Detection of mite infested saffron plants using aerial imaging and machine learning classifier
Abstract
Aim of study: To evaluate and develop a machine learning code that uses aerial images in visible and near infrared (NIR) spectra to detect mite-infested Saffron (Crocus sativus L.) plants through processing the spectral indices to classify healthy and diseased plants. This leads to the identification of the concentration points of the bulb mites and the estimation of the percentage of infestation in the field.
Area of study: Khorasan-Razavi province, Torbat-Heydarieh, Iran.
Material and methods: Five fields were randomly selected and their red-green-blue (RGB), as a typical visible spectral image, and NIR images were taken in two consecutive years. Seven spectral vegetation indices for NIR images including NIR-band, Red-band, normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI), difference red-nir ratio (DRN) and infrared percentage vegetation index (IPVI); and twelve indices for RGB images inlcuding red-band, green-band, blue-band, visible-band difference vegetation index (VDVI), visible atmospheric resistant index (VARI), triangular greenness index (TGI), normalized difference greenness index (NDGI), normalized green blue difference index (NGBDI), modified green red vegetation index (MGRVI), red green blue vegetation index (RGBVI), vegetative index (VEG) and excess of green index (EXG), were extracted and analysed. In order to detect affected plants, two support vector machine (SVM) classifiers with radial basis function (RBF) kernels were used separately for NIR and RGB images.
Main results: The average accuracy of the SVM classifier models were estimated to be 82.3% for NIR images and 91.4% for RGB images during the test phase. Also, the accuracy of the developed models when evaluated in the field with respect to the confusion matrix method was 75.6% and 80.3% for the classification models for NIR and RGB images, respectively.
Research highlights: RGB images were able to distinguish infested plants with better accuracy. Processing aerial images of lightweight drones could speed up the inspection of vast saffron fields.
Downloads
References
Abbas A, Jain S, Gour M, Vankudothu S, 2021.Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput. Electron. Agric. 187:106279. https://doi.org/10.1016/j.compag.2021.106279
Abdelghafour F, Sivarajan SR, Abdelmeguid I, Ryckewaert M, Roger JM, Bendoula R, Alexandersson E, 2023. Including measurement effects and temporal variations in VIS-NIRS models to improve early detection of plant disease: Application to Alternaria solani in potatoes. Comput. Electron. Agric. 211:107947. https://doi.org/10.1016/j.compag.2023.107947
Abdu AM, Mokji MMM, Sheikh UUU, 2020. Machine learning for plant disease detection: an investigative comparison between support vector machine and deep learning. IAES Int. J. Artif. Intell. 9:670. https://doi.org/10.11591/ijai.v9.i4.pp670-683
Abdulridha J, Ampatzidis Y, Roberts P, Kakarla SC, 2020. Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosyst. Eng. 197:135-148. ttps://doi.org/10.1016/j.biosystemseng.2020.07.001
Abuleil AM, Taylor GW, Moussa M, 2015. An Integrated System for Mapping Red Clover Ground Cover Using Unmanned Aerial Vehicles: A Case Study in Precision Agriculture. In: Proceedings -2015 12th Conference on Computer and Robot Vision, CRV 2015. IEEE pp. 277-284. https://doi.org/10.1109/CRV.2015.43
Armstrong P, Maghirang E, Ozulu M, 2019. Determining damage levels in wheat caused by Sunn pest, Eurygaster integriceps) using visible and near-infrared spectroscopy. J. Cereal Sci. 86:102-107. https://doi.org/10.1016/j.jcs.2019.02.003
Aslahishahri M, Stanley KG, Duddu H, Shirtliffe S, Vail S, Bett K, Pozniak C, Stavness I, 2021. From RGB to NIR: Predicting of near infrared reflectance from visible spectrum aerial images of crops. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW).Vol. 2021- Octob IEEE pp. 1312-1322. https://doi.org/10.1109/ICCVW54120.2021.00152
Ballesteros R, Ortega JF, Hernández D, Moreno MA, 2014. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precis. Agric. 15:579-592. https://doi.org/10.1007/s11119-014-9355-8
Baradaran Motie J, Aghkhani MH, Rohani A, Lakzian A, 2021. A soft-computing approach to estimate soil electrical conductivity. Biosyst. Eng. 205:105-120. https://doi.org/10.1016/j.biosystemseng.2021.02.015
Baradaran Motie J, Saeidirad MH, Jafarian M, 2023. Identification of Sunn-pestaffected, Eurygaster Integriceps put.) wheat plants and their distribution in wheat fields using aerial imaging. Ecol. Inform. 102146. https://doi.org/10.1016/j.ecoinf.2023.102146
Basati Z, Jamshidi B, Rasekh M, Abbaspour-Gilandeh Y, 2018. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 203:308-314. https://doi.org/10.1016/j.saa.2018.05.123
Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp ML, Bareth G, 2015.Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 39:79-87. https://doi.org/10.1016/j.jag.2015.02.012
Brenner C, Zeeman M, Bernhardt M, Schulz K, 2018. Estimation of evapotranspiration of temperate grassland based on high-resolution thermal and visible range imagery from unmanned aerial systems. Int. J. Remote Sens. 39:5141-5174. https://doi.org/10.1080/01431161.2018.1471550
Caiola MG, Canini A, 2010. Looking for saffron's, Crocus sativus L.) parents. Funct. Plant Sci. Biotechnol. 4:1-14
Camargo A, Smith JS, 2009. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst. Eng. 102:9-21. https://doi.org/10.1016/j.biosystemseng.2008.09.030
Cardone L, Castronuovo D, Perniola M, Cicco N, Candido V, 2020. Saffron, Crocus sativus L.), the king of spices: An overview. Sci. Hortic., Amsterdam). 272:109560. https://doi.org/10.1016/j.scienta.2020.109560
Carreño-Conde F, Sipols AE, Simón C, Mostaza-Colado D, 2021. A forecast model applied to monitor crops dynamics using vegetation indices, Ndvi). Appl. Sci. 11:1-25. https://doi.org/10.3390/app11041859
Cerqueira DTR de, Raetano CG, Pogetto MHF do AD, Carvalho MM, Prado EP, Costa SÍ de A, Moreira CAF, 2017. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer. Sci. Agric. 74:32-40. https://doi.org/10.1590/1678-992x-2015-0340
Chawal B, Panday SP, 2019. Rice Plant Disease Detection using Twin Support Vector Machine, TSVM). J. Sci. Eng. 7:61-69. https://doi.org/10.3126/jsce.v7i0.26794
Crippen RE, 1990.Calculating the vegetation index faster. Remote Sens. Environ. 34:71-73. https://doi.org/10.1016/0034-4257(90)90085-Z.
Devadas R, Lamb DW, Simpfendorfer S, Backhouse D, 2009. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis. Agric. 10:459-470. https://doi.org/10.1007/s11119-008-9100-2
Du M, Noguchi N, 2017. Monitoring of Wheat Growth Status and Mapping of Wheat Yield's within-Field Spatial Variations Using Color Images Acquired from UAV-camera System. Remote Sens. 9:289. https://doi.org/10.3390/rs9030289
Elarab M, Ticlavilca AM, Torres-Rua AF, Maslova I, McKee M, 2015. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 43:32-42. https://doi.org/10.1016/j.jag.2015.03.017
di Gennaro SF, Battiston E, di Marco S, Facini O, Matese A, Nocentini M, Palliotti A, Mugnai L, 2016 .Unmanned Aerial Vehicle, UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathol. Mediterr. 55:262-275.
Golmohammadi F, 2014. Saffron and its farming, economic importance, export, medicinal characteristics and various uses in South Khorasan Province-East of Iran. Int. J. Farming Allied Sci. 3:566-596
Gómez-Casero MT, Castillejo-González IL, García-Ferrer A, Peña-Barragán JM, Jurado-Expósito M, García-Torres L, López-Granados F, 2010. Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application. Agron. Sustain. Dev. 30:689-699. https://doi.org/10.1051/agro/2009052
Gomez C, Viscarra Rossel RA, McBratney AB, 2008. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 146:403-411. https://doi.org/10.1016/j.geoderma.2008.06.011
Govaerts B, Verhulst N, 2010. The Normalized Difference Vegetation Index, NDVI) GreenSeeker TM Handheld Sensor: Toward Integrated Evaluation of Crop Management. Part B: User Guide. Cimmyt 12.
Gulhane M, Gurjar A, 2011. Detection of diseases on cotton leaves and its possible diagnosis. Int. J. Image Process. 5:590-598
Hague T, Tillett ND, Wheeler H, 2006.Automated Crop and Weed Monitoring in Widely Spaced Cereals. Precis. Agric. 7:21-32. https://doi.org/10.1007/s11119-005-6787-1
Hussein M, Abbas AH, 2019. Plant Leaf Disease Detection Using Support Vector Machine. Al-Mustansiriyah J. Sci. 30:105-110. https://doi.org/10.23851/mjs.v30i1.487
Jin X, Shi C, Yu CY, Yamada T, Sacks EJ, 2017. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus. Front. Plant Sci. 8:721. https://doi.org/10.3389/fpls.2017.00721
Kafi M, Koocheki A, Rashed MH, Nassiri M, 2006. Saffron, Crocus sativus) production and processing. Science Publishers. https://doi.org/10.1201/9781482280463
Knipling EB, 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1:155-159. https://doi.org/10.1016/S0034-4257(70)80021-9
Li W, Wang D, Li M, Gao Y, Wu J, Yang X, 2021. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Comput. Electron. Agric. 183:106048. https://doi.org/10.1016/j.compag.2021.106048
Mohamed ES, Saleh AM, Belal AB, Gad AA, 2018. Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Remote Sens. Sp. Sci. 21:1-14. https://doi.org/10.1016/j.ejrs.2017.02.001
Mzabri, Addi, Berrichi, 2019.Traditional and Modern Uses of Saffron, Crocus Sativus). Cosmetics 6:63. https://doi.org/10.3390/cosmetics6040063
Phadikar S, Sil J, Das AK, 2013. Vegetative indices and edge texture based shadow elimination method for rice plant images. In: 2012 International Conference on Radar, Communication and Computing, ICRCC). IEEE pp. 1-5. https://doi.org/10.1109/ICRCC.2012.6522596
Rahimi H, Nateq Golestan M, Kakhki A, 2018. Exploring the impact of non-chemical methods on the control of bulb mite, Rhizoglyphus robini Claparáde) and yield of saffron, Crocus sativus L.). New Zeal. Plant Prot. 71:93-101. https://doi.org/10.30843/nzpp.2018.71.108
Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L, 2010. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric. 74:91-99. https://doi.org/10.1016/j.compag.2010.06.009
Rupesh G. Mundada RGM, 2013. Detection and Classification of Pests in Greenhouse Using Image Processing. IOSR J. Electron. Commun. Eng. 5:57-63. https://doi.org/10.9790/2834-565763
Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles RRN, Pavek MJ, 2015. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 70:112-123. https://doi.org/10.1016/j.eja.2015.07.004
Silleos NG, Alexandridis TK, Gitas IZ, Perakis K, 2006. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 21:21-28. https://doi.org/10.1080/10106040608542399
Silva JMN, Cadima JFCL, Pereira JMC, Grégoire JM, 2004. Assessing the feasibility of a global model for multi-temporal burned area mapping using SPOT-VEGETATION data. Int. J. Remote Sens. 25:4889-4913. https://doi.org/10.1080/01431160412331291251
Tavakkoli-Korghond G, Sahebzadeh N, 2022. A modified method for mass production of generalist predatory edaphic mite Gaeolaelaps aculeifer as a candidate for biological control of the saffron corm mite. https://doi.org/10.1080/01647954.2022.2043936 48:159-164. https://doi.org/10.1080/01647954.2022.2043936
Vani N, Sowmya A, Jayamma N, 2017. Brain Tumor Classification using Support Vector Machine. Int. Res. J. Eng. Technol. 4:792-796.
Wang X, Wang M, Wang S, Wu Y, 2015. Extraction of vegetation information from visible unmanned aerial vehicle images. Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng. 31:152-159
Warren G, Metternicht G, 2005. Agricultural applications of high-resolution digital multispectral imagery: Evaluating within-field spatial variability of canola, Brassica napus) in Western Australia. Photogramm. Eng. Remote Sensing 71:595-602. https://doi.org/10.14358/PERS.71.5.595
Weiss MJ, Hofeldt AJ, Behrens M, Fisher K, 1997. Ocular siderosis: Diagnosis and management. Retina 17:105-108. https://doi.org/10.1097/00006982-199703000-00004
Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA, 1995. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 38:259-269. https://doi.org/10.13031/2013.27838
Xiang H, Tian L, 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle, UAV). Biosyst. Eng. 108:174-190. https://doi.org/10.1016/j.biosystemseng.2010.11.010
Xue J, Su B, 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors 2017:1-17. https://doi.org/10.1155/2017/1353691
Yang CM, Cheng CH, Chen RK, 2007 .Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Sci. 47:329-335. https://doi.org/10.2135/cropsci2006.05.0335
Zakiaghl M, Khorramdel S, Koocheki A, Nabati J, Nezami A, Mirshamsi Kachki A, Mollafilabi A, Rezvani Moghaddam P, Nassiri Mahallati M, 2021. Criteria for production of standard pathogen-free saffron corms. Saffron Agron. Technol. 9:121-141
Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R, Catalina A, González MR, Martín P, 2013. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle, UAV). Agric. For. Meteorol. 171-172:281-294. https://doi.org/10.1016/j.agrformet.2012.12.013
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.