Genetic diversity among Spanish pea (Pisum sativum L.) landraces, pea cultivars and the World Pisum sp. core collection assessed by retrotransposon-based insertion polymorphisms (RBIPs)

  • A. Martin-Sanz Instituto Tecnológico Agrario de Castilla y León. Valladolid
  • C. Caminero Instituto Tecnológico Agrario de Castilla y León. Valladolid
  • R. Jing School of Biological Sciences. University of East Anglia.
  • A. J. Flavell Division of Plant Sciences. University of Dundee at SCRI.
  • M. Perez de la Vega Área de Genética. Universidad de León.
Keywords: genetic resources, Pisum abyssinicum, Pisum fulvum, Pisum sativum, RBIP markers


A total of 122 accessions of different wild and cultivated Pisum sp. were analysed using retrotransposon-based insertion polymorphisms (RBIP) markers. The Pisum materials included wild and cultivated (landraces and cultivars) materials from the World core collection of the John Innes Centre (JI) representing all generally recognized Pisum taxa, landraces materials from the Spanish core collection, and commercial pea cultivars largely sown in Spain. The overall polymorphism detected by RBIP marker was high and all accessions, except two pairs, could be distinguished by their marker pattern. Principal component and phylogenetic analyses clearly discriminated P. fulvum and P. abyssinicum samples from both each other and P. sativum, while P. elatius and P. humile samples were scattered among the other taxa clusters, supporting the existence of three well defined taxa in the genus Pisum (P. abyssinicum, P. fulvum and P. sativum). These results also suggest that the Spanish pea core collection of landraces maintains a relatively high variability which is only partially represented in cultivars generally sown in Spain. Thus, Spanish landraces are still a source of genetic variability for breeding new pea cultivars.


Download data is not yet available.


Agarwal M., Shrivastava N., Padh H., 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27, 617–631.

Allard R.W., 1999. Principles of Plant Breeding (2nd Edition). John Wiley & Sons. New York.

Baranger A., Aubert G., Arnau G., Lain A.L., Deniot G., Potier J., Weinachter C., Lejeune-Hénaut I., Lallemand J., Burstin J., 2004. Genetic diversity within Pisum sativum using protein and PCR-based markers. Theor Appl Genet 108, 1309–1321.

BAUCOM R.S., ESTILL J.C., CHAPARRO C., UPSHAW N., JOGI A., DERAGON J.M., WESTERMAN R.P., SAN-MIGUEL P.J., BENNETZEN J.L., 2009. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLOS Genet 5, 732 (e1000732).

Caminero C., Campo L., González R., Rodríguez M., García A., Ribas M.J., Laguna R., Ramos A., 2001. Advances in the formation of the Spanish pea (Pisum sativum L.) core collection. Proc 4th European Conference on Grain Legumes, Cracow, pp. 10-11.

Chakraborty R., Jin L., 1993. Determination of relatedness between individuals using DNA fingerprinting. Hum Biol 65, 875–895.

ELLIS T.H.N., POYSER S.J., KNOX M.R., VERSHININ A.V., AMBROSE M.J., 1998. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260, 9-19.

Elvira-Recuenco M., Taylor J.D., 2001. Resistance to bacterial blight (Pseudomonas syringae pv. pisi) in Spanish pea (Pisum sativum) landraces. Euphytica 118, 305-311.

Flavell A.J., Dunbar E., Anderson R., Pearce S.R., Hartley R., Kumar A., 1992. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20, 3639-3644.

Flavell A.J., Knox M.R., Pearce S.R., Ellis T.H.N., 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16, 643–650.

Hawkins J.S., Proulx S.R., Rapp R.A., Wendel J.F., 2009. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA 106, 17811-17816.

Hill P., Burford D., Martin D.M.A., Flavell A.J., 2005. Retrotransposon populations of Vicia species with varying genome size. Mol Gen Genomics 273, 371–381.

Jing R., Knox M.R., Lee J.M., Vershinin A.V., Ambrose M., Ellis T.H.N., Flavell A.J., 2005. Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171, 741–752.

Jing R., Johnson R., Seres A., Kiss G., Ambrose M.J., Knox M.R., Ellis T.H.N., Flavell A.J., 2007. Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177, 2263-2275.

Jing R., Vershinin A., Grzebyta J., Shaw P., Smykal P., Marshall D., Ambrose M.J., Ellis T.H.N., Flavell A.J., 2010. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10, 44.

Kosterin O.E., Bogdanova V.S., 2008. Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Genet Resour Crop Evol 55, 735-755.

Kosterin O.E., Zaytseva O.O., Bogdanova V.S., Ambrose M.J., 2010. New data on three molecular markers from different cellular genomes in Mediterraneam accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatius (Bieb.) Schmalh. Genet Resour Crop Evol 57, 733-739.

Kubis S.E., Heslop-Harrison J.S., Desel C., Schmidt T., 1998. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol 36, 821–831.

Lázaro A., Aguinagalde I., 2006. Genetic variation among Spanish pea landraces revealed by Inter Simple Sequence Repeat (ISSR) markers: its application to establish a core collection. J Agric Sci 144, 53-61.

Macas J., Koblizkova A., Navratilova A., Neumann P., 2009. Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 448, 198-206.

MARTÍN-SANZ A., 2008. Bacteriosis en guisante (Pisum sativum L.): Situación en Castilla y León, caracterización de los patógenos implicados y búsqueda de fuentes de resistencia. Ph D. Dissertation, Universidad de León. [In Spanish].

Martín-Sanz A., Gilsanz-Gonzalez S., Syed N.H., Suso M.J., Caminero C., Flavell A.J., 2007. Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics 278, 433–441

MAXTED N., AMBROSE M., 2001. Peas (Pisum L.). In: Plant genetic resources of legumes in the Mediterranean (Maxted N., Bennett S.J., eds). Kluwer Academic Publishers, Dordrech. pp. 181-190.

Pearce S.R., Harrison G., Li D., Heslop-Harrison J.S., Kumar A., Flavell A.J., 1996. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250, 305-315.

Pérez De La Vega M., García P., Sáenz De Miera L.E., Vences F.J., 1994. Genetic diversity in inbreeding species. Proc Eucarpia Genetic Resource Section Meeting. Balfourier F, Perretant MR (eds.). Clermont-Ferrand. pp 83-90.

RAMOS A., 2003. Estudio de la variabilidad en la colección de variedades locales espa-olas de guisante (Pisum sativum L.). Ph D Dissertation, Universidad Politécnica de Madrid. [In Spanish].

Schmit J., Taylor J.D., Roberts S.J., 1993. Sources of resistance to pea bacterial bligth (Pseudomonas syringae pv. pisi) in pea germplasm. Proc 6th Internacional Congress of Plant Pathology, Montreal. p. 180.

Smýkal P., 2006. Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. J Appl Genetic 47, 221–230.

Smýkal P., Horáèek J., Dostálová R., Hýbl M., 2008a. Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet 49, 155–166.

Smýkal P., Hýbl M., Corander J., Jarkovský J.,·FLAVELL A.J., GRIGA M., 2008b. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117, 413–424.

Syed N.H., Flavell A.J., 2006. Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1, 2746-2752.

TAM S.M., LEFEBVRE V., PALLOIX A., SAGE-PALLOIX A.M., MHIRI C., GRANDBASTIEN M.A., 2009. LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers. Theor Appl Genet 119, 973.989.

Vershinin A.V., Allnutt T.R., Knox M.R., Ambrose M.J., Ellis T.H.N., 2003. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication. Mol Biol Evol 20, 2067–2075.

Waugh R., Mclean K., Flavell A.J., Pearce S.R., Kumar A., Thomas B.T., Powell W., 1997. Genetic distribution of BARE-1 retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253, 687-694.

Zong X.,·REDDEN R.J., LIU Q., WANG S., GUAN J., LIU J., XU Y., LIU X., GU·J., YAN L., ADES P., FORD R., 2009. Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor Appl Genet 118, 193-204.

How to Cite
Martin-Sanz, A., Caminero, C., Jing, R., Flavell, A. J., & Perez de la Vega, M. (1). Genetic diversity among Spanish pea (Pisum sativum L.) landraces, pea cultivars and the World Pisum sp. core collection assessed by retrotransposon-based insertion polymorphisms (RBIPs). Spanish Journal of Agricultural Research, 9(1), 166-178.
Plant breeding, genetics and genetic resources