Short communication: Antimicrobial activity of indoleacetic, gibberellic and coumaric acids against Paenibacillus larvae and its toxicity against Apis mellifera

  • Nicolás Szawarski Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
  • Pablo Giménez-Martínez Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
  • Giulia Mitton Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
  • Pedro Negri Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
  • Facundo Meroi Arcerito Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata Agencia Nacional de Promoción Científica y Tecnológica, Buenos Aires
  • María P. Moliné Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
  • Sandra Fuselli Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata Comisión Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata
  • Martín Eguaras Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
  • Lorenzo Lamattina Instituto de Investigaciones Biológicas (IIB-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
  • Matías Maggi Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (CONICET-IIPROSAM). Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata
Keywords: American foulbrood, honey bees

Abstract

Aim of study: To explore three isolated phytomolecules: indoleacetic acid (IAA), gibberellic acid (GA), and the secondary metabolite p-coumaric acid (CUM): (1) evaluating their toxicity against Apis mellifera larvae and adults under controlled conditions in the laboratory; (2) searching for antimicrobial activity against Paenibacillus larvae.

Area of study: Honey bee larvae and adults were collected from the experimental apiary of the “Centro de Investigación en Abejas Sociales (CIAS)” (-37.9348798, -57.682817), Institute of the National University of Mar del Plata (UNMdP), Argentina.

Material and methods: Paenibacillus larvae strains were isolated from beehives from different provinces of Argentina (Buenos Aires, Córdoba and Entre Ríos) showing clinical symptoms of the American foulbrood. All strains (S1, S2, S3, S4) were genotypically identified using PL5 and PL4 primers and characterized as genotype ERIC1. Then standard essays were performed to determined toxicity of phytomolecules in honey bees and antimicrobial activity through the broth microdilution method.

Main results:  The diet with GA, IAA and CUM did not present toxic effects in larvae or adult bees, and only CUM showed antimicrobial activity against P. larvae. In this study, we obtained in vitro values of MNIC (minimum non-inhibitory concentration) of 500 μg mL-1 and a MIC (minimum inhibitory concentration) of 650 μg mL-1 for CUM.

Research highlights: The obtained results remark its potential as a natural alternative for the control of P. larvae, avoiding the problems generated by the use of synthetic antibiotics such as the resistance phenomena and the contamination of hive’s products.

Downloads

Download data is not yet available.

References

Aloni R, Aloni E, Langhans M, Ullrich CI, 2006. Role of auxin in regulating Arabidopsis flower development. Planta 223: 315-328. https://doi.org/10.1007/s00425-005-0088-9

Alonso-Salces R, Cugnata N, Guaspari E, Pellegrini MC, Aubone I, De Piano F, Antúnez K, Fuselli S, 2016. Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: a review. Apidologie 48 (3): 387-400. https://doi.org/10.1007/s13592-016-0483-1

Aupinel P, Fortini D, Dufour H, Tasei JN, Michaud B, Odoux JF, Pham-Delègue M, 2005. Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. Bull Insectol 58: 107-111.

Biliková K, Popova M, Trusheva B, Bankova V, 2013. New anti-Paenibacillus larvae substances purified from propolis. Apidologie 44 (3): 278-285. https://doi.org/10.1007/s13592-012-0178-1

Couvillon MJ, Toufailia HA, Butterfield TM, Schrell F, Ratnieks F, Schurch R, 2015. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Cur Bio 25 (21): 2815-2818. https://doi.org/10.1016/j.cub.2015.08.052

Cugnata N, Guaspari E, Pellegrini M, Rosa Fuselli S, Alonso-Salces R, 2017. Optimal concentration of organic solvents to be used in the broth microdilution method to determine the antimicrobial activity of natural products against Paenibacillus Larvae. J Apic Sci 61 (1): 37-53. https://doi.org/10.1515/jas-2017-0004

De Graaf DC, Alippi AM, Antúnez K, Aronstein KA, Budge G, De Koker D, Genersch E, 2013. Standard methods for American foulbrood research. J Apic Res 52 (1): 1-28. https://doi.org/10.3896/IBRA.1.52.1.11

De Grandi-Hoffman G, Chen Y, 2015. Nutrition, immunity and viral infections in honey bees. Curr Opin Ins Sci 10: 170-176. https://doi.org/10.1016/j.cois.2015.05.007

Denancé N, Sánchez-Vallet A, Goffner D, Molina A, 2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4: 155. https://doi.org/10.3389/fpls.2013.00155

Dingman DW, Stahly DP, 1983. Medium promoting sporulation of Bacillus larvae and metabolism of medium components. Appl Environ Microbiol 46: 860-869. https://doi.org/10.1128/AEM.46.4.860-869.1983

Erler S, Moritz RF, 2016. Pharmacophagy and pharmacophory: mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie 47 (3): 389-411. https://doi.org/10.1007/s13592-015-0400-z

Fuselli SR, García De La Rosa SB, Eguaras MJ, Fritz R, 2008. Susceptibility of the honeybee bacterial pathogen Paenibacillus larvae to essential oils distilled from exotic and indigenous Argentinean plants. J Essent Oil Res 20 (5): 464-470. https://doi.org/10.1080/10412905.2008.9700060

Gende LB, Fernández N, Buffa F, Ruiu L, Satta A, Fritz R, Eguaras MJ, Floris I, 2010. Susceptibility of Paenibacillus larvae isolates to a tetracycline hydrochloride and cinnamon (Cinnamomum zeylanicum) essential oil mixture. Bull Insectol 63 (2): 247-250.

Giménez-Martínez P, Cugnata N, Alonso-Salces RM, Arredondo D, Antúnez K, De Castro R, Fuselli SR, 2019. Short communication: Natural molecules for the control of Paenibacillus larvae, causal agent of American foulbrood in honey bees (Apis mellifera L.). Span J Agric Res 17 (3): e05SC01. https://doi.org/10.5424/sjar/2019173-14740

Hansen H, Brødsgaard CJ, 1999. American foulbrood: a review of its biology, diagnosis and control, Bee World 80 (1): 5-23. https://doi.org/10.1080/0005772X.1999.11099415

Isidorov VA, Buczek K, Zambrowski G, Miastkowski K, Swiecicka I, 2017. In vitro study of the antimicrobial activity of European propolis against Paenibacillus larvae. Apidologie 48: 411-422. https://doi.org/10.1007/s13592-016-0485-z

Liao LH, Wu WY, Berenbaum MR, 2017. Impacts of dietary phytochemicals in the presence and absence of pesticides on longevity of honey bees (Apis mellifera). Insects 8: 1-13. https://doi.org/10.3390/insects8010022

Mao W, Schuler MA, Berenbaum MR, 2013. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc Nat Acad Sci 110 (22): 8842-8846. https://doi.org/10.1073/pnas.1303884110

Maggi M, Negri P, Plischuk S, Szawarski N, De Piano F, De Feudis L, Eguaras M, Audisio C, 2013. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet Microbiol 167 (3-4): 474-483. https://doi.org/10.1016/j.vetmic.2013.07.030

Mutinelli F, 2003. European legislation governing the authorization of veterinary medicinal products with particular reference to the use of drugs for the control of honey bee diseases. Apiacta 38: 156-168.

Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G,Varricchio P, Vedova G, Cattonaro F, Caprio E, Pennacchio F , 2012. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PloS Pathog 8 (6): e1002735. https://doi.org/10.1371/journal.ppat.1002735

Negri P, Maggi M, Ramírez L, De Feudis L, Szawarski N, Quintana S, Eguaras M, Lamattina L, 2015. Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie 46: 542-557. https://doi.org/10.1007/s13592-014-0345-7

Piccini C, D'Alessandro B, Antúnez K, Zunino P, 2002. Detection of Paenibacillus larvae subspecies larvae spores in naturally infected bee larvae and artificially contaminated honey by PCR. World J Microb Biot 18: 761-765.

Porrini MP, Audisio MC, Sabate DC, Ibarguren C, Medici SK, Sarlo EG, Garrido P, Eguaras M, 2010. Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitol Res 107: 381-388. https://doi.org/10.1007/s00436-010-1875-1

Richards DE, King KE, Ait-ali T, Harberd NP, 2001. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Ann Rev Plant Physiol Plant Mol Biol 52: 67-88. https://doi.org/10.1146/annurev.arplant.52.1.67

Richardson LL, Adler LS, Leonard AS, Andicoechea J, Regan KH, Anthony WE, Manson J S, Irwin RE, 2015. Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc Roy Soc B 282: 2014-2471. https://doi.org/10.1098/rspb.2014.2471

Sánchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N, 2016. Are bee diseases linked to pesticides? - A brief review. Env Internat 89: 7-11. https://doi.org/10.1016/j.envint.2016.01.009

Stalpers L, Kaplan EL, 2018. Edward L. Kaplan and the Kaplan-Meier survival curve. BSHM Bull: J Brit Soc Hist Mathemat 33 (2): 109-135. https://doi.org/10.1080/17498430.2018.1450055

Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, van Engelsdorp D, 2018. Drivers of colony losses. Curr Opin Insect Sci 26:142-148. https://doi.org/10.1016/j.cois.2018.02.004

Tunçel G, Nergiz C, 1993. Antimicrobial effect of some olive phenols in a laboratory medium. Lett App Microbiol 17 (6): 300-302. https://doi.org/10.1111/j.1472-765X.1993.tb01472.x

Wang Q, Cai WJ, Yu L, Ding J, Feng YQ, 2017. Comprehensive profiling of phytohormones in honey by sequential liquid-liquid extraction coupled with liquid chromatography-mass spectrometry. J Agr Food Chem 65 (3): 575-585. https://doi.org/10.1021/acs.jafc.6b04234

Wiesen LB, Bender RL, Paradis T, Larson A, Perera DN, Nikolau BJ, Olszewski NE, Carter CJ, 2015. A role for gibberellin 2-oxidase 6 and gibberellins in regulating nectar production. Molec Plant 9: 753-756. https://doi.org/10.1016/j.molp.2015.12.019

Wilson W, 1974. Residues of oxytetracycline in honey stored by Apis mellifera. Env Entomol 3: 674-676. https://doi.org/10.1093/ee/3.4.674

Published
2020-04-22
How to Cite
Szawarski, N., Giménez-Martínez, P., Mitton, G., Negri, P., Meroi Arcerito, F., Moliné, M. P., Fuselli, S., Eguaras, M., Lamattina, L., & Maggi, M. (2020). Short communication: Antimicrobial activity of indoleacetic, gibberellic and coumaric acids against Paenibacillus larvae and its toxicity against Apis mellifera. Spanish Journal of Agricultural Research, 18(1), e05SC01. https://doi.org/10.5424/sjar/2020181-15158
Section
Animal health and welfare