Effects of two commercial feeds with high and low crude protein content on the performance of white shrimp Litopenaeus vannamei raised in an integrated biofloc system with the seaweed Gracilaria birdiae
Abstract
A trial was conducted for 42 days to evaluate the effects of two commercial feeds with high and low crude protein content on the performance of white shrimp Litopenaeus vannamei cultivated in an integrated biofloc system with the seaweed Gracilaria birdiae. The experiment had a 2 × 2 factorial design (a biofloc monoculture or an integrated system with 32% (low) or 40% (high) crude protein content) with the following treatments: IS32 (an integrated system using low protein commercial feed); IS40 (an integrated system using high protein commercial feed); M32 (a monoculture system using low protein commercial feed); and M40 (a monoculture system using high protein commercial feed), all in triplicate. Shrimp individuals (0.23 ± 0.04 g) were stocked at a density of 500 shrimp/m3 and no water exchange was carried out during the experimental period. No significant influence (p > 0.05) was found to be caused by the integrated system or the crude protein levels on water quality. However, a significant influence (p < 0.05) was found for final weight (3.21–4.12 g), weight gain (2.97–3.89 g), yield (1.39–1.96 kg/m3) and feed conversion ratio (1.47–1.74). Growth was similar in IS32, M40 and IS40, indicating that crude protein levels can be reduced with no adverse effect on shrimp performance variables in integrated biofloc systems with G. birdiae.
Downloads
References
Angell AR, Angell SF, Nys R, Paul NA, 2016. Seaweed as a protein source for mono-gastric livestock. Trends Food Sci Technol 54: 74-84. https://doi.org/10.1016/j.tifs.2016.05.014
APHA, 2005. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, USA. 560 pp.
Avnimelech Y, 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, USA. 182pp.
Becerra-Dórame MJ, Martínez-Porchas M, Martínez-Córdova LR, Rivas-Vega M, Lopez-Elias JÁ, Porchas-Cornejo MA, 2012. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pre grown in microbial heterotrophic and autotrophic-based systems. The Scientific World Journal, Article ID 723654.
Brito LO, Arana LAV, Soares RB, Severi W, Miranda RH, Silva SMBC, Coimbra MRM, Galvez AO, 2014. Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kützing). Aquacul Int 22: 1649-1664. https://doi.org/10.1007/s10499-014-9771-9
Brito LO, Chagas AM, Silva EP, Soares RB, Severi W, Gálvez AO, 2016. Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquacult Res 47: 940-950. https://doi.org/10.1111/are.12552
Chopin T, Cooper JA, Reid G, Cross S, Moore C, 2012. Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev Aquacult 4: 209-220. https://doi.org/10.1111/j.1753-5131.2012.01074.x
Correia ES, Wilkenfeld JS, Morris TM, Wei L, Prangnell DI, Samocha TM, 2014. Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacult Eng 59: 48-54. https://doi.org/10.1016/j.aquaeng.2014.02.002
Cruz-Suárez LE, León A, Peña-Rodríguez A, Rodríguez-Peña G, Moll B, Ricque-Marie D, 2010. Shrimp Ulva co-culture: a sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture 301: 64-68. https://doi.org/10.1016/j.aquaculture.2010.01.021
Du R, Liu L, Wang A, Wang Y, 2013. Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by Rodophyte Gracilaria asiatica. Chin J Oceanol Limn 31: 353-365. https://doi.org/10.1007/s00343-013-2114-2
Ekasari J, Azhar MH, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P, 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immun 41: 332-339. https://doi.org/10.1016/j.fsi.2014.09.004
Felföldy L, Szabo E, Tothl L, 1987. A biológiai vizminösités. Vizügyi Hodrobiológia Vizdok, Budapest, Hungary. 258 pp.
Furtado PS, Ganoa CAP, Poersch LH, Wasielesky JrW, 2013. Application of different doses of calcium hydroxide in the farming shrimp Litopenaeus vannamei with the biofloc technology (BFT). Aquacul Int 22: 1009-1023. https://doi.org/10.1007/s10499-013-9723-9
Gamboa-Delgado J, Peña-Rodríguez A, Ricque-Marie D, Cruz-Suárez LE, 2011. Assessment of nutrient allocation and metabolic turnover rate in Pacific white shrimp Litopenaeus vannamei co-fed live macroalgae Ulva clathrata and inert feed: dual stable isotope analysis. J Shellfish Res 30: 969-978. https://doi.org/10.2983/035.030.0340
Golterman HJ, Clyno RS, Ohnstad MA, 1978. Methods for physical and chemical analysis of freshwaters. Oxford. Blackwell Sci. Publ., London. 213 pp.
Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Filho JM, Torres RP, Pinto E, 2010. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120: 585-590. https://doi.org/10.1016/j.foodchem.2009.10.028
Jatobá A, Silva BC, Silva JS, Vieira FN, Mouriño JLP, Seiffert WQ, Toledo TM, 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture 432: 365-371. https://doi.org/10.1016/j.aquaculture.2014.05.005
Kolanjinathan K, Ganesh P, Saranraj P, 2014. Pharmacological importance of seaweeds: A Review. World J Fish Mar Sci 6: 1-15.
Koroleff F, 1976. Determination of nutrients. In: Methods of seawater analysis; Grasshoff K (ed.). pp: 117-187. Verlag Chemie Weinhein, NY.
Kureshy N, Davis DA, 2002. Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 204: 125-143. https://doi.org/10.1016/S0044-8486(01)00649-4
Lander TR, Robison SMC, Macdonald BA, Martin JD, 2013. Characterization of the suspended organic particles released from salmon farms and their potential as food supply for the suspension feeder Mytilus edulis in integrated multi-trophic aquaculture (IMTA) systems. Aquaculture 406-407: 169-171. https://doi.org/10.1016/j.aquaculture.2013.05.001
Mackereth FJH, Heron J, Talling JF, 1978. Water analysis: some revised methods for limnologists. Oxford. Blackwell Sci. Publ. London. 120 pp.
Marinho-Soriano E, Azevedo CAA, Trigueiro TG, Pereira DC, Carneiro MAA, 2011. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int Biodeterior Biodegrad 65: 253-257. https://doi.org/10.1016/j.ibiod.2010.10.001
Martinez-Córdova LR, Martinez-Porchas M, Perez-Velazquez M, González-Félix M, Campaña-Torres A, Bringas-Alvarado L, 2010. Performance of three diets with different protein: energy ratios on the culture of the pacific white shrimp, Litopenaeus vannamei, under practical descending temperature conditions. Atlântica 32: 111-118. https://doi.org/10.5088/atl.2010.32.1.111
Pallaoro MF, Vieira FN, Hayashi L, 2016. Ulva lactuca (Chlorophyta Ulvales) as co-feed for Pacific white shrimp. J Appl Phycol 28: 3659-3665. https://doi.org/10.1007/s10811-016-0843-2
Peña-Rodriguez A, Magallon-Barajas FJ, Cruz-Suarez LE, Elizondo-Gonzalez, R, Moll B, 2017. Effects of stocking density on the performance of brown shrimp Farfantepenaeus californiensis co-cultured with the green seaweed Ulva clathrate. Aquacult Res 48: 2803-2811. https://doi.org/10.1111/are.13114
Perez-Velazquez M, González-Félix ML, Jaimes-Bustamente F, Martínez-Córdova LR, Trujillo-Villalba DA, Davis DA, 2007. Investigation of the effects of salinity and dietary protein level on growth and survival of pacific white shrimp, Litopenaeus vannamei. J World Aquacult Soc 38: 475-485. https://doi.org/10.1111/j.1749-7345.2007.00121.x
Peso-Echarri P, Frontela-Saseta C, González-Bermúdez CA, Ros-Berruezo GF, Martínez-Garciá C, 2012. Polisacáridos de algas como ingredientes funcionales em acuicultura marina: alginato, carragenato y ulvano. Rev Biol Mar Oceanog 47: 373-381. https://doi.org/10.4067/S0718-19572012000300001
Ren JS, Stenton-Dozey J, Plew DR, Fang J, Gall M, 2012. An ecosystem model for optimizing production in integrated multitrophic aquaculture systems. Ecol Model 246: 34-46. https://doi.org/10.1016/j.ecolmodel.2012.07.020
Sánchez-Romero A, Miranda-Baeza A, López-Elías JA, Martínez-Córdova LR, Tejeda-Mansir A, Márquez-Ríos E, 2013. Efecto del fotoperiodo y la razón camarón:macroalga en la remoción de nitrógeno amoniacal total por Gracilaria vermiculophylla, en cultivo con Litopenaeus vannamei, sin recambio de água. Lat Am J Aquat Res 41: 888-897. https://doi.org/10.3856/vol41-issue5-fulltext-9
Shiau SY, 1998. Nutrient requirements of penaeid shrimps. Aquaculture 164: 77-93. https://doi.org/10.1016/S0044-8486(98)00178-1
Shpigel M, Ari TB, Shauli L, Odintsov V, Ben-Ezra D, 2016. Nutrient recovery and sludge management in seabream and grey mullet co-culture in Integrated Multi-Trophic Aquaculture (IMTA). Aquaculture 464: 316-322. https://doi.org/10.1016/j.aquaculture.2016.07.007
Syad AN, Shunmugiah KP, Kasi PD, 2013. Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomed Prev Nutr 3: 139-144. https://doi.org/10.1016/j.bionut.2012.12.002
Tabarsa M, Rezaei M, Ramezanpour Z, Waaland JR, 2012. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J Sci Food Agr 92: 2500-2506. https://doi.org/10.1002/jsfa.5659
Tacon AGJ, 1987. The nutrition and feeding of farmed fish and shrimp. A training manual 1 - The essential nutrients. FAO, Rome.
Troell M, Joyce A, Chopin T, Neori A, Buschman A, Fang JG, 2009. Ecological engineering in aquaculture - Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297: 1-9. https://doi.org/10.1016/j.aquaculture.2009.09.010
Tsutsui I, Kanjanaworakul P, Srisapoome P, Aue-Umneoy D, Hamano K, 2010. Growth of giant tiger prawn, Penaeus monodon Fabricus, under co-culture with a discarded filamentous seaweed Chaetomorpha ligustica (Kutzing), at an aquarium-scale. Aquacul Int 18: 545-553. https://doi.org/10.1007/s10499-009-9274-2
Van Wyk P, 1999. Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. In: Farming marine shrimp in recirculating freshwater systems; Van Wyk P, Davis-Hodgkins M, Laramore R, Main KL, Mountain Scarpa J (eds.). pp: 125-140. Fla Dept Agr Consum Serv - Harbor Branch Oceanic Institute, Florida.
Van Wyk P, Scarpa J, 1999. Water quality requirements and management. In: Farming marine shrimp in recirculating freshwater systems; Van Wyk P, Davis-Hodgkins M, Laramore R, Main KL, Mountain Scarpa J (eds.). pp: 141-162. Fla Dept Agr Consum Serv, Harbor Branch Oceanic Institute, FL, USA.
Xu WJ, Pan LQ, 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture 412-413: 117-124. https://doi.org/10.1016/j.aquaculture.2013.07.017
Xu WJ, Pan LQ, 2014. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquacult Res 45: 1842-1851.
Xu WJ, Pan LQ, Sun XH, Huang J, 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquacult Res 44: 1093-1102. https://doi.org/10.1111/j.1365-2109.2012.03115.x
Yun H, Shahkar E, Katya K, Jang IK, Kim SK, Bai SC, 2016. Effects of bioflocs on dietary protein requirement in juvenile whiteleg Shrimp, Litopenaeus vannamei. Aquacult Res 47: 3203-3214. https://doi.org/10.1111/are.12772
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.