
indirect promotion of plant growth occurs when PGPR 
lessen or prevent the deleterious effects of one or more 
phytopathogenic organisms. The direct promotion of 
plant growth by PGPR involves either providing the 
plants with certain bacterial-synthesized compounds or 
facilitating the uptake of certain nutrients from the en-
vironment (Glick, 1995; Lugtenberg & Kamilova, 
2009). On the other hand, deleterious rhizosphere bac-
teria (DRB) are defined as rhizobacteria that inhibit 
plant growth without causing disease symptoms (Brime-
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Abstract
The role of plant-associated bacteria in plant physiology and metabolism is well documented, but little has been known about 

the roles played by Pseudomonas in durum wheat (Triticum turgidum L. var durum) growth and development. An in vitro experi-
ment was conducted to observe the effect of the inoculation of four indole-3-acetic acid (IAA) -producing Pseudomonas isolates 
and exogenous IAA on seed germination traits and α-amylase activity of durum wheat. The results showed inoculation with all 
bacterial isolates led to a decrease in the germination percent, although the extent of the depression varied with the isolate. A sig-
nificant relationship between concentrations of bacterial IAA and the germination inhibition percent in durum wheat seeds by dif-
ferent bacteria strains was observed. The results of this assay showed the effect of bacterial isolates on α-amylase activity after six 
and 8 days of inoculation was significant, while effect of these isolates on α-amylase activity after two and 4 days of inoculation 
was not meaningful. In addition, the exogenously applied IAA displayed a concentration-dependent effect on seed germination at-
tributes and α-amylase activity, consistent with the possibility that the inhibitory effect of bacterial inoculation on seed germination 
was in consequence of bacteria-produced IAA. Therefore, it may suggested that the inhibitory role of IAA in seed germination and 
α-amylase activity should be taken into account during the screening of IAA-producing Pseudomonas isolates for durum wheat 
growth promoting agents.
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Introduction

A wide range of microorganisms, varying from 
pathogenic to beneficial, interact continuously with 
higher plants in the soil ecosystem, influencing the 
growth, development and functions of plants (Taghavi 
et al., 2009). Bacteria that are able to colonize plant root 
systems and promote plant growth are referred to as 
plant growth promoting rhizobacteria (PGPR). PGPR 
can affect plant growth either indirectly or directly. The 
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of seed germination in a wide range of graminaceous 
species (Banowetz et al., 2008). For example, the com-
pounds 4-formylaminooxyvinylglycine (FVG) 
(McPhail et al., 2010) and L-2-amino-4-methoxy-trans-
3-butenoic acid (AMB) (Lee et al., 2013) are two GAFs 
produced by Pseudomonas species. However, there is 
a gap in knowledge regarding the impact of GAFs on 
wheat seed germination, in general, and on durum 
wheat (Triticum turgidum L.) seed, in particular. Durum 
wheat represents 10% of the wheat grown globally, 
occupying about 11 million hectares in the countries 
around the Mediterranean Basin. Durum wheat in Iran 
is cultivated across diverse environments, ranging from 
warm lowlands to cold highlands. The success of durum 
wheat in Iran, as a food security crop, is largely due to 
its good ability and capacity to produce well under 
drought-prone environments and marginal and poor 
management conditions where other crops would fail 
(Mohammadi et al., 2010).

Therefore, the aim of the present experiments was 
to evaluate the effect of some IAA–producing Pseu-
domonas isolates on seed germination, α-amylase 
activity, and seedling growth of durum wheat. In addi-
tion, because of concentration-dependent effects of IAA 
on plant growth, potential role of the exogenous IAA 
in germination behaviour of durum wheat seeds was 
also examined.

Material and methods

Bacteria strains and growth conditions

The Pseudomonas isolates UW3 (Pseudomonas sp.), 
UW4 (Pseudomonas putida) (Glick, 1995; Duan et al., 
2013) have been described previously and isolates 550 
(Pseudomonas fluorescens) and 57 (Pseudomonas sp.) 
were obtained from the Department of Soil Sciences, 
University of Tehran, Iran. The isolates were grown on 
nutrient agar (NA) (2 g yeast extract, 1 g meat extract, 
5 g peptone, 5 g sodium chloride, 20 g agar-agar, 
1000 mL distilled water) or nutrient broth (NB) for 
routine use and maintained in NB with 20% glycerol at 
– 80 °C for long-term storage. For preparing the bacte-
rial cultures, single colony of each bacterial isolate was 
grown in 250-mL flasks containing 100 mL NB medium 
and incubated for 24 h at 28 ± 2 °C on a rotary shaker 
(KS 130 basic, IKA, Germany) at 120 rpm. After incu-
bation, the cell suspension was centrifuged at 5,000 × 
g for 5 min at 4 °C and washed twice with sterile dis-
tilled water. The final pellet was resuspended in steri-
lized distilled water and the bacterial cultures were 
standardized to 108 colony-forming units (CFU)/mL and 
used, immediately, for seed germination experiments. 

combe et al., 2007). Several mechanisms for growth 
inhibition by this undesirable group of rhizobacteria 
have been proposed, the most likely being the produc-
tion of phytotoxins such as cyanide and other volatile 
and non-volatile compounds, as yet unidentified. An 
alternative mechanism by which DRB may inhibit plant 
growth is through the production of phytohormones 
(Brimecombe et al., 2007). Indole-3-acetic acid (IAA) 
produced by DRB has been shown to inhibit root growth 
in sugar beet and blackcurrant (Brimecombe et al., 
2007). DRB may also compete with the plant and ben-
eficial rhizobacteria for nutrients, contributing to the 
decreased plant growth and, therefore, lowered yields 
(Brimecombe et al., 2007). Further, DRB may indi-
rectly reduce growth by counteracting the effects of 
nitrogen-fixing rhizobacteria (Brimecombe et al., 2007). 

Auxins are a group of plant growth regulators that 
stimulate cell division and elongation. IAA is the prin-
cipal auxin of higher plants, to which the amino acid 
L-tryptophan (L-Trp) plays a precursory role. Micro-
bial synthesis of IAA has been known for a long time. 
This property is best documented for bacteria that in-
teract with plants. IAA production by PGPR is one of 
the most studied and, perhaps, the most effective 
mechanism of plant growth promotion by these bacte-
ria (Patten & Glick, 1996; Arshad et al., 2010). Plant 
roots secrete signalling chemicals (L-Trp, a precursor 
for IAA, as well as other amino acids and small mol-
ecules) into the rhizosphere soil, promoting the binding 
of bacteria to the root surface (Simons et al., 1997). 
The root-bound bacteria may use the L-Trp in the soil 
to produce IAA (Patten & Glick, 1996; Mirza et al., 
2001; Gravel et al., 2007). The IAA is subsequently 
secreted from the PGPR and absorbed by the plant and 
used primarily to increase cell growth or proliferation 
(Glick et al., 1998). Therefore, it seems that IAA has 
a concentration-dependent dual role (Arshad & Frank-
enberger, 1992; Chauhan et al., 2009) with optimal IAA 
levels in plant roots being several orders of magnitude 
lower than its optimal levels in the shoots.

The genus Pseudomonas comprises a group of ubiq-
uitous bacteria that have frequently been reported to 
play a dual role in plant health and growth (Meyer et 
al., 2008). For example, some of the bacteria in this 
group are known to be pathogenic (Hirano & Upper, 
2000), while others are known to be involved in disease 
suppression (Halgren et al., 2011). In addition, some 
members of this group of bacteria appear to increase 
seed germination (Selvakumar et al., 2009), while oth-
ers exert inhibitory effects on seed germination 
(McPhail et al., 2010; Lee et al., 2013). Germination 
arrest factors (GAFs) have been the subject of increased 
research in recent years. GAFs are defined as microbi-
al-derived compounds that lead to irreversible arrest 
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in length. Final germination percentage and rate were 
measured at day 10 after incubation. The germination 
rate was estimated according to the Eq. [1], modifica-
tion of Timson’s index (Khan & Ungar, 1984). The root 
and shoot lengths were measured and seedling vigour 
index was determined according to the Eq. [2] (Abdul-
Baki & Anderson, 1973). 

	 Germination rate = ∑ (G/t)	 [1]

where, G is the percentage of seeds germinated at two-
day-intervals, and t is the total germination interval 
period.

	 Vigour index = (Mean root length +  
	 + Mean shoot length) × Germination percentage	 [2]

Assay of α-amylase activity

For determination of α-amylase activity, durum wheat 
seeds were harvested at two, four, six, and 8 days after 
incubation with bacterial isolates as described above. To 
prepare the enzyme extract, five germinating seeds per 
Petri dish were weighed, frozen, ground to a fine powder 
in a pre-chilled mortar in liquid N2 using a pestle, ho-
mogenized with 5 mL of a 0.1 M sodium acetate buffer 
(pH 4.8), and filtered through Whatman filter paper to 
remove large particles. The extract was centrifuged at 
12,000 × g for 20 min (5810R, Eppendorf refrigerated 
centrifuge, Germany). All of the preparations were car-
ried out at 4°C. The supernatant was served as the crude 
enzyme extract for the α-amylase assay.

For the enzyme assay, the reaction medium (3 mL) 
contained 1 mL of the 0.1 M sodium acetate buffer, pH 
4.8, 0.5 mL of enzyme extract diluted to 1 mL using 
acetate buffer, and 1 mL of 0.1% soluble starch (Merck 
#31231373) solution. The enzyme extract was diluted 
to obtain an absorbance change of less than one during 
the enzyme assay. The reaction medium was incubated 
for 10 min at room temperature (22 ± 2 °C), then the 
reaction was terminated by adding 1 mL of a 0.1% 
iodine reagent (6 g potassium iodide, 0.6 g iodine in 1 
L of 0.05 N HCl) and 3 mL of 0.05 N HCl. The absorb-
ance was measured at 620 nm and the decrease in the 
absorbance relative to the blank was considered as 
α-amylase activity (Beri & Gupta, 2007).

Effect of exogenous IAA on seed germination 
and seedling growth 

To evaluate the effect of exogenous IAA on ger-
mination and emergence traits of durum wheat seeds, 

IAA production assay

The production of IAA by the isolates was deter-
mined as described by Glickman & Dessaux (1995). 
The isolates (108 cells/mL) were grown in 100 mL 
flasks containing 50 mL NB supplemented with L-Trp 
(100 µg/mL) for 48 h on a rotary shaker at 120 rpm. 
Then, cultures were centrifuged at 8,000 g for 10 min 
and the supernatants collected. Two mL of Salkowsky 
reagent (1 mL of 0.5 M FeCl3 in 50 mL of 35% HClO4) 
with 1 mL of the supernatant was allowed to react at 
28 ± 2°C for 20 min at room temperature. Pink color 
developed indicating the presence of IAA was deter-
mined by measuring the absorbance in a spectropho-
tometer (HITACHI U1800) at 535 nm at the end of the 
incubation (Patten & Glick, 2002). A standard curve 
was plotted with IAA and Salkowsky reagent dissolved 
in NB medium to quantify the IAA (μg /mL) present 
in the culture supernatant. Concentration of IAA pro-
duced was estimated against standard curve of IAA in 
the range of 0–100 µg/mL.

Effect of bacterial strains on durum wheat 
seed germination traits

To evaluate the effect of Pseudomonas isolates on 
germination and emergence traits of durum wheat seeds 
(Triticum turgidum L. var durum), a laboratory ex-
periment was conducted as a completely randomized 
design (CRD) with four replicates in Department of 
Agronomy and Plant Breeding, Isfahan University of 
Technology, Iran. Five treatments were made as fol-
lows: 1) seeds treated with isolate UW3; 2) seeds 
treated with isolate UW4; 3) seeds treated with isolate 
550; 4) seeds treated with isolate 57; 5) uninoculated 
control. Seeds of durum wheat were obtained from the 
seed bank of Isfahan University of Technology. Four 
replicates of 25 seeds per treatment were used. Seeds 
were surface disinfected in a 2% (v/v) solution of so-
dium hypochlorite for 15 min and rinsed four times 
with sterile distilled water, and air-dried before being 
used in the germination experiments. All further ma-
nipulations were carried out under sterile conditions. 
The surface-sterilized seeds were immersed into indi-
vidual bacterial suspensions for 30 min, shaking at 120 
rpm. Twenty-five seeds were sown into sterile plastic 
9-cm-diameter Petri dishes containing filter paper 
(Whatman No. 1) and watered with 7 mL of sterile 
distilled water. The Petri dishes were transferred into 
a dark growth chamber at 25 ± 2°C for 10 days, and 
the germinated seeds were counted on a two-day-inter-
val basis in a certain time. A seed was considered as 
germinated when its radicle emerged by about 2 mm 
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cantly (p<0.05) different between inoculated and con-
trol seeds (Fig. 1). 

Potential of bacterial IAA production 
and its relationship with seed germination 
attributes

As shown in Fig. 2, isolates 57 and UW4 produced 
the highest (16.6 µg/mL) and lowest (7.1 µg/mL) con-
centrations of IAA, respectively. In addition, these two 
isolates also showed the highest and lowest germination 
inhibition percent respectively (Fig. 2). A significant 
relationship between concentrations of bacterial IAA 
and the germination inhibition (%) in durum wheat 
seeds by different bacteria strains was observed (r 
=0.84, p<0.01).

an in vitro experiment was conducted as a CRD with 
four replicates as well. Five treatments were made 
as follows: 1) seeds treated with 5 µg/mL IAA; 2) 
seeds treated with 10 µg/mL IAA; 3) seeds treated 
with 15 µg/mL IAA; 4) seeds treated with 20 µg/mL 

IAA; 5) untreated control. Briefly, seeds were placed 
in 9-cm diameter Petri dishes and, after subjecting 
to 7 mL of IAA (0, 5, 10, 15 , 20 µg/mL), incubated 
at 25 ± 2°C for 10 days, and finally the effect of the 
exogenous IAA levels on germination percent, ger-
mination rate, α-amylase activity, and seedling vig-
our index were measured and recorded as described 
above. 

Statistical analysis 

Analysis of variances (ANOVA) was conducted on 
the data and, when F values were significant (p ≤ 0.05), 
mean comparisons were conducted using least signifi-
cant differences (LSD, 0.05) procedure. Data were 
reported as means ± the standard error of the mean 
(SEM).

Results 

Effect of bacterial isolates on rate and 
percentage of seed germination 

The results indicated that bacterial isolates had a 
significant effect (p<0.001) on seed germination per-
centage (Table 1). All bacterial strains (except for 
isolate UW4) led to significant decreases in seed ger-
mination percent as compared to control (Fig. 1). The 
extent of the decrease in the seed germination percent 
was greater for isolate 57 compared to other isolates. 
The highest and the lowest inhibition percentages were 
detected in isolate 57 (26.3%) and isolate UW4 (1.7%) 
respectively. The germination rate was not signifi-

Table 1. Analyses of variance (S.O.V) for the effect of inoculation with Pseudomonas isolates and exogenous IAA on durum 
wheat seed germination percent (G%), germination rate (GR), α-amylase activity at 2, 4, 6 and 8 days after inoculation, and 
seedling vigour index (VI). 

S.O.V df
Mean squares

G% GR Amylase 2 Amylase 4 Amylase 6 Amylase 8 VI

Bacterial strains   4 244.32*** 56.091ns 0.0078ns 0.0596ns 0.1618** 0.075*** 599528.945***

Error 15 5.037 22.586 0.0073 0.0501 0.0108 0.0002 12075.420
IAA   4 310.75*** 54.59ns 0.00442ns 0.0882** 0.01426ns 0.01428** 1233143.37***

Error 15 9.252 27.158 0.00275 0.0149 0.04381 0.00012 29005.98

Four replicates were analyzed for each treatment level. *,**,***,ns indicate significance at p ≤ 0.05, 0.01, 0.001 or non-significant ef-
fect, respectively.
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Figure 1. Response of durum wheat seeds to inoculation with 
Pseudomonas isolates: changes in germination (%) and germina-
tion rate developed in the Petri dishes containing 25 seeds. Er-
ror bars indicate the standard error of the mean (n = 4). Means 
with the same letter(s) are not significantly different from each 
other (according to mean comparison based on LSD, p<0.05). 
Control, bacterium-free; UW3, Pseudomonas sp.; UW4, 
P. putida; 550, P. fluorescens; 57, Pseudomonas sp.
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the effect of these isolates on α-amylase activity after 
2 and 4 days of inoculation was not meaningful.

Effect of bacterial isolates on seedling vigour 
index

Bacterial inoculation affected significantly (p< 
0.001) the seedling vigour index (Table 1). All of the 
bacterial isolates (except for isolate 57) led to the in-
crease of the vigour index of durum wheat seedlings. 
The highest and the lowest increases were detected in 
isolates UW4 and UW3, and isolate 57 compared to 
the control respectively (Fig. 4). 

Effect of exogenous IAA on rate and 
percentage of seed germination 

Treating seeds with exogenous IAA led to a signifi-
cant (p<0.001) effect on their germination percentage 
(Table 1). The exogenously applied IAA appeared to 
leave adverse effects on germination (%), i.e. the 
higher the IAA concentration in the medium the great-
er the inhibition (Fig. 5A). However, the germination 
rate was not significantly (p<0.05) different between 
inoculated and control seeds (Fig. 5A).

Effect of exogenous IAA on seedling vigour 
index

Treating durum wheat seeds with exogenous IAA led 
to a significant effect (p<0.001) on the seedling vigour 

Effect of bacterial isolates on α-amylase 
activity 

Changes in α-amylase activity in durum wheat seeds 
in two-day intervals after inoculation with bacterial 
strains were also studied (Fig. 3). It was found that 
bacterial inoculation had a day-dependent effect on 
seed germination. The results of this assay showed the 
effect of bacterial isolates on α-amylase activity after 
six and 8 days of inoculation was significant, while 
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Figure 4. Effect of different bacterial strains on vigour index of 
durum wheat seedlings. Error bars indicate the standard error of the 
mean (n = 4). Means with the same letter(s) are not significantly 
different from each other (according to mean comparison based on 
LSD; p<0.05). Control, bacterium-free; UW3, Pseudomonas sp.; 
UW4, P. putida; 550, P. fluorescens; 57, Pseudomonas sp.

Figure 2. The IAA production of different Pseudomonas isolates 
and germination inhibition (%) in durum wheat seeds by differ-
ent bacterial isolates. Germination inhibition (%) = [(Germina-
tion percentage in control - Germination percentage in inocu-
lated seeds) / Germination percentage in control) × 100]). Error 
bars indicate the standard error of the mean (n = 4). Means with 
the same letter(s) are not significantly different from each other 
(according to mean comparison based on LSD; p<0.05). UW3, 
Pseudomonas sp.; UW4, P. putida; 550, P. fluorescens; 57, Pseu-
domonas sp.
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550, P. fluorescens; 57, Pseudomonas sp.
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index (Table 1). When IAA was applied at low concen-
trations (i.e. up to 10 µg/mL), it had no effect on the 
seedling vigour index, however, when applied at high 
concentrations (i.e. greater than 10 µg/mL), it left sig-
nificant negative effects on this attribute (Fig. 5C).

Effect of exogenous IAA on α-amylase activity 

When applied at concentrations greater than 5 µg/mL, 
the exogenously applied IAA decreased the activity of 
α-amylase in durum wheat seeds (Fig. 5B). The two con-
centration–response curves (Figs. 5A and 5B) indicated 
that the seed germination percent is positively related with 
the activity of α-amylase in durum wheat seeds. The re-
lationship between germination percent and α-amylase 
activity in durum wheat seems to be polynomial (Fig. 6), 
with a regression coefficient of 0.95 (p<0.01).

Discussion

This study provided an initial assessment of the 
potential of some IAA-producing Pseudomonas iso-
lates on durum wheat seed germination traits and 

α-amylase activity under in vitro conditions. The re-
sults of this experiment indicate that the germination 
process is slowed down due to the presence of bacte-
ria in the in vitro conditions and this suppressing role 
is likely in consequence of a bacteria-induced increase 
in IAA level of the medium. There are some contradic-

Figure 5. Response of durum wheat seeds to exogenous IAA: changes in germination percentage (A), 
germination rate (A), α-amylase activity (B), and vigour index (C) developed in the Petri dishes con-
taining 25 seeds. Error bars indicate standard error of the means (n = 4). Means with the same letter(s) 
are not significantly different from each other (according to mean comparison based on LSD, p <0.05).
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pressed the sprouting of resistant wheat cultivars sup-
ports a role for IAA in controlling seed germination 
(Morris et al., 1988). Evidence has been accumulated 
(Chauhan et al., 2009; Roychowdhury et al., 2012) in 
support of a concentration-dependent role for IAA in 
seed germination, that is, low concentrations of exoge-
nous IAA can promote, whereas high concentrations can 
inhibit seed germination. The regulatory role of bacte-
rium-produced IAA in seed germination is supported by 
the evident biphasic response of germination of durum 
wheat seeds to IAA concentration (Fig. 2). 

From the present results, it is concluded that IAA 
impaired the induction of α-amylase activity and, thus, 
germination in durum wheat seeds. There was a ten-
dency for seed germination to increase with increasing 
the activity of α-amylase in the seeds. The bacterial 
strains used in the present study inhibited seed germi-
nation of durum wheat seeds due, presumably, to bio-
synthesis and accumulation of IAA in the inoculated 
seeds (Fig. 2). 

The finding that high levels of IAA produced by 
bacteria-inoculated plants was probably the main cause 
of the inhibition of germination in durum wheat seeds 
contradicts some previous reports (Ashrafuzzaman et 
al., 2009; Zarrin et al., 2009). Zarrin et al. (2009) ob-
served that coating of wheat seeds with IAA-producing 
PGPR strains (19.4-30.2 µg/mL) positively influenced 
their germination percentage and rate. Ashrafuzzaman 
et al. (2009) also reported that rice seed germination 
increased when seeds were pre-treated with IAA-se-
creting PGPR isolates and that the high-IAA producing 
isolates, PGB4 and PGG2, were proven to enhance the 
germination of the rice seeds. Our findings, however, 
agree with argument made by Glick et al. (1998). They 
have argued that plant roots may produce either optimal 
or suboptimal IAA levels endogenously. Then, the 
bacterial-produced IAA may enhance or inhibit plant 
growth, depending on whether the total IAA (that en-
dogenous to the plant plus that produced by bacteria) 
is at optimal or supra-optimal levels, respectively. 

The α-amylase enzyme activity in inoculated and 
non-inoculated seeds appeared to be low at the begin-
ning, whereas it increased as germination progressed, 
the extent of the increase was much greater in non-
inoculated, relative to the inoculated durum wheat 
seeds. The latter difference showed that the starch was 
metabolized faster in control, relative to the inoculated 
seeds. Thus, the bacterial strains used in the present 
study exerted inhibitory effects on the induction of 
α-amylase activity and, consequently, the germination 
of durum wheat seeds. 

Despite the promoting effects exerted by the low 
concentrations of IAA (5-10 µg/mL) on the seedling 
vigour index, it seems that, in agreement with observa-

tory reports on the effect of PGPRs, in general, and 
Pseudomonas species, in particular, on seed germina-
tion. In some reports, inoculation with bacteria has 
promoted seed germination and rate (Ashrafuzzaman 
et al., 2009; Selvakumar et al., 2009; Zarrin et al., 
2009; Noumavo et al., 2013), while in some other re-
ports it has been found to decrease seed germination 
(Banowetz et al., 2008; McPhail et al., 2010). For 
example, Selvakuma et al. (2009) reported that P. fragi 
CS11RH1, an IAA-producing strain, significantly in-
creased the germination percentage and rate, plant 
biomass and nutrient uptake of wheat seedlings. How-
ever, according to Banowetz et al. (2008), P. fluores-
cens WH6 suppressed germination of Poa annua seeds 
and some other graminaceous species due, presumably, 
to the production of 4-formylaminooxyvinylglycine. 

The inhibitory action of bacteria on seed germination 
could be due to the elevated levels of IAA or some 
unknown metabolites produced by the bacteria or the 
stress induced by PGPR. In order to address these pos-
sibilities, the effects of different concentrations of 
exogenous IAA on the percentage and rate of seed 
germination were also examined. During germination, 
plant seeds accelerate their respiratory metabolism to 
produce metabolic energy and biosynthetic precursors 
(Perata et al., 1997). To maintain respiratory metabo-
lism crucial to germination, readily available respira-
tory carbohydrates and soluble sugars must be supplied 
constantly. However, the amount of readily utilizable 
soluble sugars in plant seeds is usually very limited, 
with starch being the main reserve carbohydrate (Gug-
lielminetti et al., 2000). The hydrolytic enzyme 
α-amylase is known to play a major role in degradation 
of reserve carbohydrates (i.e. starch) to soluble sugars 
during germination (Perata et al., 1997). Thus, the 
induction of α-amylase is essential to maintain an ac-
tive respiratory metabolism and, therefore, seed ger-
mination in durum wheat seeds. 

During seed germination in wheat, barley and other 
graminaceous species, gibberellic acid (GA) is formed 
in the embryo and transferred to the aleuronic layer, 
where it induces the synthesis of α-amylase (Beri & 
Gupta, 2007). Measurement of α-amylase activity in 
germinating seeds is a classical bioassay for determining 
the GA level (Beri & Gupta, 2007). In the present study, 
low concentrations of IAA (i.e., 5 and 10 µg/mL) pro-
moted the induction of α-amylase in germinating durum 
wheat seeds, perhaps, because the exogenous IAA 
stimulated GA biosynthesis. This possibility is consist-
ent with previous reports (Anitha, 2010; Li et al., 2012). 
Paulsen & Auld (2004) concluded that IAA inhibited the 
germination of wheat seeds and acted in concert with 
GA and cytokinins to regulate the germination process. 
The observation that L-Trp, a precursor of IAA, sup-
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Based on the results obtained, Pseudomonas strains 
have, evidently, the capacity to suppress durum wheat 
seed germination. IAA-induced suppression of 
α-amylase activity seems to be a major contributing 
factor to the lowered germination percent. Despite the 
negative effect of moderate IAA levels on seed germi-
nation, production of comparable amounts of IAA by 
rhizobacteria appeared to exert promoting effects on 
the seedling growth. Since isolate 57 behaved as a high-
IAA-producing bacterium and, therefore, induced 
certain adverse influences on both germination and 
seedling growth of durum wheat, its mechanism of ac-
tion needs to be further investigated in the future.
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