 m). Configuration 
A comprises the inside coulters (2, 3, 4, 5) and voltage 
is measured between the innermost ones (3 and 4). In 
configuration B, the four outside coulters (1, 2, 5, 6) 
include the 0-0.90 m deep measurement, and the voltage 
gradient is measured between coulters 2 and 5. Output 
from the Veris data logger reflects the conversion of 
resistance to conductivity (1/Resistivity = Conductivity). 
In this work, the ECa was measured at 0-0.30 m because 
80% of the pasture roots are found at this depth (Doll & 
Deregibus, 1986). The Veris 3100 sensor was pulled 
across each field behind a pick-up truck (Fig. 2), taking 
simultaneous and geo-referenced ECa measurements in 
real-time with a differential GPS with sub-meter meas-
urement accuracy and configured to take a satellite posi-
tion once per second. The differential GPS was installed 
over the Veris 3100. On average, travel speeds through 
the field mapping ranged between 7 and 11 km/h, cor-
responding to about 2–3 m spacing between measure-
ments in the direction of travel. For ease of maneuvering, 
the field was traversed in a series of parallel transects 
spaced from 15 to 30 m intervals, because a spacing 
greater than 30 m generates measurement errors and 
information loss (Farahani & Flynn, 2007). Elevation 
data were collected at the same time as the ECa data, 
using a differential GPS (vertical accuracy of 3-5 cm).

Geophysical data analysis

The structure of the ECa and elevation were quanti-
fied using geostatistics analysis, which were estimated 
as Isaaks & Srivastava (1989):

 γ * h( )= 1
2N h( )

i=1

N  h( )

∑ z  xi( )− z  xi + h( )( )2
 [1]

where y* (h) is the semivariogram that expresses the 
variation of the semivariance with the relative distance 
between the measured data; z (xi) is the measured sample 
value at sample points xi, in which there are data at xi; and 
xi  + h N(h) is the total number of sample pairs within the 
distance interval h.

The semivariogram shows the decrease of spatial cor-
relation between two points in space when the separation 
distance increases. The adjusted semivariograms were 
used to interpolate the ECa and elevation data using 
ArcGIS Geostatistical Analyst (ArcGIS v9.3.1, ESRI, 
Redlands, CA, USA), by means of ordinary kriging after 
checking geo-statistical common assumptions (Isaaks 
& Srivastava, 1989). A final 10 m × 10 m grid cell size 
was chosen because it reflects the scale of variability 
associated with the ECa and elevation measurements 
(Kitchen et al., 2005; Peralta & Costa, 2013).

Geographically weighted regression (GWR) is a 
technique for exploratory spatial data analysis. In lin-
ear regression, it is assumed that the relationship being 
modeled holds globally in the study area, but in many 
situations this is not necessarily true. The GWR pro-
vides the means for modeling such relationships (Brun-
sdon et al., 2002). A GWR tool (ArcGIS v9.3.1, ESRI, 
Redlands, CA, USA) was used to analyze the regional 
relation between elevation and ECa. It is possible that 
one set of variables provides a good model for a part 
of the studied area, but at the same time it may be 
unsatisfactory for other parts; GWR will adjust the 
relationship coefficients in order to reflect the region-
al variation (Serrano et al., 2010; Terrón et al., 2011).

Soil sampling

Data collection strategy

Based on geophysical surveys a grid composed by 12 
points was sampled at a depth of 0-0.30 m. Each point 
represents the spatial variability of the plot. Each compos-
ite soil sample (three subsamples) was stored in a plastic 
bag and air dried in the laboratory. The following soil pa-
rameters were obtained: i) soil organic matter content (OM), 
using the Walkley & Black (1934) method; ii) pH, using a 
glass electrode at a 1:2.5 soil/water ratio suspension; iii) 
the electrical conductivity of the saturation extract (ECext), 
following the Chapman (1965) method; iv) available phos-
phorous (P) was determined according to the Bray & Kurtz 
(1945) method; and v) anaerobically incubated nitrogen 
(Nan), following the Echeverría et al. (2000) method.

Figure 2. The Veris 3100 System mounted behind the truck.
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Data analysis

Descriptive statistics were determined for elevation, 
ECa, and soil properties. Georeferenced buffers of 15 
m (Peralta & Costa, 2013) were created around each 
soil sampling point using ArcGIS 9.3.1 (ArcGIS v9.3.1, 
ESRI, Redlands, CA, USA) and the ECa mean was 
calculated within the buffer areas. Linear regressions 
were computed between this ECa mean and soil prop-
erties with PROC REG (SAS Inst., 2007).

Principal component analysis (PCA) was used to ex-
amine the relationship between soil properties and to es-
timate which of these exert a greater influence on ECa. 
Principal components (PCs) become new, independent and 
random variables that can be used to identify which stud-
ied soil properties influence ECa. Any PCs with an eigen-
value > 1 explains a significant soil property variance 
(Peralta & Costa, 2013) and therefore were used in a 
stepwise-regression procedure (SAS Institute, 2007) to 
determine if there was a significant relationship between 
the PCs and ECa. The stepwise-regression procedure re-
peatedly alters the model by adding or removing the PCs 
predictor until the significance level of the last one is above 
0.15. When the PCs remaining in the regression model 
accounted for >50% of the ECa measurement variability, 
the eigenvectors (loading factors) were examined and the 
soil properties in the PCs ranked according to the amount 
of variability explained by the PCs. Soil properties with 
loading factors <0.4 were not considered key latent vari-
ables because they did not substantially influence the re-
lationship between the PC groups and the ECa.

Results and discussion

Data exploratory analysis

The measured soil properties, elevation, and ECa 
are summarized on Table 1. Accordingly standard cri-
teria suggested by Wilding et al. (1994) some soil 
properties manifested high variation coefficients, es-

pecially OM, P and ECext (43%, 72 and 61%, respec-
tively), whereas a relative stability was registered for 
Nan and pH (less than 20%). High variation coeffi-
cients of soil properties normally indicate high spatial 
variability and consequently suggest the convenience 
of site-specific management (Moral et al., 2010). 

The ECa and elevation surfaces are shown in Figure 3. 
ECa showed substantial spatial variability for this particu-
lar field, ranging from 1.8 to 162.1 mS/m with a variation 
coefficient of 92% (Table 1). On the contrary, the eleva-
tion range is rather small (2.2 m) revealing a smooth to-
pography with gentle slopes (Taboada, 2006) and conse-
quently with low variation coefficients (Table 1). 
Elevation has a direct influence on soil forming pro-
cesses and on soil water movement, and in consequence 
in salinity distribution within a paddock (Corwin & Lesch, 
2005b). For this reason, elevation and ECa can be cor-
related (Tarr et al., 2005; Peralta & Costa, 2013). In this 
case, a visual inspection indicates higher ECa values on 
elevation depressions despite the low elevation variabil-
ity (Fig. 3), as also described by Officer et al. (2004) and 
Serrano et al. (2010) in agricultural and livestock aptitude 
soils, respectively. Therefore, elevation was negatively 
associated with ECa throughout the field, due to the fact 
that higher ECa values are observed in lower areas. These 
results can be explained by the fact that the soils in the 
depressed areas used for livestock are usually clasified as 
Natraqualfs soils (Batista et al., 2005), which are charac-
terized by a high solute concentration (Soil Survey Staff, 
2010). However, the relationship between ECa and eleva-
tion varied spatially. The GWR analysis allowed the de-
lineation between areas with a strong and a low relation 
between elevation and ECa (Fig. 4). 

Relationships among ECa and soil properties

Regression analysis

The relationships between soil properties and ECa 
are shown in Table 2. The pH and ECext were posi-

Table 1. Descriptive statistics of saturation extract electrical conductivity (ECext), pH, organic matter (OM), available phospho-
rus (P) and anaerobically incubated nitrogen (Nan) of the 12 sampled points.

ECa
(mS/m) Elevation

Soils properties

ECext

(mS/m) pH OM
(%)

P
(Mg/kg)

Nan
(Mg/kg)

Mean 42.4 121.5 90.0 8.4 5.2 17.7 167.1
Min 1.8 120.6 20.0 6.0 2.6 4.5 120.1
Max 162.1 122.4 170.0 10.2 9.0 44.7 201.6
CV (%) 92.6 0.4 61.0 19.9 43.2 72.4 14.1
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tively associated with ECa. These high correlations are 
expected because they reflect the influence of salts and 
pH on the measured ECa and because these properties 
are highly correlated (Corwin et al., 2003; Peralta & 
Costa, 2013). Salts concentration and pH increased soil 
solution conductivity and is consistent with findings 
in previous studies (Rhoades et al., 1989; Kaffka et al., 
2005). These results also agree with those reported by 
Peralta et al. (2013) in agricultural soils of the Argen-
tinean pampas.

Our results showed that significant and negative 
correlation coefficients were found between ECa and 
OM (Table 2). This may be due to the fact that in these 
soils, the areas with thin superficial horizon, and in 
consequence with lower OM content, also have the 
highest solute concentrations (Batista et al., 2005), 
which increases the measured ECa. On the contrary, in 
agricultural soils of the Argentinean pampas, a direct 
association was established between ECa and OM 
(Peralta et al., 2013).

The P showed a weak association with ECa 
(Table 2). This nutrient is less positively correlated, 
but still significant (p<0.05). Jung et al. (2005) men-
tioned that the low association between ECa and P 
is attributable to the influence of the fertilization 
method (band application) usually used in the Ar-
gentinean pampas (Simón et al., 2013). On the con-
trary, no association was established between ECa 
and Nan (Table 2). This behavior may be explained 

ECa (mS/m)
High: 162.1
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0  45  90     180    270    360
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Figure 3. Maps of apparent soil electrical conductivity (ECa) to a depth of 0.30 m (left) and eleva-
tion (m above sea level) (right). Position of soil samples are indicated as black dots.
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Figure 4. Map of local coefficient of determination (R2) between 
apparent soil electrical conductivity (ECa) to a depth of 0.30 m 
and elevation (m above sea level) obtained by means of geo-
graphically weighted regression (GWR).

Table 2. Models describing the relationships between ECa 
and saturation extract electrical conductivity (ECext), pH, or-
ganic matter (OM), available phosphorus (P) and anaerobi-
cally incubated nitrogen (Nan).

Property Equation R2 p-value

ECext 1.33x + 26.14 0.65 0.0027

pH 0.0422x + 6.25 0.76 0.0005

OM -0.055x + 8.009 0.70 0.0013

P 0.009x2 + 1.11x - 5.78 0.54 0.04

Nan -0.225x + 178.3 0.11 0.32



Nahuel R. Peralta, Pablo L. Cicore, Maria A. Marino, Jose R. Marques da Silva and Jose L. Costa

Spanish Journal of Agricultural Research December 2015 • Volume 13 • Issue 4 • e1103

6

by variation and low concentrations of N. These 
results agree with those reported by Peralta & Costa 
(2013).

Principal component analysis and PC-stepwise 
regression

A significant relation was found between some soil 
properties (pH, OM, ECext and P) and ECa (Table 2). 
However, due to the co-linearity of the independent 
variables, mutivariate statistical methods that include 
PC analysis are more appropriate to evaluate the rela-
tion between soils properties and ECa (Moral et al., 
2010; Peralta & Costa, 2013).

Table 3 shows the three first PCs. These PCs had a 
cumulative variance of more than 95%. The first PC 
(PC1) explained 69% of the total variance and was 
positively influenced by pH and ECext, and negatively 
by OM (loading factors>0.4) (Table 3). On the other 
hand, the second PC (PC2) and third PC (PC3) only 
explained 20 and 10% of the total variance respec-
tively. PC2 was highly related to Nan, whereas PC3· 
was related to P (Table 3).

PCs with an eigenvalue greater than 1 explain a 
significant amount of the variance present in the soil 
properties (Peralta & Costa, 2013). In this case only 
PC1 had an eigenvalue greater than 1 (Table 3). 
Confirming this, the PC-stepwise regression analy-
sis only retained PC1 (Table 3). Therefore, ECext, 
pH and OM were considered key latent variables 
because they substantially influence the relationship 
between the PC1 and the ECa (loading factors>0.4) 
(Table 3). Conversely, as previously mentioned, PC2 
and PC3 showed a more intense relationship with 
Nan and P (Table 3). Nevertheless, these PCs were 
not retained in the PC-regression model. Figure 5 
shows the spatial distribution of PC1. The sites with 
lower values of PC1 correspond to sectors of the 
field where the ECext and the pH are low and the 
OM is high.

As conclusion, identification of regression models 
that were able to account for a large portion (50%) of 
the variability in soil ECa would indicate situations 
where this parameter could be used successfully to 
measure soil properties (Heiniger et al., 2003). Our 
model explained slightly more than 69% of the total 
variation of the ECa measured. Therefore, our results 
provide evidence that soil ECa is useful in identifying 
sites with different pH, ECext and OM (loading fac-
tors>0.4) in soils used for livestock. Thus, ECa can be 
used as a support tool to implement site-specific man-
agement in permanent pastures. 

This study shows that soil pH, OM and ECext have a 
reasonably strong spatial correlation with the ECa of 
the soil. The use of geo-electric sensors in the particu-
lar type of soil of the studied site can be promising for 
the nutritional management of pastures. This will en-
able increased economic, environmental and energy 
efficiency. It also allows mapping the soil at field scale 
with a low input of resources.

PC1
-3.12 – -2.48
-2.48 – -2.04
-2.04 – -0.99
-0.99 – -1.62
1.62 – -7.22

N

S

W E

0  45  90      180    270    360
Meters

Figure 5. Map of the spatial variability from the PC1 of princi-
pal components analysis (PCA).

Table 3. Key principal components (PCs), eigenvalues, cumulative variance, loading factors for each soil property and regres-
sion model resulting from the principal component stepwise regression analysis.

Key PCs Eigenvalue Cumulative
variance

Loading factors

ECext pH OM P Nan

PC1 3.41 0.68 0.52 0.52 -0.52 0.39 -0.12
PC2 1.00 0.88 0.10 -0.02 0.05 0.25 0.96
PC3 0.48 0.98 -0.19 -0.36 0.19 0.87 -0.22

The PC-stepwise regression:
Model regression: 50.15 +15.5PC1, R2: 0.69, p-value: 0.001 

Bold values indicate significant loading factors > 0.4.
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