Genomic differentiation among varieties of Iberian pig

  • Inés Alonso Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2). 50013 Zaragoza
  • Noelia Ibáñez-Escriche Universitat Politècnica de València, Instituto Universitario de Ciencia y Tecnología Animal. 46022 Valencia http://orcid.org/0000-0002-6221-3576
  • José L. Noguera Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genètica i Millora Animal. Av. Alcalde Rovira Roure 191, 25198 Lleida http://orcid.org/0000-0002-0492-1734
  • Joaquim Casellas Universitat Autònoma de Barcelona, Dept Ciència Animal i dels Aliments. 08193 Bellaterra (Barcelona) http://orcid.org/0000-0002-4982-3556
  • Melani Martín de Hijas-Villalba Universitat Autònoma de Barcelona, Dept Ciència Animal i dels Aliments. 08193 Bellaterra (Barcelona) http://orcid.org/0000-0002-1183-8357
  • María J. Gracia-Santana Programa de Mejora Genética “CASTUA”. INGA FOOD S.A. (Nutreco group). Av. de a Rúa, 2, 06200 Almendralejo (Badajoz)
  • Luis Varona Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2). 50013 Zaragoza http://orcid.org/0000-0001-6256-5478
Keywords: Sus scrofa, single nucleotide polymorphism, founder haplotypes, candidate genes, gene ontology

Abstract

Aim of study: The objective of this study was to identify the autosomal genomic regions associated with genetic differentiation between three commercial strains of Iberian pig.

Area of study: Extremadura (Spain).

Material and methods: We used the Porcine v2 BeadChip to genotype 349 individuals from three varieties of Iberian pig (EE, Entrepelado; RR, Retinto; and TT, Torbiscal) and their crosses. After standard filtering of the Single Nucleotide Polymorphism (SNP) markers, 47, 67, and 123 haplotypic phases from EE, RR, and TT origins were identified. The allelic frequencies of 31,180 SNP markers were used to calculate the fixation index (FST) that were averaged in sliding windows of 2Mb.

Main results: The results confirmed the greater genetic closeness of the EE and RR varieties, and we were able to identify several genomic regions with a divergence greater than expected. The genes present in those genomic regions were used to perform an Overrepresentation Enrichment Analysis (ORA) for the Gene Ontology (GO) terms for biological process. The ORA indicated that several groups of biological processes were overrepresented: a large group involving morphogenesis and development, and others associated with neurogenesis, cellular responses, or metabolic processes. These results were reinforced by the presence of some genes within the genomic regions that had the highest genomic differentiation.

Research highlights: The genomic differentiation among varieties of the Iberian pig is heterogeneous along the genome. The genomic regions with the highest differentiation contain an overrepresentation of genes related with morphogenesis and development, neurogenesis, cellular responses and metabolic processes.

Downloads

Download data is not yet available.

References

Alexander DH, Novembre J, Lange K, 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19: 1655-1664. https://doi.org/10.1101/gr.094052.109

Audetat KA, Galbraith MD, Odell AT, Lee T, Pandey A, Espinosa JM, Dowell RD, Taatjes D J, 2017. A kinase-independent role for cyclin-dependent kinase 19 in p53 response. Mol Cell Biol 37: e00626-16. https://doi.org/10.1128/MCB.00626-16

Cepica S, Ovilo, C, Masopust M, Knoll A, Fernández A, López A, Rohrer GA, Nonneman D, 2012. Four genes located on a SSC2 meat quality QTL region are associated with different meat quality traits in Landrace x Chinese-European crossbred population. Anim Genet 43: 333-336. https://doi.org/10.1111/j.1365-2052.2011.02252.x

Conaway RC, Conaway JW, 2009. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci 34: 71-77. https://doi.org/10.1016/j.tibs.2008.10.010

Correa RG, Krajewska M, Ware CF, Gerlic M, Reed JC, 2014. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling. Oncotarget 30: 1666-1682. https://doi.org/10.1158/1538-7445.AM2014-LB-74

Fabuel EC, Barragán C, Silio L, Rodríguez MC, Toro MA, 2004. Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity 93: 104-113. https://doi.org/10.1038/sj.hdy.6800488

Fontanesi L, Schiavo G, Galimberti G, Bovo S, Russo V, Gallo M, Buttazzoni L, 2017. A genome-wide association study for a proxy of intermuscular fat level in the Italian Large White breed identifies genomic regions affecting an important quality parameter for dry-cured hams. Anim Genet 48: 459-465. https://doi.org/10.1111/age.12542

Hérault Y, Hraba-Renevey S, van der Hoeven F, Duboule D, 1997. Function of the Evx-2 gene in the morphogenesis of vertebrate limbs. EMBO J 15: 6727-6738. https://doi.org/10.1002/j.1460-2075.1996.tb01062.x

Herrero-Medrano JM, Megens HJ, Groenen MAM, Ramis G, Bosse M, Pérez-Enciso M, Crooijmans RPMA, 2013. Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet 14: 106. https://doi.org/10.1186/1471-2156-14-106

Izu Y, Sun M, Zwolanek D, Veit G, Williams V, Cha B, Jepsen KJ, Koch M, Birk DE, 2011. Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol 193: 1115-1130. https://doi.org/10.1083/jcb.201010010

Jeyabal PVS, Rubio V, Chen H, Zhang J, Shi ZZ, 2014. Regulation of cell-matrix adhesion by OLA1, the Obg-like ATPase 1. Biochem Biophys Res Commun 444: 568-574. https://doi.org/10.1016/j.bbrc.2014.01.099

Kawakami Y, Rodríguez-Esteban C, Matsui T, Rodríguez-León J, Kato S, Izpisúa-Belmonte JC, 2004. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development 131: 4763-4774. https://doi.org/10.1242/dev.01331

Laval G, Iannucelli N, Legault C, Milan D, Groenen MAM, Giuffra E, Andersson L, Nissen PH, Jorgensen CB, Beeckmann P et al., 2000. Genetic diversity of eleven European pig breeds. Genet Sel Evol 32: 187-203. https://doi.org/10.1186/1297-9686-32-2-187

Lim HH, Michael GJ, Smith P, Lim L, Hall C, 1992. Developmental regulation and neuronal expression of the mRNA of rat n-chimaerin, a p21rac GAP:cDNA sequence. Biochem J 287: 415-422. https://doi.org/10.1042/bj2870415

Marchand M, Schroeder IS, Markossian S, Skoudy A, Nègre D, Cosset FL, Real P, Kaiser C, Wobus AM, Savarier P, 2009. Mouse ES cells over-expressing the transcription factor NeuroD1 show increased differentiation towards endocrine lineages and insulin-expressing cells. Int J Dev Biol 53: 569-578. https://doi.org/10.1387/ijdb.092856mm

Martínez AM, Delgado JV, Rodero A, Vega-Pla JL, 2000. Genetic structure of the Iberian pig breed using microsatellites. Anim Genet 31: 295-301. https://doi.org/10.1046/j.1365-2052.2000.00645.x

Myers P, 2008. Hox genes in development: the HOX code. Nature Education 1: 2.

Onteru SK, Fan B, Nikkilä MT, Garrick DJ, Stalder KJ, Rothschild MF, 2011. Whole-genome association analyses for lifetime reproductive traits in pig. J Anim Sci 89: 988-995. https://doi.org/10.2527/jas.2010-3236

Onteru SK, Fan B, Du ZQ, Garrick DJ. Stalder KJ, Rothschild MF, 2012. A whole-genome association study for pig reproductive traits. Anim Genet 43: 18-26. https://doi.org/10.1111/j.1365-2052.2011.02213.x

Pallares LF, Carbonetto P, Gopalakrishnan S, Parker CC, Ackert-Bicknell CL, Palmer AA, Tautz D, 2015. Mapping of craniofacial traits in outbred mice identifies major developmental genes involved in shape determination. Plos Genet 11: e1005607. https://doi.org/10.1371/journal.pgen.1005607

Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, Schwerin M, Wimmers K, 2015. Integrated genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep 5: 16264. https://doi.org/10.1038/srep16264

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC, 2007. PLINK: a tool set for whole-genome association and population-based linkage analysis. Am J Human Genet 81: 559-575. https://doi.org/10.1086/519795

Qanbari S, Simianer H, 2014. Mapping signatures of positive selection in the genome of livestock. Livest Sci 166: 133-143. https://doi.org/10.1016/j.livsci.2014.05.003

R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Rohrer GA, Nonneman DJ, Wiedmann RT, Schneider JF, 2015. A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL. BMC Genet 16: 129. https://doi.org/10.1186/s12863-015-0286-9

Sargolzaei M, Chesnais JP, Schenkel FS, 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genom 15: 478. https://doi.org/10.1186/1471-2164-15-478

Schneider JF, Miles JR, Brown-Brandl TM, Nienaber JA, Rohrer GA, Vallet JL, 2015. Genomewide association analysis for average birth interval and stillbirth in swine. J Anim Sci 93: 529-540. https://doi.org/10.2527/jas.2014-7899

Sherwood NM, Krueckl SL, McRory JE, 2000. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21: 619-670. https://doi.org/10.1210/edrv.21.6.0414

Silió L, Barragan C, Fernández AI, García-Casco J, Rodríguez MC, 2016. Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. J Anim Breed Genet 133: 145-154. https://doi.org/10.1111/jbg.12168

Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, et al., 2015. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucl Acids Res 43: W589-W598. https://doi.org/10.1093/nar/gkv350

Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E, Trowsdale J, Montaner LJ, Doms RW, Weissman D, Coleman N, Lee B., 2002. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71: 445-457.

Sterky FH, Trotter JH, Lee S, Recktenwald CV, Du X, Zhou B, Zhou P, Schwenk J, Fakler B, Südhof TC, 2017. Carbonic anhydrase-related protein CA10 is an evolutionary conserved pan-neurexin ligand. Proc Nac Acad Sci 114: E1253-E1262. https://doi.org/10.1073/pnas.1621321114

Vale-Cruz DS, Ma Q, Syme J, LuValle PA, 2008. Activating transcription factor-2 affects skeletal growth by modulating pRb gene expression. Mech Dev 125: 843-856. https://doi.org/10.1016/j.mod.2008.06.010

Velardo LL, Silva FF, Lopes MS, Madsen O, Bastiaansen JW, Knol EF, Kelly M, Varona L, Lopes PS, Guimaräes SEF. 2016. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Genet Sel Evol 48: 9. https://doi.org/10.1186/s12711-016-0189-x

Ventanas S, Ventanas J, Ruiz J, Estévez M, 2005. Iberian pigs for the development of high-quality cured products. In: Recent Res Devel Agricultural & Food Chem; SG Pandalai (Ed.) 6: 27-53.

Wang J, Vasaikar S, Shi Z, Greer M, Zhang B, 2017. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucl Acids Res 45: W130-W137. https://doi.org/10.1093/nar/gkx356

Weir WS, Cockerham CC, 1984. Estimating F-Statistics for the analysis of population structure. Evolution 38: 1358-1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x

Wright S, 1951. The genetical structure of populations. Ann Eugenics 15: 323-354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x

Wu B, Gong J, Yuan S, Zhang Y, Wei T, 2013. Patterns of evolutionary selection pressure in the immune signaling protein TRAF3IP2 in mammals. Gene 531: 403-410. https://doi.org/10.1016/j.gene.2013.08.074

Yagi T, Shigetani Y, Furuta Y, Nada S, Okado N, Ikawa Y, Aizawa S, 1994. Fyn expression during early neurogenesis in mouse embryos. Oncogene 9: 2433-2440.

Yong Y, Meng Y, Ding H, Fan Z, Tang Y, Zhou C, Luo J, Ke ZJ, 2015. PACT/RAX regulates the migration of cerebellar granule neurons in the developing cerebellum. Sci Rep 5: 7961. https://doi.org/10.1038/srep07961

Zhang F, Zhang Z, Yan X, Chen H, Zhang W, Hong Y, Huang L, 2014. Genome-wide association studies for hematological traits in Chinese Sutai pigs. BMC Genet 15:41. https://doi.org/10.1186/1471-2156-15-41

Published
2020-04-22
How to Cite
Alonso, I., Ibáñez-Escriche, N., Noguera, J. L., Casellas, J., Martín de Hijas-Villalba, M., Gracia-Santana, M. J., & Varona, L. (2020). Genomic differentiation among varieties of Iberian pig. Spanish Journal of Agricultural Research, 18(1), e0401. https://doi.org/10.5424/sjar/2020181-15411
Section
Animal breeding, genetics and reproduction