The cost of mitigating greenhouse gas emissions in farms in Central Andes of Ecuador

  • Jhenny Cayambe Pontificia Universidad Católica del Ecuador Sede Ibarra. Escuela de Ciencias Agrícolas y Ambientales. Ibarra
  • Ana Iglesias Universidad Politécnica de Madrid (UPM). Dept. Agricultural Economics & CEIGRAM. Madrid
Keywords: Marginal abatement cost curves, cost-effectiveness, mitigation, climate change

Abstract

Aim of study: Reduction of the greenhouse gas (GHG) emissions derived from food production is imperative to meet climate change mitigation targets. Sustainable mitigation strategies also combine improvements in soil fertility and structure, nutrient recycling, and the use more efficient use of water. Many of these strategies are based on agricultural know-how, with proven benefits for farmers and the environment. This paper considers measures that could contribute to emissions reduction in subsistence farming systems and evaluation of management alternatives in the Central Andes of Ecuador. We focused on potato and milk production because they represent two primary employment and income sources in the region’s rural areas and are staple foods in Latin America.

Area of study: Central Andes of Ecuador: Carchi, Chimborazo, Cañar provinces

Material and methods: Our approach to explore the cost and the effectiveness of mitigation measures combines optimisation models with participatory methods.

Main results: Results show the difference of mitigation costs between regions which should be taken into account when designing of any potential support given to farmers. They also show that there is a big mitigation potential from applying the studied measures which also lead to increased soil fertility and soil structure improvements due to the increased soil organic carbon.

Research highlights: This study shows that marginal abatement cost curves derived for different agro-climatic regions are helpful tools for the development of realistic regional mitigation options for the agricultural sector.

Downloads

Download data is not yet available.

Author Biography

Jhenny Cayambe, Pontificia Universidad Católica del Ecuador Sede Ibarra. Escuela de Ciencias Agrícolas y Ambientales. Ibarra


References

Alexandratos N, Bruinsma J, 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03, p. 4, FAO, Rome.

ASABE Standards, 2007. ASAE EP496.3. Agricultural machinery management. Am Soc Agr Biol Eng 3: 354-357.

Balana B, Lago M, Baggaley N, Castellazzi M, Sample J, Stutter M, Slee B, Vinten A, 2012. Integrating economic and biophysical data in assessing cost-effectiveness of buffer strip placement. J Environ Qual 41 (2): 380-388. https://doi.org/10.2134/jeq2010.0544

Barnes A, Soto I, Eory V, Beck B, Balafoutis A, Sánchez B, Vangeyted J, Fountas S, van der Walf T, Gómez-Barbero M, 2019. Exploring the adoption of precision agricultural technologies: a cross regional study of EU farmers. Land Use Pol 80: 163-174. https://doi.org/10.1016/j.landusepol.2018.10.004

Barrera V, Grijalva J, León C, 2004. Improvement of milk production systems in the Andean ecoregion of Ecuador. Lat Am Ani Prod Fil 12 (2): 43-51.

Bro A, Clay D, Ortega D, Lopez M, 2019. Determinants of adoption of sustainable production practices among smallholder coffee producers in Nicaragua. Env Dev Sust 21 (2): 895-915. https://doi.org/10.1007/s10668-017-0066-y

Cavatassi R, Gonzales M, Espinosa P, Winters P, Andrade-Piedra J, Thie G, 2008. Linking small farmers to the market while caring for the environment. LISFAME project: The case of Ecuador. FAO, Rome.

Cayambe J, Iglesias A, de Jalon S, Chuquillanqui C, Riga P, 2015. Economic evaluation of mitigation strategies of greenhouse gases in potato production systems. ITEA-Inf Tecn Econ Agr 111 (2): 154-173.

Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B, Misselbrook T, 2011. Manure management: Implications for greenhouse gas emissions. Anim Feed Sci Tech 166-167: 514-531. https://doi.org/10.1016/j.anifeedsci.2011.04.036

Chong J, 2014. Ecosystem-based approaches to climate change adaptation: progress and challenges. Int Env Agr: Pol Law Ec 14 (4): 391-405. https://doi.org/10.1007/s10784-014-9242-9

de Oliveira Silva R, Barioni L, Albertini T, Eory V, Topp C, Fernandes F, Moran D, 2015. Developing a nationally appropriate mitigation measure from the greenhouse gas greenhouse gas abatement potential from livestock production in the Brazilian Cerrado. Agr Syst 140: 48-55. https://doi.org/10.1016/j.agsy.2015.08.011

Dequiedt B, Moran D, 2015. The cost of emission mitigation by legume crops in French agriculture. Ecol Econ 110: 51-60. https://doi.org/10.1016/j.ecolecon.2014.12.006

Devaux A, Ordinola M, Hibon A, Flores F, 2010. The potato sector in the Andean region: Diagnosis and elements for a strategic vision (Bolivia, Ecuador and Peru). International Potato Center, Lima, Peru.

Devaux A, Ordinola M, Horton D (eds), 2011. Innovation for development: The papa Andina experience: International Potato Center, Lima, Peru, 431 pp. https://doi.org/10.4160/9789290604105

Ecoinvent Centre, 2007. Ecoinvent data V2.0. Swiss Centre for Life Cycle Inventories.

Eory V, Topp C, Butler A, Moran D, 2018. Addressing uncertainty in efficient mitigation of agricultural greenhouse gas emissions. J Agr Ec 69 (3): 627-645. https://doi.org/10.1111/1477-9552.12269

FAO/IFIA, 2001. Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land report. FAO/International Fertilizer Industry Association, Rome.

FAO-FEPALE, 2012. Dairy situation in Latin America and the Caribbean in 2011. FAO, Panamerican Dairy Federation. Chile.

FAOSTAT, 2016. Agriculture Organization of the United Nations Statistics Division. Food and Agricultural Commodities Production.

FAOSTAT, 2017. Agriculture Organization of the United Nations Statistics Division. Food and Agricultural Commodities Production.

FAOSTAT, 2019. Agriculture Organization of the United Nations Statistics Division.

Franks J, Hadingham B, 2012. Reducing greenhouse gas emissions from agriculture: Avoiding trivial solutions to a global problem. Land Use Pol 29 (4): 727-736. https://doi.org/10.1016/j.landusepol.2011.11.009

Hansen M, Potapov P, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland A, 2013. High-resolution global maps of 21st-century forest cover change. Science 342: 850-853. https://doi.org/10.1126/science.1244693

Haverkort A, Hillier J, 2011. Cool farm tool - Potato: Model description and performance of four production systems. Potato Res 54 (4): 355-369. https://doi.org/10.1007/s11540-011-9194-1

Hillier J, Walter C, Malin D, Garcia-Suarez T, Mila-i-Canals L, Smith P, 2011. A farm-focused calculator for emissions from crop and livestock production. Env Mod Soft 26 (9): 1070-1078. https://doi.org/10.1016/j.envsoft.2011.03.014

INAMHI, 2015. Meteorological yearbook year 2015. National Institute of Meteorology and Hydrology, Ecuador.

INEC, 2016. Survey of surface and continuous agricultural production - ESPAC, National Institute of Statistics and Censuses, Quito, Ecuador.

INEC, 2019 Survey of surface and continuous agricultural production - ESPAC, National Institute of Statistics and Censuses, Ecuador.

INIAP, 2013. Project report INIAP-PROMSA: Socio-economic evaluation of the reduced tillage system "Huacho Rozado" versus two tillage systems in the potato crop, in the province of Carchi. Annual technical report. INIAP, Ecuador.

IPCC, 2006. Revised Good Practice guidelines for greenhouse gas inventories. Intergovernmental Panel on Climate Change, Institute for Global Environmental Strategies, Tokyo.

IPCC, 2014. Climate Change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the IPCC. Cambridge Univ Press.

IUSS Working Group WRB, 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Jahan M, Hossain A, Sarkar M, Teixeira da Silva A, Ferdousi M, 2016. Productivity impacts and nutrient balances of an intensive potato-mungbean-rice crop rotation in multiple environments of Bangladesh. Agr Ecos Env 231: 79-97. https://doi.org/10.1016/j.agee.2016.06.032

Koga N, Tsuruta H, Tsuji H, 2003. Fuel consumption-derived CO2 emissions under conventional and reduced tillage cropping systems in northern Japan. Agr Ecos Env 99 (1-3): 213-219. https://doi.org/10.1016/S0167-8809(03)00132-4

Lal R, 2013. Soil carbon management and climate change. Carb Man 4 (4): 439-462. https://doi.org/10.4155/cmt.13.31

LINDO Systems, 2003. Computer program. LINDO Systems Inc, Chicago, ILL, USA.

Lucas K, 2006. Proporcionar transporte para la inclusión social dentro de un marco para la justicia ambiental en el Reino Unido. Transp Res A: Polic Pract 40 (10): 801-809.

MacLeod M, Moran D, Eory V, Rees R, Barnes A, Topp C, Ball B, Hoad S, Wall E, McVittie A, Pajot G, Matthews R, Smith P, Moxey A, 2010. Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agr Syst 103 (4): 198-209. https://doi.org/10.1016/j.agsy.2010.01.002

MAE, 2011. Segunda Comunicación Nacional sobre Cambio Climático. Convención Marco de las Naciones Unidas sobre Cambio Climático. Proyecto GEF/PNUD/MAE. Ministerio del Ambiente, Ecuador. https://doi.org/10.18356/55946ee9-es

MAGAP, 2016a. Database. Referential information on agrochemical prices that includes active ingredients, commercial names and presentations. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, Ecuador.

MAGAP, 2016b. Database. Prices of products. Prices applied by the different levels of the marketing chain: producer, wholesale markets, agricultural warehouses. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, Ecuador.

Montagnini F, Ibrahim M, Murgueitio E, 2013. Silvopastoral systems and climate change mitigation in Latin America. Bois Forets Trop 67 (316): 3-16. https://doi.org/10.19182/bft2013.316.a20528

Moran D, MacLeod M, Wall E, Eory V, McVittie A, Barnes A, Rees R, Topp C, Pajot G, Matthews R, Smith P, Moxey A, 2011. Developing carbon budgets for UK agriculture, land-use, land-use change and forestry out to 2022. Clim Chan 105 (3-4): 529-553. https://doi.org/10.1007/s10584-010-9898-2

Naranjo J, Cuartas C, Murgueitio E, Chará J, Rosales R, Barahona R, 2012. Greenhouse gases in intensive silvopastoral systems with Leucaena leucocephala in Colombia. Liv Res Rur Dev 24 (8): 12-20.

Paladines O, Jacome C, 1999. Andean grassland network, Project report. International Potato Center, Ecuador.

Parra A, de Figueiredo E, de Bordonal R, Moitinho M, Teixeira D, La Scala N, 2019. Greenhouse gas emissions in conversion from extensive pasture to other agricultural systems in the Andean region of Colombia. Env Dev Sust 21 (1): 249-262. https://doi.org/10.1007/s10668-017-0034-6

Proaño M, Paladines O, 1998. Análisis de los sistemas agropecuarios de los pequeños productores de la cuenca del río El Angel, provincia del Carchi, Ecuador. [Analysis of the agricultural systems of small and medium producers of the El Angel River account, Ecuador]. MANRECUR Project, Quito, Ecuador.

Quintero M, Comerford N, 2013. Effects of conservation tillage on total and aggregated soil organic carbon in the Andes. Op J Soil Sc 2013: 361-373. https://doi.org/10.4236/ojss.2013.38042

Rajaee M, Hoseini S, Malekmohammadi I, 2019. Proposing a socio-psychological model for adopting green building technologies: A case study from Iran. Sust Cit Soc 45: 657-668. https://doi.org/10.1016/j.scs.2018.12.007

Roca A, 2012. A socio-psychological study of adoption of farmers' agro-biodiversity friendly practices in Flanders (Doctoral dissertation, University of Gent).

Sánchez B, Iglesias A, McVittie A, Álvaro-Fuentes J, Ingram J, Mills J, Lesschen JP, Kuikman PJ, 2016. Management of agricultural soils for greenhouse gas mitigation: Learning from a case study in NE Spain. J Env Man 170: 37-49. https://doi.org/10.1016/j.jenvman.2016.01.003

Sapkota T, Vetter S, Jat M, Sirohi S, Shirsath P, Singh R, Hanuman S, Smith P, Hillier C, Stirling C, 2019. Cost-effective opportunities for climate change mitigation in Indian agriculture. Sci Tot Env 655: 1342-1354. https://doi.org/10.1016/j.scitotenv.2018.11.225

Smith P, 2012. Soils and climate change. Cur Op Env Sust 4 (5): 539-544. https://doi.org/10.1016/j.cosust.2012.06.005

UNFCCC, 2008. Challenges and opportunities for mitigation in the agricultural sector: technical paper. United Nation Framework Convention on Climate Change.

UNFCCC, 2016. Greenhouse inventory data. United Nation Framework Convention on Climate Change.

Veeger M, Mason-D'Croz D, Dunston S, Vervoort J, Palazzo A. 2019. Crash-testing policies; How scenarios can support climate change policy formulation A methodological guide with case studies from Latin America. CGIAR.

Vergara W, Fenhann J, Schletz M, 2016. Zero Carbon Latin America - A path to the net decarbonization of the regional economy by the middle of this century View Document. UNEP DTU Partnership, Denmark.

WRI, 2014. Climate analysis indicators tool: WRI's Climate Data Explorer. World Resources Institute, Washington, DC.

Xia L, Xia Y, Li B, Wang J, Wang S, Zhou W, Yan X, 2016. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agr Ecos Env 231: 24-33. https://doi.org/10.1016/j.agee.2016.06.020

Zangeneh M, Omid M, Akram A, 2010. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 35 (7): 2927-2933. https://doi.org/10.1016/j.energy.2010.03.024

Published
2020-04-22
How to Cite
Cayambe, J., & Iglesias, A. (2020). The cost of mitigating greenhouse gas emissions in farms in Central Andes of Ecuador. Spanish Journal of Agricultural Research, 18(1), e0101. https://doi.org/10.5424/sjar/2020181-13807
Section
Agricultural economics