
yields are often reduced due to Zn deficiency (Alloway, 
2010). Moraghan (1978) reported that Zn deficiency is 
often related to a condition known as “chlorotic die-
back”. Plants affected by Zn deficiency tend to be pale 
in color, may sprout new shoots from their lower nodes, 
often form a type of candelabra appearance, and may 
suffer delayed maturity. 

Although Zn sulphate is the fertilizer most frequent-
ly used to correct Zn deficiency, Zn chelates are the 
most effective sources of Zn for numerous crops, such 
as maize (Zea mays L.), navy beans (Phaseolus vul-
garis L.), lettuce (Lactuca sativa L.) and others main-
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Introduction

Flax is an economically important crop which is 
grown for its fiber and oil (Herdrich, 2001; Mohanty 
et al., 2005). This plant is also a Zn-deficiency sensitive 
species with a relatively high Zn requirement (Lonera-
gan, 1951; Moraghan, 1980; Jiao et al., 2007; Storey, 
2007). Zinc deficiency is a common, and often impor-
tant, problem in flax fields throughout the world and 
especially in well-drained, sandy, acidic soils and in 
soils that have developed on calcareous rocks (Jeffery 
& Uren, 1983; Adriano, 2001). In these soils, crop 
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tus is to use a speciation method (Shuman, 1998). This 
diagnosis can be used to evaluate what would constitute 
the most favorable distribution of Zn sources in soil in 
terms of plant Zn nutrition. Various authors have re-
ported that applying stable organic-Zn fertilizers to 
soils has a significant effect on Zn content in the most 
labile and available Zn pools and could have important 
implications for the nutrition of any subsequent crop 
(Gonzalez et al., 2008; Alvarez et al., 2009). The ef-
fectiveness of different chelating agents (such as 
EDTA, HEDTA and EDDHSA) as metal carriers in 
soils depends on their capacity to maintain the metal 
in its soluble form. The metal displacement within the 
metal-chelate by other cations from the soil (such as 
Ca2+ or Fe3+), with the subsequent metal precipitation 
and the fixation of either the organic chelate molecule 
or the free metalic cation on clay colloids, produces a 
reduction in their effectiveness (Aboulroos, 1981; 
Shaheen et al., 2013). 

To date, only a few Zn-efficient chelates have been 
compared, and in only a few plant species (Prasad & 
Sinha, 1981; Paschke et al., 2006; Gonzalez et al., 
2007; Alloway, 2010). On the other hand, numerous 
Zn fertilizers are currently available to farmers, but to 
select the most suitable fertilizer it is necessary to have 
more information about their effectiveness. According 
to Kabata (2004), plant responses to trace elements in 
the soil can vary and should always be investigated 
with respect to particular soil-plant systems. 

The aims of the present study were to: (i) examine 
the responses of textile quality flax, including crude 
fiber content, tensile properties such as tensile strength, 
Young’s modulus and elongation at break, to applica-
tions of synthetic Zn chelates; (ii) establish a relation-
ship between plant response and the soil-Zn distribu-
tion; and (iii) determine differences among the 
efficiencies (uptake and utilization) of the Zn applica-
tion rates when Zn chelates are applied to a weakly 
acidic soil and to a calcareous soil.

Material and methods

The soils used in this study were surface horizons (Ap 
horizon) and came from the central region of Spain (Soil 
I: 40º17’ N, 4º01’ W; and Soil II: 40º39’ N, 3º19’ W). 
Soil I was classified as a Typic Haploxeralf and Soil II 
as a Typic Calcixerept (Soil Survey Staff, 2010). Sam-
ples of the soils were air-dried and passed through a 2 
mm sieve. The sieved fraction was then used in this 
study. The results of soil analysis are expressed on a dry 
weight basis (d.w.). The main properties of Soils I and 
II were (respectively): clay, 100 and 180 g/kg (hydro-
metric method: Day, 1965); predominant clays: illite and 

ly grown in calcareous soils (Alvarez & Gonzalez, 
2006; Gonzalez et al., 2007, 2008). The phytoavailabil-
ity of Zn depends on soil properties (pH, carbonate 
content, CEC, organic matter, Fe and Mn oxides, redox 
conditions-Eh), the nature of the plant, and microbial 
activity in the rhizosphere (Alloway, 2010). Foliar ap-
plications of Zn fertilizers can rapidly correct severe 
deficiencies, but only offer temporary solutions to the 
problem. In contrast, soil applications of Zn fertilizers 
are cheaper and their effects are longer lasting (resid-
ual effect). However, in soils with certain characteris-
tics, such as high pH and carbonate content, most of 
the Zn applied will become unavailable for plant uptake 
with over time.

Recent studies have suggested that the efficiency of 
Zn-chelates in sensitive plants such as flax may be as-
sociated with either an increased acquisition of this 
micronutrient from the soil (uptake efficiency) or with 
an improved utilization of Zn by the plant (utilization 
efficiency) (Sattelmacher et al., 1994). 

A number of researchers have sought to establish a 
relation between the distribution of Zn and P, Fe, Ca, 
Mg, Cd, and chlorophyll contents in flax, as well as 
with a number of disorders of an apparent nutritional 
origin that often retards the growth of flax plants (Lee 
et al., 1969; Spratt & Smid, 1978; Moraghan, 1993; 
Grant et al., 2000; Jiao et al., 2004). Nofal et al. (2011) 
reported that an increase in the Zn fertilization applied 
to a flax crop caused significant increases in growth, 
fiber yield, seed yield, and also in length and quality 
of fiber.

Several cases of Zn toxicity have been reported, af-
fecting various species including: lettuce, onion (Al-
lium cepa L.), spinach (Spinacia oleracea L.) and 
maize (Zea mays L.) (Vitosh et al., 1994; Kabata & 
Mukherjee, 2007). According to Paschke et al. (2006), 
toxic levels of Zn in plants may be a result of Zn ap-
plications.

Fertilizer management may offer a cost-effective 
way of meeting crop requirements since appropriate 
fertilizer management can optimize both crop yield and 
crop micronutrient content (Chandi & Takkar, 1982; 
Jiao et al., 2007). More information is therefore need-
ed to determine how Zn fertilizers influence both crop 
yield and crop micronutrient concentrations, and also 
the mechanical properties of plants such as flax (Alva-
rez, 2010). One approach for estimating Zn availabil-
ity to plants is to use single extractions as with the 
DTPA-ammonium bicarbonate (DTPA-AB) method 
(Soltanpour, 1991); this tends to correlate well with 
metal concentrations in plants (Adriano, 2001; Alvarez, 
2007). In addition, according to Schultz et al. (2004) 
the easily leachable Zn could be estimated by the BaCl2 
reagent. Another approach for diagnosing soil-Zn sta-
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the manufacturers´ recommendations for different Zn 
fertilizers. The soils were irrigated with appropriate 
amounts of potable water to achieve (and/or approxi-
mately maintain) conditions equivalent to 75% of field 
capacity. To evaluate evapotranspiration, the containers 
were weighed (balance A&D Instruments Ltd., UK, 
model FG-30 KBM) and the volume of irrigation water 
required was determined. The experiment was con-
ducted without any leaching. The greenhouse tem-
perature ranged from 10 to 32ºC and the relative air 
humidity ranged from 60 to 85%. The experiment was 
performed in spring (from 19th March to 17th June) with 
high natural light intensities and the plants reached 
heights of approximately 90 and 80 cm, respectively, 
in Soils I and II. 

Soil analysis

The total-Zn concentration in the soils was deter-
mined by digestion with HNO3 (65%) and HF (48%) 
in Teflon vessels in a microwave oven (CEM Corpora-
tion, model-Mars, Matthews, NC, USA); the values 
obtained for the two original soils were 10.0 and 44.3 
mg/kg d.w., respectively. 

The concentration of Zn available for plants (mg/kg 
d.w.) in the soil was determined with DTPA-AB (Sol-
tanpour, 1991). Easily leachable Zn was extracted with 
the 0.01 mol/L BaCl2 reagent according to Schultz et 
al. (2004) [the supernatant was filtered by vacuum 
pump, with a 0.45 µm cellulose acetate membrane 
filter (Albet 47BL, Barcelona, Spain)]. Soil pH, redox 
potential [Eh, pe = Eh(mV)/59.2] (ISO 11271, 2002) 
and electrical conductivity were measured in deionized 
water at a 1:2.5 (w:v) soil:water ratio. The pH and Eh 

parameters were also measured for all the different soil 
treatments in a saturated paste at two different times: 
45 d (half-way point) and 90 d (end of experiment) 
after seeding. 

The fractionation of Zn in the soil was performed 
according to techniques previously proposed by other 
authors, with only slight modifications (Alvarez, 2010). 
The Zn fractions were sequentially determined in seven 
steps for Soil I (carbonate-bound Zn fraction not suit-
able for non calcareous soil) or in eight steps for Soil 
II (calcareous) using the following extractants: 
−  �WS: deionized water (water soluble Zn); 
−  �EXC: 1 mol/L Mg(NO3)2 (pH 5) (exchangeable 

Zn); 
−  �CAR: 1 mol/L NaCOOCH3 (carbonate bound Zn); 
−  �MnOX: 0.1 mol/L NH2OH·HCl (Mn oxide bound 

Zn);
−  �AMOX: 0.2 mol/L (NH4)2C2O4·H2O + 0.2 mol/L 

H2C2O4 (pH 3) (amorphous Fe oxide bound Zn); 

smectite (X-ray diffraction technique: Schultz, 1964); 
water-holding capacity at 33 kPa, 66.0 and 205 g H2O/
kg (Richard´s membrane-plate extractor: Klute, 1996); 
pHw (1:2.5, w/v: soil:water ratio), 6.1 and 8.1; electrical 
conductivity, 37.2 and 178 µS/cm (1:2.5, w/v) (Chapman 
& Pratt, 1961); redox potential, 460 and 380 mV (1:2.5, 
w/v), respectively; oxidizable organic matter, 5.00 and 
12.9 g/kg (Walkley-Black procedure: Hesse, 1971); total 
N, 1.00 and 1.10 g/kg (Kjeldhal digestion: Bremner, 
1996); available P, 19.9 and 12.6 mg/kg (Olsen et al., 
1954); cation exchange capacity, 4.7 and 23.5 cmolc/kg 
(sodium acetate and ammonium acetate extraction pro-
cedures: Bower et al., 1952); and Fe (active Fe2O3), 141 
and 56 mg/kg (dithionite and oxalate extraction method: 
McKeague & Day, 1966). The total and free carbonate 
contents measured in Soil II were 13.4 and 3.30% 
(volumetric methods: Allison & Moodie, 1965; Nijen-
sohn & Pizarro, 1960), respectively. The values pre-
sented are means for three replicates. 

The liquid fertilizers used were: Zn-EDDHSA [Zn-
ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate), 
21.4 g water-soluble-Zn/L, mass density ρ = 1.26 g/
cm3, log Kc

0.01 Zn-EDDHSA ≈ 17.4; Lucena et al., 
2005], Zn-HEDTA (Zn-N-2-hydroxyethyl-ethylenedi-
aminetriacetate, 88.3 g water-soluble-Zn/L, ρ = 1.26 
g/cm3, log Kc

0.01 Zn-HEDTA = 15.3; Lindsay, 1979), 
Zn-EDTA (Zn-ethylenediaminetetraacetate, 100.0 g 
water-soluble-Zn/L, ρ = 1.38 g/cm3, log Kc

0.01 Zn-EDTA 
= 17.4; Lindsay, 1979). These three fertilizers are mar-
keted by several different companies (Dabeer, Vegetal 
Nutrition, Agricultural Atlantic; Spain). 

Air-dried soil (14 kg) was placed in polyethylene 
containers (each with a capacity of 15 L, an internal 
diameter of 26.5 cm and a height of 25 cm) and kept 
in a greenhouse. The soil was fertilized with: (i) 100 
mg N/kg, which was applied in two separate doses (the 
first at sowing and the second 45 d after sowing) in the 
form of urea [(NH2)2CO]; (ii) 120 mg P/kg, in the form 
of KH2PO4; and (iii) 150 mg K/kg, in the form of 
KH2PO4 and K2SO4. The plant used in this study was 
the textile-producing cultivar of flax NATASJA 
(AGROSA, Guadalajara, Spain). One hundred and 
twenty flax seeds were sown in each container at a 
depth of 3 cm and after germination seedlings were 
removed so that only 40 seedlings were left in each 
container. The control treatment (with no added Zn) 
and the fertilizer treatments 5 and 10 mg Zn/kg soil 
(low and high rate, respectively) were replicated 3 
times for each soil according to a randomized complete 
block design (total number of containers: 42). The 
quantities of Zn added in the experiment were checked 
three times for each treatment using atomic absorption 
spectrometry (AAS) (Perkin-Elmer AAnalyst 700). 
These application rates were selected after considering 
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whole shoots was calculated considering dry matter 
(DM) yield and concentration in stems and leaves. The 
crude fiber content (% in DM) was determined by the 
Weende method (AOAC 985.29, 1990), using Fibertec 
System M2 equipment (Tecator, Höganäs, Sweden). 

Plant mechanical properties

Plant mechanical properties including tensile 
strength, Young’s modulus and elongation at break, 
where also determined in stored plants. Five stems from 
each pot were cut to similar lengths (a 12.0 cm length 
was clipped from the middle of the stem) and their 
diameters were measured with a slide gauge; they 
ranged from 1.0 to 2.4 mm. Tensile tests were carried 
out using an instrument for testing different materials 
(Texture Analyzer XT2) and tensile properties were 
determined using Texture Expert Software (Texture 
Technol. Corp., Scarsdale, NY). 

Statistical analysis

Multifactor analyses of variance were performed for 
all the parameters studied in order to determine the 
main effects of fertilizer treatment (Zn source × Zn 
rate) and experimental repetition. A least significant 
difference value [LSD (p ≤ 0.05)] was calculated in 
order to make comparisons between the six Zn ferti-
lizer treatments considered and the control. All the 
analyses were performed using Statgraphics Plus-5.1 
software (Manugistic Inc., Rockville, MD, USA).

Results

Soil zinc status

The concentrations of Zn extracted from the soils by 
multi-element extraction methods at the time of the 
flax harvest are shown in Table 1. 

In general, in the soils treated with Zn, the orders of 
Zn distribution (the mean values of the Zn concentra-
tion for all the fertilizers and Zn rates applied) were as 
follows (mg/kg):

– � Soil I: EXC (4.34), RES (3.83), MnOX (3.00), 
OM (1.68), AMOX (1.43), CRYOX (0.97) and 
WS (0.92).

– � Soil II: RES (37.2), OM (4.86), AMOX (2.84), 
CAR (2.30), CRYOX (1.80), WS (0.77), MnOX 
(0.68) and EXC (0.47). 

In the weakly acidic soil (soil I), the exchangeable 
Zn fraction contained a larger amount of Zn than in the 

−  �CRYOX: (i) CB: Na3C6H5O7·2H2O (78.4 g/L) + 
NaHCO3 (9.82 g/L) and (ii) Na2S2O4 (pH 7) (crys-
talline Fe oxide bound Zn); 

−  �OM: (i) 0.02 mol/L HNO3 – 35% H2O2 and (ii) 3.2 
mol/L NH4COOCH3 (20% v/v HNO3) (organic 
material and sulfide –oxidizable– bound Zn); 

−  �RES: residual Zn). 
The concentration of residual Zn was calculated by 

subtracting the other fractions from total Zn. All the 
Zn concentrations were determined by AAS. The in-
creases with respect to the control in the percentages 
of Zn with respect to total Zn of the most labile Zn 
fractions was calculated as:

([Zn-Fraction]Treatment /[Zn-Total]Treatment) × 100) –	  
	  – ([Zn-Fraction]Control /[Zn-Total]Control) × 100	 [1]

Plant analysis

While the flax was growing in the containers (just 
before harvest), leaf samples were collected to analyze 
both the soluble Zn concentration in fresh matter (FM), 
by means of an extraction with 1 mmol/L MES reagent 
[2-(N-morpholino)ethanesulfonic acid] (at pH = 6.0) 
(Cakmak & Marschner, 1987; Alvarez, 2010), and the 
chlorophyll content (AOAC 942.04, 1990). Soluble Zn 
in FM was determined after collecting 0.5 g of leaves 
from between leaf layers seven and fifteen in the upper 
part of the plant. These leaves were macerated in a 
mortar with 10 mL MES reagent for 5 min. The result-
ing suspension was then centrifuged (10,000 rpm for 
15 min) and filtered through Whatman filter paper No. 
41, and Zn was subsequently determined in the solu-
tion. The concentration of Zn in the extracted solutions 
was determined by AAS, and the level of absorbance 
(A) at each wavelength was measured in a UV-1603 
spectrometer (Shimadzu). “Perkin-Elmer Pure” stand-
ard checks were used for the Quality Assurance System 
(certified by NIST-SRM). Standard solutions of Zn 
were prepared for each extraction in a background 
solution of the extracting agents. 

Ninety days after sowing, and just before seed de-
velopment, the plants were cut at soil level, washed 
twice with deionized water, air dried, placed into paper 
bags and then dried to a constant weight in a forced-
draft oven at 60ºC. Stems and leaves were separated, 
weighed and stored in sealed containers for later 
analysis (including the determination of total Zn con-
tent in both tissues and the determination of the plant’s 
mechanical properties). Subsamples of stems and leaves 
were subjected to wet digestion in a microwave oven 
using an acid mixture (HNO3 and HF). The suspensions 
were filtered with Whatman nº 41. Zinc concentrations 
were determined by AAS. Total Zn concentration in 
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I. Only the Zn-EDTA chelate produced significant in-
creases in the concentration of Zn in the WS fraction 
with respect to the control (31.7 and 11.3 times the 
control for the rates 10 and 5 mg Zn/kg soil, respec-
tively). With respect to the EXC and CAR fractions, 
Zn-EDTA 10 also produced the highest Zn concentra-
tions, but followed by Zn-EDDHSA 10, Zn-HEDTA 
10 and Zn-EDTA 5 for CAR fraction. In the most re-
sidual fraction, the differences between chelates were 
lower. 

In Table 2, which shows the increases with respect 
to the control in the percentages of Zn with respect to 
total Zn of the most labile Zn fractions (Eq. [1]), we 
can observe more clearly the differences listed above.

In Soil I, the Zn chelates produced significant in-
creases in the percentages of Zn associated with the 
more labile fractions with respect to the control; for 
example, the increases for WS-Zn (water-soluble Zn) 
ranged from 1.32% for Zn-EDDHSA 5 to 7.76% for 
Zn-EDTA 10, while those for EXC-Zn (exchangeable 
Zn) ranged from 11.93% to 23.76% for the same treat-
ments, respectively. In soil II, only the Zn-EDTA che-
late produced significant increases (2.06% and 5.64% 

others (illite was the predominant clay in this soil; see 
soil characteristics). On the other hand, in the calcare-
ous soil (soil II), most of the Zn was present as the 
residual fraction. This was the fraction most closely 
associated with the mineral portion and most related 
to alumosilicate minerals; in other words, it was as-
sociated with mineral lattices. 

The addition of Zn chelates to the two soils produced 
different increases in each of the different Zn fractions. 
Furthermore, the distribution of Zn fractions in soils 
depended on the type of Zn chelate used for each Zn 
application rate. 

In Soil I, the higher concentrations of Zn in the WS 
fraction were produced for the treatments Zn-EDTA 10 
(9.4 times the control) followed by Zn-EDDHSA 10 
(5.9), Zn-HEDTA 10 (4.7) and Zn-EDTA 5 (4.4). For the 
EXC fraction, the order was similar but with Zn-EDDH-
SA 10 and Zn-HEDTA 10 exchanging places. With re-
spect to the MnOX and AMOX fractions, Zn-EDTA 10 
and Zn-HEDTA 10 produced similar concentrations and 
higher than that obtained by Zn-EDDHSA 10.

In Soil II, the differences between the effects pro-
duced by the different chelates were higher than in soil 

Table 1. Concentration of Zn fractions, and DTPA-ammonium bicarbonate- and BaCl2-extractable Zn (expressed as mg Zn/kg 
dry soil) in Soil I (weakly acidic) and Soil II (calcareous) with the different fertilizer treatments at the moment of flax harvest.

Treatment[1] Zn rate
(mg/kg) WS EXC CAR MnOX AMOX CRYOX OM RES Total DTPA-AB BaCl2

Soil I

Control   0 0.21 a 1.13 a — 1.13 a 0.97 a 0.80 a 1.50 a 4.21 ab 9.95 a 1.20 a 1.07 a
Zn-EDDHSA   5 0.50 b 3.39 b — 2.81 b 1.47 b 0.83 ab 1.59 a-c 3.98 ab 14.56 b 4.49 b 2.70 bc

10 1.23 d 4.87 cd — 3.07 b 1.48 b 1.07 a-c 1.75 cd 5.42 b 18.88 c 7.63 c 3.93 d
Zn-HEDTA   5 0.61 b 3.53 b — 2.26 b 1.13 a 0.93 a-c 1.53 ab 4.63 ab 14.63 b 3.66 b 2.43 b

10 0.98 c 5.77 d — 4.37 c 1.63 bc 1.17 c 1.72 b-d 4.38 ab 20.01 c 9.00 c 5.38 e
Zn-EDTA   5 0.93 c 4.69 c — 3.13 b 1.56 bc 0.97 a-c 1.82 d 2.12 a 15.22 b 8.03 c 3.75 cd

10 1.97 e 7.01 e — 4.26 c 1.77 c 1.13 bc 1.84 d 1.97 a 19.96 c 13.03 d 8.05 f
LSD0.05 0.24 1.00 — 0.89 0.29 0.30 0.21 3.21 2.41 1.92 1.11

Soil II

Control   0 0.10 a 0.28 a 0.69 a 0.38 a 1.23 a 1.53 a 3.85 a 36.05 ab 44.12 a 0.45 a 0.13 a
Zn-EDDHSA   5 0.13 a 0.37 ab 1.91 b 0.53 ab 2.31 bc 1.61 a 4.85 ab 38.82 b 50.53 bc 1.81 b 0.23 a

10 0.27 a 0.46 b 3.20 d 1.07 c 3.87 e 2.10 bc 5.05 ab 38.59 b 54.61 c 4.43 d 0.37 a
Zn-HEDTA   5 0.17 a 0.43 b 1.58 b 0.47 ab 2.03 b 1.70 a 4.79 ab 37.84 b 49.00 b 1.70 b 0.27 a

10 0.41 a 0.48 b 2.43 c 0.63 b 2.83 cd 1.73 ab 5.57 b 40.54 b 54.63 c 3.29 c 0.43 a
Zn-EDTA   5 1.13 b 0.47 b 2.41 c 0.61 ab 3.03 d 1.73 ab 4.35 ab 35.63 ab 49.36 b 4.00 cd 1.14 b

10 3.17 c 0.81 c 3.87 e 1.10 c 4.61 f 2.17 c 5.59 b 32.72 a 54.03 c 8.60 e 2.78 c
LSD0.05 0.42 0.11 0.35 0.24 0.72 0.39 1.34 5.05 4.11 0.96 0.33

[1] EDDHSA, ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate); HEDTA, N-2-hydroxyethyl-ethylene-diaminetriacetate; EDTA, 
ethylenediaminetetraacetate. DTPA-ammonium bicarbonate- (DTPA-AB) and BaCl2-extractable Zn. Zn fractions are: water soluble 
(WS), exchangeable (EXC), carbonate bound (CAR), Mn oxide bound (MnOX), amorphous Fe oxide bound (AMOX), crystalline Fe 
oxide bound (CRYOX), organic material and sulfide –oxidizable– bound (OM) and residual (RES).  Mean values within a column were 
compared using a LSD multiple range test at the 95% level. Homogeneous groups are denoted with the same letter.
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between experimental time points for pH. The mean 
pH values were 6.10 and 7.68 for soils I and II, respec-
tively; and the mean pe values were 9.41 and 8.02 for 
soils I and II, respectively. Furthermore, the mean pH 
decreased with time from 7.22 at 45 d to 6.55 at 90 d. 
On the other hand, at the end of the experiment (90 d), 
the mean pH value was 5.55 for soil I with values rang-
ing between 5.25 for Zn-EDTA 10 and 5.75 for Zn-
EDDHSA 5. For soil II, the mean pH value was 7.55 
with values ranging between 7.44 for Zn-HEDTA 10 
and 7.67 for Zn-EDDHSA 5. With respect to the pe 
parameter, the mean value was 9.53 for soil I with 
values ranging between 9.79 for Zn-HEDTA 10 and 
9.44 for Zn-EDTA 10. For soil II, the mean pe value 
was 8.10 with values ranging between 8.33 for Zn-
EDTA 10 and 7.88 for Zn-EDDHSA 10. 

Crop response

The response of flax to Zn fertilization with respect 
to DM yield and, total and soluble-Zn concentration in 
the plants grown in Soils I and II is shown in Table 3. 
In general, the values obtained for these parameters 
were greater for Soil I than for Soil II, but the behavior 
of the different Zn treatments differed for DM yield 
and Zn concentrations. In Soil I, only the low applica-
tion rate of Zn-HEDTA and the high application rate 
of Zn-EDDSHA produced significant increases in yield, 
with values that were, respectively, 1.4 and 1.3 times 
greater than that of the control treatment (with no added 
Zn). In contrast, the high application rate of Zn-EDTA 
chelate produced a significant decrease in yield, with 
a value that was approximately only half as high as 
those observed in the control. This Zn source was as-
sociated with the highest total-Zn concentration re-

for the 5 and the 10 mg Zn/kg, respectively) for the WS 
fraction. The Zn-EDTA 10 also produced the highest 
increase in the EXC and CAR fraction, while Zn-
EDDHSA 10 produced the second highest increase in 
the CAR fraction and the highest increase with Zn-
EDTA 10 in the MnOX fraction. 

According to Soltanpour (1991) and Brennan et al. 
(1993), the available Zn concentration (DTPA-AB 
extractable Zn) in the control treatment for the soil I 
was close to the critical level for most crops, while that 
in the control treatment for the soil II was lower than 
that established as the critical level for crops (0.5-1.0 
mg Zn/kg). In contrast, the available Zn concentrations 
obtained for all the Zn treatments applied to the two 
soils were higher than for the control (Table 1). The 
values for DTPA-AB-extractable Zn for the sources 
applied at 10 mg Zn/kg in Soil I were between 3.3 and 
10.9 times greater than in the control and the order was 
Zn-EDTA 10 > Zn-HEDTA 10 ≈ Zn-EDDHSA 10 ≈ 
Zn-EDTA 5 > Zn-HEDTA 5 ≈ Zn-EDDHSA 5 > Con-
trol, while in Soil II they were from 3.8 to 19.1 times 
greater than in the control and the order was Zn-EDTA 
10 > Zn-EDDHSA 10 ≥ Zn-EDTA 5 ≥ Zn-HEDTA 10 
> Zn-EDDHSA 5 ≈ Zn-HEDTA 5 > Control. The Zn 
concentrations in the calcareous soil (II) were also 
lower than in Soil I (weakly acidic). Similar behavior 
was observed with BaCl2-extractable Zn, but the Zn 
concentrations estimated as leachable were even lower. 
The concentrations obtained for this extraction were 
from 3.7 to 7.5 times greater than the control value in 
Soil I and from 2.9 to 21.4 times greater in Soil II. 

The different Zn treatments did not produce differ-
ences in soil pH and pe parameters for a given soil at 
any of the experimental time points (data not shown). 
However, there were significant differences p < 0.001; 
n=84) between soils for pH and pe parameters and also 

Table 2. Increases (with respect to the control)[1] in the percentages of Zn (with respect to total 
Zn) of the most labile Zn fractions[2] in Soil I (weakly acidic) and Soil II (calcareous) at the mo-
ment of flax harvest.

Treatment [3] Zn rate 
(mg/kg)

Soil I Soil II

WS EXC MnOX WS EXC CAR MnOX

Zn-EDDHSA   5 1.32 a 11.93 a 7.94 a 0.03 a 0.10 a 2.22 a 0.19 a
10 4.40 c 14.44 a 4.90 a 0.27 a 0.21 a 4.30 c 1.10 b

Zn-HEDTA   5 2.06 ab 12.77 a 4.09 a 0.12 a 0.24 a 1.66 a 0.10 a
10 2.79 a-c 17.48 ab 10.48 a 0.52 a 0.24 a 2.88 b 0.29 a

Zn-EDTA   5 4.00 bc 19.46 ab 9.21 a 2.06 b 0.32 a 3.32 b 0.37 a
10 7.76 d 23.76 b 9.99 a 5.64 c 0.86 b 5.60 d 1.17 b

LSD0.05 2.03 9.26 7.50 0.89 0.23 0.71 0.49
[1] Increase: see Eq. [1]. [2, 3] See Table 1. Data are the mean value for three replications. Values within 
a column were compared using a LSD multiple range test at the 95% level. Homogeneous groups are 
denoted with the same letter. 
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corded in whole shoots (7.5 times greater than the 
observed in the control). As usual, the soluble-Zn 
concentrations in FM corresponding to leaves were 
smaller than the total-Zn concentrations found in whole 
shoots; even so, they followed a similar trend. As a 
result, the Zn-EDTA 10 treatment produced a concen-
tration 13.6 times greater than in the control. 

In Soil II, none of the Zn treatments produced a 
decrease in DM yield; the high rate of Zn-EDDHSA 
application produced the greatest increase with respect 
to the control (1.4 times greater), but the values ob-
served were not significantly different from those ob-
served in other treatments. The high application rate 
of Zn-EDTA produced the highest total Zn concentra-
tion in whole shoots (6.0 times greater than that ob-
served in the control). The highest concentrations of 
soluble Zn in FM from leaves were also associated with 
the high rate of Zn-EDTA (9.8 times greater than in the 
control), but all the Zn treatments produced significant 
increases with respect to the control. 

As shown in Fig. 1, all the Zn chelates, applied at 
both rates, produced increases in the total stem and leaf 
Zn concentrations, and particularly when Zn-EDTA was 
applied. In Soil I, the high application rate of Zn-EDTA 
produced Zn concentrations in stems and leaves that 
were 6.8 and 7.8 times, respectively, greater than in the 
control. In Soil II, corresponding concentrations in 
stems and leaves were 6.2 and 5.2, respectively, times 
greater than in the control. 

The average amounts of Zn uptake from shoot (stem 
plus leaf) were approximately twice as high in the 
weakly acidic soil than in the calcareous soil (2.60 and 
1.41 mg Zn, respectively; Fig. 2). It was also observed 
that, for a given Zn source, increasing the application 

Table 3. Effect of Zn fertilization with 0, 5 and 10 mg Zn/kg dry soil as Zn-EDDHSA, Zn-HEDTA and Zn-EDTA in the response 
of the flax crop in Soil I (weakly acidic) and Soil II (calcareous).

Treatment [1] Zn rate
(mg/kg)

Soil I Soil II

DM yield 
(g/pot)

Total Zn conc. 
DM of whole 

shoots 
(mg/kg)

Soluble Zn 
conc. FM of 

leaves 
(mg/kg)

DM yield 
(g/pot)

Total Zn conc. 
DM of whole 

shoots 
(mg/kg)

Soluble Zn 
conc. FM of 

leaves 
(mg/kg)

Control 0 19.6 bc 42.7 a 6.37 a 12.6 a 23.0 a 4.46 a
Zn-EDDHSA 5 23.7 ce 102 bc 17.3 b 15.9 bc 85.7 c 19.6 cd

10 26.2 de 143 de 25.9 c 17.8 c 117 d 26.1 e
Zn-HEDTA 5 27.5 e 85.4 b 13.8 ab 15.8 bc 62.1 b 11.8 b

10 23.0 cd 122 cd 21.5 bc 16.6 bc 100 cd 18.1 c
Zn-EDTA 5 16.6 b 149 e 41.3 d 14.4 ab 103 cd 23.1 de

10 10.9 a 319 f 86.6 e 14.8 a-c 137 e 43.9 f
LSD0.05 4.3 26.7 7.7 3.1 17.8 4.5

[1] See Table 1. DM = dry matter. FM = fresh matter. Data are the mean value for three replications. Values within a column were com-
pared using a LSD multiple range test at the 95% level. Homogeneous groups are denoted with the same letter. 

Figure 1. Effect produced by the Zn treatments (0, 5 and 10 mg 
Zn/kg dry soil) as Zn-EDDHSA, Zn-HEDTA and Zn-EDTA in 
leaf and stem total Zn concentration (dry weight) in Soil I (weak-
ly acidic) and Soil II (calcareous). Vertical bar at each of the 
data points represents the standard deviation from the mean. 
Statistical differences at p < 0.05 (LSD test) are presented by 
different letters for each tissue analyzed (leaf Zn, italic letter; 
and stem Zn, non-italic letter).
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(tensile strength, Young’s modulus, and elongation at 
break) is shown in Fig. 3. In Soil I, Zn chelate applica-
tions were not associated with significant increases in 
crude fiber content with respect to the control; even so, 
the high application rate of Zn-EDTA produced a sig-
nificant decrease in crude fiber with respect to the 
control (8.2%). The highest values observed in both 
soils were for Zn-HEDTA applied at the low rate (47% 
and 46% for Soil I and Soil II, respectively), while the 
lowest values corresponded to the 10 mg/kg application 
rate of Zn-EDTA (35% and 41% for Soil I and Soil II, 
respectively); this last value was not significantly dif-
ferent from the control value (42%). 

In Soil I, only the low rate of Zn-EDDHSA produced 
tensile strength values (MPa) that were significantly 
higher than in the control (1.21 times). In contrast, both 
rates of Zn-EDTA produced decreases in this param-
eter (0.76 times with respect to the control value). In 
Soil II, the effect of Zn treatment showed more sig-
nificant differences; except in the case of the high rate 
of Zn-EDTA, all the treatments produced an increase 
in the tensile strength. For Young’s modulus, there were 
no significant differences among fertilizer treatments 
in Soil I. In Soil II, the application of Zn was associ-
ated with increases in Young’s modulus for Zn-EDDH-
SA and the high application rate of Zn-HEDTA. Fi-
nally, when the different values were compared for the 
property called “elongation at break”, it was observed 
that the application of the high rate of Zn-EDTA pro-
duced a reduction in this parameter with respect to the 
control in Soil I. In Soil II, none of the treatments 
produced such reductions and, in fact, the low applica-
tion rate of Zn-EDDHSA and Zn-HEDTA produced 
significant increases.

Discussion 

Soil zinc status

The application of the two Zn rates to Soil I had a 
significant effect on Zn content in the most labile frac-
tions, mainly in fractions such as WS and EXC which 
could be considered very important for the Zn nutrition 
of the plant. The highest increase, with respect to the 
control, in the percentage of Zn associated with the WS 
fraction was produced for the high rate of Zn-EDTA, 
followed by the same rate of Zn-EDDHSA (Table 2). 
For the EXC fraction, the order was Zn-EDTA 10 ≥ 
Zn-EDTA 5 ≈ Zn-HEDTA 10. 

In Soil II, for WS-Zn, EXC-Zn, and CAR-Zn frac-
tions, the highest increases were for Zn-EDTA 10; and 
for CAR fraction the lowest increases were for Zn-
HEDTA 5 and Zn-EDDHSA 5 (Table 2). Reed & Mar-

rate produced an increase in shoot Zn content. The high-
est values for both soils were obtained with the high 
application rates of Zn-EDDHSA and Zn-EDTA. Fur-
thermore, the Zn content in leaf was only higher than 
the Zn content in stem with the Zn-EDTA fertilizer in 
Soil I; this could have been due to the high concentration 
of Zn observed in the leaves of flax plants.

The total chlorophyll content in flax leaves ranged 
from 2.08 to 2.48 mg/g in Soil I for the high application 
rates of Zn-EDTA and Zn-HEDTA, respectively, and 
chlorophyll content ranged from 1.77 to 2.27 mg/g in 
Soil II for the control (no Zn addition) and the higher 
application rate of Zn-EDDHSA, respectively. Even 
so, there were no significant differences between treat-
ments (data not shown). 

The influence of Zn chelates on the crude fiber con-
tent and three mechanical stem material properties 

Figure 2. Zinc uptake by flax plants with 5 and 10 mg Zn/kg 
dry soil from Zn-EDDHSA, Zn-HEDTA and Zn-EDTA fertiliz-
ers in Soil I (weakly acidic) and Soil II (calcareous). Vertical 
bar at each of the data points represents the standard deviation 
from the mean. Statistical differences at p < 0.05 (LSD test) are 
presented by different letters for each tissue analyzed (leaf Zn, 
italic letter; stem Zn, non-italic letter; and total Zn, bold letter).
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Figure 3. Crude fiber, tensile strength, Young´s modulus and elongation at break of the stems from flax plants in Soil I (weakly acidic) 
and Soil II (calcareous) for the different fertilizer treatments at the end of experiment (90 d). Vertical bar at each of the data points 
represents the standard deviation from the mean. Statistical differences at p < 0.05 (LSD test) are presented by different letters.
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(Table 3). According to Landon (1991), DTPA-extract-
able Zn concentration above 10 mg/kg is considered 
potentially harmful in acidic soils. 

Sajwan & Lindsay (1988) and McBride (1989) re-
ported that soil parameters such as pH and pe could 
influence the behavior of organic Zn complexes and 
modify their potential bioavailability. In this experi-
ment only the pH values for Soil II (alkaline soil) ap-
proached neutrality under conditions of 75% field ca-
pacity. According to Patrick et al. (1996), under 
waterlogged conditions the pHs of both acidic and 
alkaline soils converge on neutrality. The present soils 
could be classified as “normal” or “oxic” soils, al-
though the conditions of Soil I were slightly acidic and 
oxidant (mean pH+pe value 15.27) and those of Soil II 
were slightly alkaline and oxidant (mean pH+pe value 
15.48).

Crop response

In Soil I, the flax plants showed different visually-
observable responses to the fertilizer treatments in the 
case of growth to 90 d after sowing. The Zn-EDTA 
source, which produced high Zn concentrations in the 
most available fractions and in the available and easy 
leachable Zn, apparently induced plant Zn toxicity 
when applied to this soil at both rates. In the present 
experiment, despite the reduction in DM yield 
(Table 3), the usual visual symptoms of this toxicity 
(yellow spots on the bottom leaves) were not observed 
in plants. In contrast, the Zn-HEDTA chelate, which 
produced low Zn concentrations in the most available 
fractions and in the available and easy leachable Zn, 
produced an improvement in plant growth in this 
weakly acidic soil when applied at the lower rate. In a 
field evaluation of Zn sources with a corn crop, Hergert 
et al. (1984) reported that Zn-EDTA was the most ef-
fective source at the lowest rate (0.11 kg Zn/ha), but 
crop yield decreased at the highest Zn rate of this 
source (3.36 kg Zn/ha). 

According to Loneragan (1951) and Storey (2007), 
tissue analysis values can provide a useful indication 
of Zn status. These authors reported that for flax tops 
cultivated in pots until they were 71 d old, the inter-
mediate range of Zn concentrations varied between 32 
and 83 mg/kg DM, however they did not indicate a 
level of toxicity. In the present weakly acidic soil, the 
Zn-HEDTA chelate applied at the low rate produced a 
total Zn concentration in whole shoots of 85.4 mg/kg 
DM and also the maximum DM yield obtained 
(Table 3). Vitosh et al. (1994) reported that the Zn 
concentration in mature leaf tissue was excessive or 
even toxic at levels of over 300 mg/kg. In the present 

tens (1996) and Shuman (1998) reported that high clay 
and CaCO3 contents in alkaline soils caused adsorption 
and the immobilization of added Zn. In this experiment, 
the Zn-EDTA source was the fertilizer that supplied the 
largest quantities of Zn in the most labile fractions and 
the smallest quantities in the most insoluble Zn frac-
tions. 

According to Franzen (2004), if soil Zn level (DTPA-
TEA-extractable Zn) is less than 1 mg Zn/kg, it is 
recommendable to apply Zn. Various authors have 
reported that the amounts of Zn extracted with the 
DTPA-AB method are greater than those extracted with 
the DTPA-TEA method (Gonzalez et al., 2008). In this 
study, and in both soils, all the Zn treatments produced 
values greater than the recommended level of available 
Zn (Table 1). The Zn-EDTA treatment produced the 
largest quantities of available and easily leachable 
forms of Zn in both soils (Table 1); this was particu-
larly evident at the high Zn application rate in Soil I, 
where the amount of available Zn in the soil was exces-
sive for the normal growth requirement of flax plants 

Figure 4. Percentage of Zn used by flax plants with 5 and 10 
mg Zn/kg dry soil from Zn-EDDHSA, Zn-HEDTA and Zn-
EDTA fertilizers in Soil I (weakly acidic) and Soil II (calcare-
ous). Vertical bar at each of the data points represents the stan-
dard deviation from the mean. Statistical differences at p < 0.05 
(LSD test) are presented by different letters.
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trace metals containing carboxylic groups. Furthermore, 
some plant species can take up metals in their ionic 
form and also in the form of metal chelates, such as 
Zn-EDTA (Marchner, 1995). 

According to Prasad & Sinha (1981), the percentage 
of Zn used or Zn utilization by the crop [% Znused = 
(Znuptake treatment – Znuptake control) × 100 / Znadded] is a decisive 
parameter for the relative effectiveness of any Zn fer-
tilizer application. Zinc utilization varied with soil and 
fertilizer treatment (for both P < 0.05; Fig. 4). In Soil 
I, the most effective treatments were all the Zn sourc-
es applied at the low rate and Zn-EDDHSA applied at 
the high rate but within a range of between 2.08 and 
2.24%. In Soil II, the most effective treatment with 
respect to this parameter was Zn-EDTA applied at the 
low rate (1.72%) followed by the same rate of Zn-
EDDHSA. However, the low rate of Zn-EDTA appar-
ently induced a small toxic effect in view of the fact 
that it produced a small reduction in DM yield 
(Table 3).

The values for tensile properties obtained in our 
experiment, which was performed in a greenhouse, 
were lower than those obtained by other authors under 
other conditions (Joffe et al., 2003; Baley, 2004; Bos 
et al., 2006). However, considering the diameter of the 
fiber used to determine the tensile properties, the values 
obtained should be considered similar (Charlet et al., 
2007). The addition of Zn fertilizers containing chelat-
ing agents, such as EDTA and applied at the high rate, 
tended to produce slightly decreases with respect to the 
control treatment in tensile strength and elongation at 
break in the weakly acidic soil (Fig. 3). In calcareous 
soil none of the Zn fertilizer treatments produced reduc-
tions in any of the tensile properties. However, the 
lowest values were also obtained with the high applica-
tion rate of the Zn-EDTA fertilizer. In spite of the fact 
that no visual symptoms of toxicity were observed in 
this experiment, it would be recommendable to limit 
the application rate of the Zn-EDTA fertilizer and par-
ticularly in acidic soils. 

Soluble Zn concentration from FM leaves signifi-
cantly correlated with total Zn in plant DM (r = 0.96 
and p < 0.001). Similar correlations were obtained in 
other studies which involved the application of Zn 
fertilizers. Cakmak & Marschner (1987) reported that 
soluble Zn in leaves provided a good indicator of the 
nutritional Zn status of a number of plant species, in-
cluding, maize and grape (Vitis vinifera L.). 

When considering both soils together, no significant 
correlation was found between DM yield and any of 
the single or sequential amounts of extracted Zn (data 
not shown). Even so, soluble Zn in FM and total Zn in 
DM were correlated significantly and positively with 
the soil-extractable Zn for each individual extractant 

study, the Zn-EDTA source applied at 10 mg/kg pro-
duced Zn concentrations that exceeded 300 mg/kg DM 
(Table 3). Macnicol & Beckett (1985) and Kabata & 
Mukherjee (2007) reported that the levels that could 
be considered “sufficient” and “excessive” for a given 
microelement are variable. This could, for example, be 
explained by the development of plant resistance to 
high tissue concentrations of certain microelements.

On the other hand, in Soil II, all of the Zn applica-
tions enhanced the growth of the flax plants with re-
spect to the control treatment. Moraghan (1993) re-
ported that, in a greenhouse study with a calcareous 
soil, applying ZnSO4 at 8 mg Zn/kg soil advanced the 
appearance of mature bolls by 15 d and increased the 
yield of flax seed by 33%. A similar result was re-
ported by Jiao et al. (2007), who found that applying 
of 10 and 20 mg Zn/kg soil in the form of ZnSO4 en-
hanced the growth of flax, increased its height, and 
caused it to mature from 3 to 5 d earlier. Nofal et al. 
(2011), working with a foliar Zn application, also ob-
served that increasing the application rate also caused 
significant increases for growth, fiber yield and other 
qualities such fiber length. In this soil, the Zn concen-
tration in leaves remained below 300 mg Zn/kg DM in 
all the cases studied (Fig. 1). The maximum value was 
obtained when the Zn-EDTA chelate was applied at the 
high rate: approximately 240 mg Zn/kg DM (Fig. 1). 
In contrast, the control treatment produced a Zn con-
centration that was bellow the intermediate range re-
ported for flax plants by Loneragan (1951) and Storey 
(2007). 

In both control soils, the values for total-Zn concen-
tration in plant DM were smaller than those recom-
mended by McDonald et al. (2002) as the lower limit 
for Zn in plants used for animal fodder (50 mg/kg DM). 
In contrast, all the Zn treatments produced total-Zn 
concentrations that exceeded 50 mg/kg DM.

With respect to Zn uptake, Gangloff et al. (2002) 
reported similar results to those in this study, conclud-
ing that Zn-EDTA was more effective than other com-
plexed Zn sources in terms of Zn concentration in plant 
and its uptake by corn grown in acidic soil. According 
to Carrillo et al. (2006), factors such as high stability 
constant and net negative charge in metal chelates 
protect Zn from sorption by soil components and favor 
their mobility to the root zone and hence metal uptake 
by plant. In our experiment, the lower stability constant 
of Zn-HEDTA, and the fact that it had a lower charge 
than the other metal chelates, could explain its lower 
Zn uptake by flax plants in Soil II (Fig. 2). However, 
Zn-EDTA and Zn-EDDHSA have the same charge and 
probably also have similar stability constant. According 
to Lucena et al. (2005), chelating agents with sul-
phonic acid groups have similar stability constants to 



Demetrio Gonzalez, Patricia Almendros and Jose M. Alvarez

Spanish Journal of Agricultural Research� September 2016 • Volume 14 • Issue 3 • e1104

12

Applying the Zn-EDDHSA and Zn-HEDTA fertilizers 
to this soil would improve its tensile properties and 
crude fiber percentage, and would also reduce the eas-
ily leachable Zn. The Zn-EDTA and Zn-EDDHSA 
fertilizers were the most effective fertilizers in calcar-
eous soil (with a high clay content, an alkaline pH and 
the presence of CaCO3); they produced maximum 
values of Zn utilization when applied at the low rate, 
but without causing reductions in any of the other, 
previously indicated, plant parameters. The relatively 
large amounts of labile and available Zn present in both 
of the soils fertilized with the Zn-EDTA source, and 
the plant Zn toxicity apparently induced by this ferti-
lizer in the weakly acidic soil, would suggest that this 
fertilizer should best be applied in low doses. This, in 
turn, should result in less Zn being leached away and 
in a reduction in the costs of Zn fertilization.
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