Bifenthrin toxicity, inheritance of resistance, cross-resistance to insecticides in Helicoverpa armigera
Abstract
Aim of study: It is first report to sort out resistance development; its mode and inheritance in Helicoverpa armigera against bifenthrin till several generations using progeny reciprocal crosses and back crosses, combined with observing the cross resistance of bifenthrin against pyrethroid, organophosphate, pyrazole and new chemistry insecticides.
Area of study: This study was conducted at agriculture fields of University of Agriculture, Faisalabad, Pakistan.
Material and methods: Bifenthrin selected strain of H. armigera was reciprocally crossed to bifenthrin susceptible strains. Resulting F1 progeny was back-crossed to resistant strain. Cross resistance of bifenthrin to six insecticides (cypermethrin, triazophos, emamectin benzoate, fipronil, lambda-cyhalothrin, profenofos) was observed.
Main results: Resistance ratio was higher in bifenthrin selected strain. h value showed that resistance was autosomal with incomplete dominance. Polygenic mode of resistance; resistance controlled by more than one gene; was found against bifenthrin in H. armigera. Cross resistance of bifenthrin selected strain against different insecticides was found higher.
Research highlights: Reciprocal crosses of F1 progeny combined with LC50 exhibits that resistance can be controlled using multiple insecticides at different intervals against H. armigera. These results can be implicated to develop an integrated pest management strategy to control H. armigera.Downloads
References
Abbas N, Khan HAA, Shad SA, 2014a. Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera:Muscidae): a potential vector for disease transmission. Parasitol Res 113: 1343-1352. https://doi.org/10.1007/s00436-014-3773-4
Abbas N, Khan HAA, Shad SA, 2014b. Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicology 23: 791-801. https://doi.org/10.1007/s10646-014-1217-7
Ahmad M, Arif MI, Ahmad Z, 1995. Monitoring insecticide resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. J Econ Entomol 88: 771-778. https://doi.org/10.1093/jee/88.4.771
Ahmad M, Arif MI, Ahmad Z, 1999. Patterns of resistance to organophosphate insecticides in field populations of Helicoverpa armigera in Pakistan. Pestic Sci 55: 626-632. https://doi.org/10.1002/(SICI)1096-9063(199906)55:6<626::AID-PS988>3.0.CO;2-L
Ahmad M, Arif MI, Ahmad Z, 2001. Resistance to carbamate insecticides in Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. Crop Prot 20: 427-432. https://doi.org/10.1016/S0261-2194(00)00168-X
Ahmad M, Arif MI, Ahmad Z, 2003. Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to new chemistries in Pakistan. Crop Prot 22: 539-544. https://doi.org/10.1016/S0261-2194(02)00219-3
Ahmad M, 2004. Potentiation/antagonism of deltamethrin and cypermethrins with organophosphate insecticides in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Pestic Biochem Physiol 80: 31-42. https://doi.org/10.1016/j.pestbp.2004.06.002
Ahmad M, Denholm I, Bromilow RH, 2006. Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. Pest Manage Sci 62: 805-810. https://doi.org/10.1002/ps.1225
Ahmad M, 2008. Potentiation between pyrethroid and organophosphate insecticides in resistant field populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. Pestic Biochem Physiol 91: 24-31. https://doi.org/10.1016/j.pestbp.2007.12.003
Alvi AHK, Sayyed AH, Naeem M, Ali M, 2012. Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan. PLoS ONE 7: e47309. https://doi.org/10.1371/journal.pone.0047309
Basit M, Saeed S, Saleem MA, Denholm I, Shah M, 2013. Detection of resistance, cross-resistance, and stability of resistance to new chemistry insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 106: 1414-1422. https://doi.org/10.1603/EC12414
Bouvier JC, Buès R, Boivin T, Boudinhon L, Beslay D, Sauphanor B, 2001. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity (Edinb) 87 (4): 456-462. https://doi.org/10.1046/j.1365-2540.2001.00928.x
Brickle DS, Turnipseed SG, Sullivan MJ, 2001. Efficacy of insecticides of different chemistries against Helicoverpa zea (Lepidoptera: Noctuidae) in transgenic Bacillus thuringiensis and conventional cotton. J Econ Entomol 94: 86-92. https://doi.org/10.1603/0022-0493-94.1.86
Coyne FP, 1951. Proper use of insecticides. Brit Med J 2: 911-912. https://doi.org/10.1136/bmj.2.4736.911-c
Finney D, 1971. A statistical treatment of the sigmoid response curve. Probit analysis, 3rd edition. Cambridge Univ Press, London, 333 pp.
Georghiou GP, 1969. Genetics of resistance to insecticides in house flies and mosquitoes. Exp Parasitol 26: 224-255. https://doi.org/10.1016/0014-4894(69)90116-7
Gorman K, Slater R, Blande J, Clarke A, Wren J, McCaffery A, Denholm I, 2010. Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66: 1186-1190. https://doi.org/10.1002/ps.1989
Gould F. Martinez-Ramirez A, Anderson A, Ferre J, Silva FJ, Moar WJ, 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci USA 89: 7986-7990. https://doi.org/10.1073/pnas.89.17.7986
Gunning RV, Easton CS, Greenup LR, Edge VE, 1984. Pyrethroid resistance in Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in Australia. J Econ Entomol 77: 1283-1287. https://doi.org/10.1093/jee/77.5.1283
Heckel DG, Bryson PK, Brown TM, 1998. Linkage analysis of insecticide resistant acetylcholin esterase in Heliothis virescens. J Heredit 89: 71-78. https://doi.org/10.1093/jhered/89.1.71
Hussain D, Saleem HM, SaleemM, Abbas M, 2014. Monitoring of insecticides resistance in field populations of Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). J Entomol Zool 2: 01-08.
Karaağaç SU, Konuş M, Büyük M, 2013. Determination of susceptibility levels of Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera) strains collected from different regions to some insecticides in Turkey. J Entomol Res Soc 15: 37-45.
Khan RA, Hamed M, Jamil FF, 2014. Determination of lethal concentration (LC50) for different insecticides against third instar larvae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Warasan Song kla Nakharin 28: 261-264.
King ABS, 1994. Heliothis/Helicoverpa armigera (Lepidoptera: Noctuidae). In: Insect pests of cotton; Matthews G & Tunstall J (eds). CAB Int, Wallingford, UK. pp: 445-446.
LeOra Software Company, 2003. PoloPlus: Probit and Logit Analysis. User's Guide, Version 2.0. LeOra Software Company, Petaluma, CA, USA. 39 pp.
Ma Z, Li J, Zhang Y, Shan C, Gao X, 2017. Inheritance mode and mechanisms of resistance to imidacloprid in the house fly Musca domestica (Diptera:Muscidae) from China. PLoS ONE 12: e0189343. https://doi.org/10.1371/journal.pone.0189343
McCaffery AR, Walker AJ, Topper CP, 1991. Insecticide resistance in the bollworm, Helicoverpa armigera from Indonesia. Pestic Sci 32: 85-90. https://doi.org/10.1002/ps.2780320109
Melander AL, 1914. Can insects become resistant to sprays? J Econ Entomol 7: 167-173. https://doi.org/10.1093/jee/7.2.167
Narayanamma VL, Gowda CLL, Sriramulu M, Ghaffar MA, Sharma HC, 2013. Nature of gene action and maternal effects for pod borer, Helicoverpa armigera resistance and grain yield in chickpea, Cicer arietinum. Am J Plant Sci 4: 26-37. https://doi.org/10.4236/ajps.2013.41005
Pereira EJ, Storer NP, Siegfried BD, 2008. Inheritance of Cry1F resistance in laboratory-selected European corn borer and its survival on transgenic corn expressing the Cry1F toxin. Bull Entomol Res 98 (6): 621-629. https://doi.org/10.1017/S0007485308005920
Pietrantonio PV, Junek TA, Parker R, Bynum E, Cronholm G, Moore G, Mott D, Sansone C, Siders K, Troxclair N, 2007. Monitoring for pyrethroid resistance in the bollworm (Helicoverpa zea) in Texas: Trends from 2003-2005. Plant Health Progress 00719-04. https://doi.org/10.1094/PHP-2007-00719-04-RV
Qayyum MA, Wakil W, Arif MJ, Sahi ST, Saeed NA, Russell DA, 2015. Multiple resistances against formulated organophosphates, pyrethroids, and newer-chemistry insecticides in populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan. J Econ Entomol 108 (1): 286-293. https://doi.org/10.1093/jee/tou037
Robertson JL, Preisler HK, 1992. Pesticide bioassays with arthropods. CRC, Boca Raton, FL, USA.
Sayyed AH, Schuler TH, Wright DJ, 2003. Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella. Pest Manag Sci 59 (11): 1197-1202. https://doi.org/10.1002/ps.754
Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ, 2004. Genetic and biochemical characterization of field evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Appl Environ Microbiol 70 (12): 7010-7017. https://doi.org/10.1128/AEM.70.12.7010-7017.2004
Sokal RR, Rohlf FJ, 1981. Biometry, 3rd ed. WH Freeman, San Francisco, CA, USA.
Stone BF, 1968. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull WHO 38: 325-326.
Sudo M, Takahashi D, Andow DA, Suzuki Y, Yamanaka T, 2018. Optimal management strategy of insecticide resistance under various insect life histories: Heterogeneous timing of selection and interpatch dispersal. Evol Appl 11: 271-283. https://doi.org/10.1111/eva.12550
Tabashnik BE, 1991. Determining the mode of inheritance of pesticide resistance with backcross experiments. J Econ Entomol 84: 703-712. https://doi.org/10.1093/jee/84.3.703
Talekar NS, Opena RT, Hanson P, 2006. Helicoverpa armigera management: A review of AVRDC's research on host plant resistance in tomato. Crop Prot 25: 461-467. https://doi.org/10.1016/j.cropro.2005.07.011
Tang JD, Gilboa S, Roush RT, Shelton AM, 1997. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J Econ Entomol 90 (3): 732-741. https://doi.org/10.1093/jee/90.3.732
Wakil W, Ashfaq M, Kwon YJ, Ghazanfar MU, 2009a. Trends in integrated pest management strategies for the control of Helicoverpa armigera (Hu¨bner) caterpillars on chickpea (Cicer arietinum L.). Entomol Res 39: 84-88. https://doi.org/10.1111/j.1748-5967.2008.00198.x
Wakil W, Ashfaq M, Ghazanfar MU, Afzal M, Riasat T, 2009b. Integrated management of Helicoverpa armigera in chickpea in rainfed areas of Punjab, Pakistan. Phytoparasitica 37: 415-420. https://doi.org/10.1007/s12600-009-0059-y
Wakil W, Ghazanfar MU, Kwon YJ, Qayyum MA, Nasir F, 2010. Distribution of Helicoverpa armigera Hübner (Lepidoptera:Noctuidae) in tomato fields and its relationship to weather factors. Entomol Res 40: 290-297. https://doi.org/10.1111/j.1748-5967.2010.00301.x
Wang Y, Wang Y, Wang Z, Bravo A, Soberón M, He K, 2016.Genetic basis of Cry1F resistance in a laboratory selected Asian corn borer strain and its cross‐resistance to other Bacillus thuringiensis toxins. PLoS ONE 11: e0161189. https://doi.org/10.1371/journal.pone.0161189
Xu MX, Zhang GX, Zhu HF, 1958. Research of cotton bollworm. Acta Oecon Entomol Sin 1 (1): 18-29.
Yang Y, LiY, Wu Y, 2013. Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. J Econ Entomol 106: 375-381. https://doi.org/10.1603/EC12286
Zalucki MP, Murray DHA, Gregg PC, Fitt GP, Twine PH, Jones C, 1994. Ecology of Helicoverpa armigera (Hübner) and H. punctigera (Wallengren) in the inland of Australia: larval sampling and host plant relationships during winter and spring. Austr J Zool 42: 329-346. https://doi.org/10.1071/ZO9940329
Zhao JZ, Collins HL, Tang JD, Cao J, Earle ED, Roush RT, Herrero S, Escriche B, Ferré J, Shelton AM, 2000. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. Appl Environ Microbiol 66: 3784-3789. https://doi.org/10.1128/AEM.66.9.3784-3789.2000
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.