Detección de plantas de azafrán infestadas por ácaros mediante imágenes aéreas y un clasificador de aprendizaje automático

  • Hossein Sahabi Department of Plant Production, University of Torbat Heydarieh, Torbat Heydarieh, 9516168595 Iran / Saffron Institute, University of Torbat Heydarieh, Torbat Heydarieh, 9516168595 Iran https://orcid.org/0000-0001-8201-3152
  • Jalal Baradaran-Motie Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974 Iran https://orcid.org/0000-0002-6549-9258
Palabras clave: Clasificación, Crocus sativus, Máquina de soporte vectorial, Imágenes aéreas, Procesamiento de imágenes

Resumen

Objetivo del estudio: Evaluar y desarrollar un código de aprendizaje automático que utilice imágenes aéreas en los espectros visible e infrarrojo cercano (NIR) para detectar plantas de azafrán (Crocus sativus L.) infestadas por ácaros mediante el procesamiento de índices espectrales para clasificar plantas sanas y enfermas. Esto permite identificar los puntos de concentración de los ácaros del bulbo y estimar el porcentaje de infestación en el campo.

Área de estudio: Provincia de Jorasán-Razaví, Torbat-Heydarieh, Irán.

Materiales y métodos: Cinco campos fueron seleccionados al azar, y se tomaron sus imágenes en rojo-verde-azul (RGB), como una imagen espectral visible típica, e imágenes en infrarrojo cercano (NIR) en dos años consecutivos. Se extrajeron y analizaron siete índices de vegetación espectrales para las imágenes NIR, que incluyeron NIR-band, redband, normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI), difference Red-NIR ratio (DRN) and infrared percentage vegetation index (IPVI); y doce índices para las imágenes visibles RGB, que incluyeron red-band, green-band, blue-band, visible-band difference vegetation index (VDVI), visible atmospheric resistant index (VARI), triangular greenness index (TGI), normalized difference greenness index (NDGI), normalized green blue difference index (NGBDI), modified green red vegetation index (MGRVI), red green blue vegetation index (RGBVI), vegetative index (VEG) and excess of green index (EXG). Para detectar las plantas afectadas, se utilizaron dos clasificadores de Máquinas de Soporte Vectorial (SVM) con núcleos de Función de Base Radial (RBF) de forma separada para las imágenes NIR y RGB.

Resultados principales: La precisión promedio de los modelos clasificadores SVM se estimó en un 82.3% para las imágenes NIR y un 91.4% para las imágenes visibles durante la fase de prueba. Además, la precisión de los modelos desarrollados al ser evaluados en campo con respecto al método de matriz de confusión fue del 75.6% y 80.3% para los modelos de clasificación de imágenes NIR y RGB, respectivamente.

Aspectos destacados de la investigación: Las imágenes RGB lograron distinguir plantas infestadas con mejor precisión. El procesamiento de imágenes aéreas de drones de bajo peso podría acelerar la inspección de grandes campos de azafrán.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abbas A, Jain S, Gour M, Vankudothu S, 2021.Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput. Electron. Agric. 187:106279. https://doi.org/10.1016/j.compag.2021.106279

Abdelghafour F, Sivarajan SR, Abdelmeguid I, Ryckewaert M, Roger JM, Bendoula R, Alexandersson E, 2023. Including measurement effects and temporal variations in VIS-NIRS models to improve early detection of plant disease: Application to Alternaria solani in potatoes. Comput. Electron. Agric. 211:107947. https://doi.org/10.1016/j.compag.2023.107947

Abdu AM, Mokji MMM, Sheikh UUU, 2020. Machine learning for plant disease detection: an investigative comparison between support vector machine and deep learning. IAES Int. J. Artif. Intell. 9:670. https://doi.org/10.11591/ijai.v9.i4.pp670-683

Abdulridha J, Ampatzidis Y, Roberts P, Kakarla SC, 2020. Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosyst. Eng. 197:135-148. ttps://doi.org/10.1016/j.biosystemseng.2020.07.001

Abuleil AM, Taylor GW, Moussa M, 2015. An Integrated System for Mapping Red Clover Ground Cover Using Unmanned Aerial Vehicles: A Case Study in Precision Agriculture. In: Proceedings -2015 12th Conference on Computer and Robot Vision, CRV 2015. IEEE pp. 277-284. https://doi.org/10.1109/CRV.2015.43

Armstrong P, Maghirang E, Ozulu M, 2019. Determining damage levels in wheat caused by Sunn pest, Eurygaster integriceps) using visible and near-infrared spectroscopy. J. Cereal Sci. 86:102-107. https://doi.org/10.1016/j.jcs.2019.02.003

Aslahishahri M, Stanley KG, Duddu H, Shirtliffe S, Vail S, Bett K, Pozniak C, Stavness I, 2021. From RGB to NIR: Predicting of near infrared reflectance from visible spectrum aerial images of crops. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW).Vol. 2021- Octob IEEE pp. 1312-1322. https://doi.org/10.1109/ICCVW54120.2021.00152

Ballesteros R, Ortega JF, Hernández D, Moreno MA, 2014. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precis. Agric. 15:579-592. https://doi.org/10.1007/s11119-014-9355-8

Baradaran Motie J, Aghkhani MH, Rohani A, Lakzian A, 2021. A soft-computing approach to estimate soil electrical conductivity. Biosyst. Eng. 205:105-120. https://doi.org/10.1016/j.biosystemseng.2021.02.015

Baradaran Motie J, Saeidirad MH, Jafarian M, 2023. Identification of Sunn-pestaffected, Eurygaster Integriceps put.) wheat plants and their distribution in wheat fields using aerial imaging. Ecol. Inform. 102146. https://doi.org/10.1016/j.ecoinf.2023.102146

Basati Z, Jamshidi B, Rasekh M, Abbaspour-Gilandeh Y, 2018. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 203:308-314. https://doi.org/10.1016/j.saa.2018.05.123

Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp ML, Bareth G, 2015.Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 39:79-87. https://doi.org/10.1016/j.jag.2015.02.012

Brenner C, Zeeman M, Bernhardt M, Schulz K, 2018. Estimation of evapotranspiration of temperate grassland based on high-resolution thermal and visible range imagery from unmanned aerial systems. Int. J. Remote Sens. 39:5141-5174. https://doi.org/10.1080/01431161.2018.1471550

Caiola MG, Canini A, 2010. Looking for saffron's, Crocus sativus L.) parents. Funct. Plant Sci. Biotechnol. 4:1-14

Camargo A, Smith JS, 2009. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst. Eng. 102:9-21. https://doi.org/10.1016/j.biosystemseng.2008.09.030

Cardone L, Castronuovo D, Perniola M, Cicco N, Candido V, 2020. Saffron, Crocus sativus L.), the king of spices: An overview. Sci. Hortic., Amsterdam). 272:109560. https://doi.org/10.1016/j.scienta.2020.109560

Carreño-Conde F, Sipols AE, Simón C, Mostaza-Colado D, 2021. A forecast model applied to monitor crops dynamics using vegetation indices, Ndvi). Appl. Sci. 11:1-25. https://doi.org/10.3390/app11041859

Cerqueira DTR de, Raetano CG, Pogetto MHF do AD, Carvalho MM, Prado EP, Costa SÍ de A, Moreira CAF, 2017. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer. Sci. Agric. 74:32-40. https://doi.org/10.1590/1678-992x-2015-0340

Chawal B, Panday SP, 2019. Rice Plant Disease Detection using Twin Support Vector Machine, TSVM). J. Sci. Eng. 7:61-69. https://doi.org/10.3126/jsce.v7i0.26794

Crippen RE, 1990.Calculating the vegetation index faster. Remote Sens. Environ. 34:71-73. https://doi.org/10.1016/0034-4257(90)90085-Z.

Devadas R, Lamb DW, Simpfendorfer S, Backhouse D, 2009. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis. Agric. 10:459-470. https://doi.org/10.1007/s11119-008-9100-2

Du M, Noguchi N, 2017. Monitoring of Wheat Growth Status and Mapping of Wheat Yield's within-Field Spatial Variations Using Color Images Acquired from UAV-camera System. Remote Sens. 9:289. https://doi.org/10.3390/rs9030289

Elarab M, Ticlavilca AM, Torres-Rua AF, Maslova I, McKee M, 2015. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 43:32-42. https://doi.org/10.1016/j.jag.2015.03.017

di Gennaro SF, Battiston E, di Marco S, Facini O, Matese A, Nocentini M, Palliotti A, Mugnai L, 2016 .Unmanned Aerial Vehicle, UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathol. Mediterr. 55:262-275.

Golmohammadi F, 2014. Saffron and its farming, economic importance, export, medicinal characteristics and various uses in South Khorasan Province-East of Iran. Int. J. Farming Allied Sci. 3:566-596

Gómez-Casero MT, Castillejo-González IL, García-Ferrer A, Peña-Barragán JM, Jurado-Expósito M, García-Torres L, López-Granados F, 2010. Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application. Agron. Sustain. Dev. 30:689-699. https://doi.org/10.1051/agro/2009052

Gomez C, Viscarra Rossel RA, McBratney AB, 2008. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 146:403-411. https://doi.org/10.1016/j.geoderma.2008.06.011

Govaerts B, Verhulst N, 2010. The Normalized Difference Vegetation Index, NDVI) GreenSeeker TM Handheld Sensor: Toward Integrated Evaluation of Crop Management. Part B: User Guide. Cimmyt 12.

Gulhane M, Gurjar A, 2011. Detection of diseases on cotton leaves and its possible diagnosis. Int. J. Image Process. 5:590-598

Hague T, Tillett ND, Wheeler H, 2006.Automated Crop and Weed Monitoring in Widely Spaced Cereals. Precis. Agric. 7:21-32. https://doi.org/10.1007/s11119-005-6787-1

Hussein M, Abbas AH, 2019. Plant Leaf Disease Detection Using Support Vector Machine. Al-Mustansiriyah J. Sci. 30:105-110. https://doi.org/10.23851/mjs.v30i1.487

Jin X, Shi C, Yu CY, Yamada T, Sacks EJ, 2017. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus. Front. Plant Sci. 8:721. https://doi.org/10.3389/fpls.2017.00721

Kafi M, Koocheki A, Rashed MH, Nassiri M, 2006. Saffron, Crocus sativus) production and processing. Science Publishers. https://doi.org/10.1201/9781482280463

Knipling EB, 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1:155-159. https://doi.org/10.1016/S0034-4257(70)80021-9

Li W, Wang D, Li M, Gao Y, Wu J, Yang X, 2021. Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse. Comput. Electron. Agric. 183:106048. https://doi.org/10.1016/j.compag.2021.106048

Mohamed ES, Saleh AM, Belal AB, Gad AA, 2018. Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Remote Sens. Sp. Sci. 21:1-14. https://doi.org/10.1016/j.ejrs.2017.02.001

Mzabri, Addi, Berrichi, 2019.Traditional and Modern Uses of Saffron, Crocus Sativus). Cosmetics 6:63. https://doi.org/10.3390/cosmetics6040063

Phadikar S, Sil J, Das AK, 2013. Vegetative indices and edge texture based shadow elimination method for rice plant images. In: 2012 International Conference on Radar, Communication and Computing, ICRCC). IEEE pp. 1-5. https://doi.org/10.1109/ICRCC.2012.6522596

Rahimi H, Nateq Golestan M, Kakhki A, 2018. Exploring the impact of non-chemical methods on the control of bulb mite, Rhizoglyphus robini Claparáde) and yield of saffron, Crocus sativus L.). New Zeal. Plant Prot. 71:93-101. https://doi.org/10.30843/nzpp.2018.71.108

Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L, 2010. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric. 74:91-99. https://doi.org/10.1016/j.compag.2010.06.009

Rupesh G. Mundada RGM, 2013. Detection and Classification of Pests in Greenhouse Using Image Processing. IOSR J. Electron. Commun. Eng. 5:57-63. https://doi.org/10.9790/2834-565763

Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles RRN, Pavek MJ, 2015. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 70:112-123. https://doi.org/10.1016/j.eja.2015.07.004

Silleos NG, Alexandridis TK, Gitas IZ, Perakis K, 2006. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 21:21-28. https://doi.org/10.1080/10106040608542399

Silva JMN, Cadima JFCL, Pereira JMC, Grégoire JM, 2004. Assessing the feasibility of a global model for multi-temporal burned area mapping using SPOT-VEGETATION data. Int. J. Remote Sens. 25:4889-4913. https://doi.org/10.1080/01431160412331291251

Tavakkoli-Korghond G, Sahebzadeh N, 2022. A modified method for mass production of generalist predatory edaphic mite Gaeolaelaps aculeifer as a candidate for biological control of the saffron corm mite. https://doi.org/10.1080/01647954.2022.2043936 48:159-164. https://doi.org/10.1080/01647954.2022.2043936

Vani N, Sowmya A, Jayamma N, 2017. Brain Tumor Classification using Support Vector Machine. Int. Res. J. Eng. Technol. 4:792-796.

Wang X, Wang M, Wang S, Wu Y, 2015. Extraction of vegetation information from visible unmanned aerial vehicle images. Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng. 31:152-159

Warren G, Metternicht G, 2005. Agricultural applications of high-resolution digital multispectral imagery: Evaluating within-field spatial variability of canola, Brassica napus) in Western Australia. Photogramm. Eng. Remote Sensing 71:595-602. https://doi.org/10.14358/PERS.71.5.595

Weiss MJ, Hofeldt AJ, Behrens M, Fisher K, 1997. Ocular siderosis: Diagnosis and management. Retina 17:105-108. https://doi.org/10.1097/00006982-199703000-00004

Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA, 1995. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 38:259-269. https://doi.org/10.13031/2013.27838

Xiang H, Tian L, 2011. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle, UAV). Biosyst. Eng. 108:174-190. https://doi.org/10.1016/j.biosystemseng.2010.11.010

Xue J, Su B, 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors 2017:1-17. https://doi.org/10.1155/2017/1353691

Yang CM, Cheng CH, Chen RK, 2007 .Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Sci. 47:329-335. https://doi.org/10.2135/cropsci2006.05.0335

Zakiaghl M, Khorramdel S, Koocheki A, Nabati J, Nezami A, Mirshamsi Kachki A, Mollafilabi A, Rezvani Moghaddam P, Nassiri Mahallati M, 2021. Criteria for production of standard pathogen-free saffron corms. Saffron Agron. Technol. 9:121-141

Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R, Catalina A, González MR, Martín P, 2013. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle, UAV). Agric. For. Meteorol. 171-172:281-294. https://doi.org/10.1016/j.agrformet.2012.12.013

Publicado
2025-01-20
Cómo citar
Sahabi, H., & Baradaran-Motie, J. (2025). Detección de plantas de azafrán infestadas por ácaros mediante imágenes aéreas y un clasificador de aprendizaje automático. Spanish Journal of Agricultural Research, 22(4), 20452. https://doi.org/10.5424/sjar/2024224-20452
Sección
Ingeniería agraria