Short communication: Sodium chloride levels in pacu (Piaractus mesopotamicus) fingerling feeds free of fish meal

  • Natalia C. Aguiar Universidade Federal do Paraná, Rua Pioneiro 2153, Jd Dallas, Palotina, 85950-000 Paraná
  • Izabel V. Zadinelo Universidade Federal do Paraná, Rua Pioneiro 2153, Jd Dallas, Palotina, 85950-000 Paraná, Brazil https://orcid.org/0000-0002-4025-174X
  • Patrícia S. Dias Universidade Federal do ParanáUniversidade Federal do Paraná, Rua Pioneiro 2153, Jd Dallas, Palotina, 85950-000 Paraná
  • Marlise T. Mauerwerk Universidade Federal do Paraná, Rua Pioneiro 2153, Jd Dallas, Palotina, 85950-000 Paraná https://orcid.org/0000-0002-6042-8987
  • Robie A. Bombardelli Universidade Estadual do Oeste do Paraná, R. da Faculdade 645 - Jardim La Salle, Toledo, 85903-000 Paraná https://orcid.org/0000-0002-5701-1881
  • Fábio Meurer Universidade Federal do Paraná, Rua Pioneiro 2153, Jd Dallas, Palotina, 85950-000 Paraná https://orcid.org/0000-0002-8389-9888
Keywords: salt, macrominerals, round fish, zootechnical performance

Abstract

Aim of study: To evaluate the effects of increasing NaCl levels on the zootechnical performance of pacu fingerling.

Area of study: The experiments were conducted at the Aquatic Organism Production and Reproduction Systems Laboratory belonging to the Federal University of Paraná (UFPR), in the Palotina Sector, Paraná Estate, Brazil.

Material and methods: Seven hundred and fifty fingerlings with an average weight of 3.41 ± 0.09 g were distributed in circular boxes, in a completely randomized design consisting of six treatments and five replications. Treatments comprised soybean- and maize-based diets containing increasing levels of NaCl (0.00, 0.25, 0.50, 0.75, 1.00 and 1.25%). The experiments were conducted for 50 days. At the end of the experimental period the fish were fasted for 24 hours, anesthetized, weighed and measured to calculate zootechnical performances. Performance data were subjected to an analysis of variance followed by Tukey’s test when significant differences were found between the means (p<0.05).

Main results: The influence (p<0.05) of dietary NaCl levels on final weight, feed intake, apparent feed conversion, specific growth rate, average weight gain, clean trunk production, head carcass yield, headless carcass yield, feed intake and survival was assessed. The results indicate that non-salt treated fingerlings along with the 0.25% salt inclusion treatment led to better feed use, as evidenced by apparent feed conversions of 1.64 and 2.02, respectively.

Research highlights: The inclusion of NaCl in pacu fingerling soybean and maize-based diets is not recommended.

Downloads

Download data is not yet available.

References

Aguiar NC, Dias PS, Balen RE, Bombardelli RA, Colpini LM, Meurer F, 2020. Dietary sodium chloride effect in Nile tilapia fed with fish meal-free diets. Span J Agric Res 18 (3): e0610. https://doi.org/10.5424/sjar/2020183-15753

Appelbaum S, Arockiaraj AJ, 2009. Salt incorporated diets for enhancing growth performance and survival in gilthead sea bream Sparus aurata L. juveniles reared in low saline brackish water. Scientia Marina 73: 213-217. https://doi.org/10.3989/scimar.2009.73s1213

Arockiaraj AJ, Appelbaum S, 2010. Dietary salt requirement for barramundi Asian seabass (Lates calcarifer, Bloch 1970) fingerlings reared in freshwater recirculation units. Isr J Aquacult-Bamidgeh 62: 245-250.

Cnaani A, Barki A, Slosman T, Scharcanski A, Milstein A, Harpaz S, 2010. Dietary salt supplement increases growth rate in freshwater cultured tilapia hybrids. Aquacult Res 41: 1545-1548. https://doi.org/10.1111/j.1365-2109.2009.02438.x

Eroldogan OT, Kumlu M, Kir M, Kiris GA, 2005. Enhancement of growth and feed utilization of the European sea bass (Dicentrarchus labrax) fed supplementary dietary salt in freshwater. Aquacult Res 36: 361-369. https://doi.org/10.1111/j.1365-2109.2004.01211.x

Evans DH, Permarini PM, Choe KP, 2005. The multifunctional fish gill: dominat site of gas exchange, osmorregulatio, acid-base regulation and excretion of nitrogenous waste. Physiol Rev 85: 97-177. https://doi.org/10.1152/physrev.00050.2003

Fontaìnhas-Fernandes A, Gomes E, Reis-Henriques MA, Coimbra J, 2000a. Effect of dietary sodium chloride acclimation on growth and plasma thyroid hormones in tilapia Oreochromis niloticus (L.) in relation to sex. Aquacult Res 31: 507-517. https://doi.org/10.1046/j.1365-2109.2000.00472.x

Fontaìnhas-Fernandes A, Gomes E, Reis-Henriques MA, Coimbra J, 2000b. Effect of dietary sodium chloride on some osmoregulatory parameters of the teleost, Oreochromis niloticus, after transfer from freshwater to seawater. Fish Physiol Bioche 23(4): 307-316.

Gangadhar B, Keshavanath P, 2012. Growth performance of rohu, Labeo rohita (Hamilton) in tanks provided with different levels of sugarcane bagasse as periphyton substrate. Ind J Fish 59(3): 77-82.

Gangadhara B, Nandeesha MC, Keshavanath P, Varghese TJ, 2004. Growth response and biochemical composition of rohu, Labeo rohita, fed salt-incorporated diets. J Appl Aquac 16: 169-176. https://doi.org/10.1300/J028v16n01_15

Garcia LO, Becker AG, Copatti CE, Baldisserotto B, 2007. Salt in the food and water a supportive therapy for Ichthyophthirius multifiliis infestation on silver catfish, Rhamdia quelen, juveniles. J World Aquac Soc 38(1) 1-11. https://doi.org/10.1111/j.1749-7345.2006.00068.x

Godoy MP, 1975. Peixes do Brasil: subordem Characoidei. Bacia do rio Mogi-Guaçu. Franciscana, Piracicaba, 2: 217-397.

Hallali E, Kokou F, Chourasia TK, Nitzan T, Con P, Harpaz S, et al., 2018. Dietary salt levels affect digestibility, intestinal gene expression, and the microbiome, in Nile tilapia (Oreochromis niloticus). Plos One 13(8): e0202351. https://doi.org/10.1371/journal.pone.0202351

Harpaz S, Hakima Y, Slosmana T, Eroldogan OT, 2005. Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush border enzyme activity. Aquacult 248: 325-335. https://doi.org/10.1016/j.aquaculture.2005.04.033

Hussain D, 2018. Effect of aflatoxins in aquaculture: Use of bentonite clays as promising remedy. Turkish J Fish Aquat Sci 18: 1009-1016. https://doi.org/10.4194/1303-2712-v18_8_10

Hussain D, Mateen A, Gatlin DM, 2017. Alleviation of aflatoxin B1 (AFB1) toxicity by calcium bentonite clay: Efects on growth performance, condition indices and bioaccumulation of AFB1 residues in Nile tilapia (Oreochromis niloticus). Aquacult 475: 8-15. https://doi.org/10.1016/j.aquaculture.2017.04.003

Jomori RK, Carneiro DJ, Martins MIEG, Portella MC, 2005. Economic evaluation of Piaractus mesopotamicus juvenile production in different rearing systems. Aquacult 243: 175-183. https://doi.org/10.1016/j.aquaculture.2004.09.034

Lall SP, 2002. The minerals. In: Fish nutrition, 3rd ed.; Halver JE & Hardy RW (eds.), pp: 259-308. Academic Press, San Diego, CA, USA. https://doi.org/10.1016/B978-012319652-1/50006-9

Marchioro MI, Baldisserotto B, 1999. Sobrevivência de alevinos de jundiá (Rhamdia quelen Quoy & Gaimard, 1824) à variação de salinidade da água. Ciênc Rur 29(2): 315-318. https://doi.org/10.1590/S0103-84781999000200021

Maynard LA, Loosli JK, 1974. Nutrição animal, 3rd ed. Livraria Freitas Bastos S.A, Rio de Janeiro, pp: 158-160.

Motlagh SP, Zarejabad AM, Ahmadifar E, 2012. Effects of different dietary salt levels on growth and salinity tolerance of angel fish (Pterophyllum scalare). J Appl Aquac 24(1): 1-7. https://doi.org/10.1080/10454438.2011.626335

Mzengereza K, Kang'ombe J, 2015. Effect of dietary salt (sodium chloride) supplementation on growth, survival and feed utilization of Oreochromis shiranus (Trewavas, 1941). J Aquac Res Dev 6: 388.

Nandeesha MC, Gangadhar B, Keshavanath P, Varghese TJ, 2000. Effect of dietary sodium chloride supplementation on growth, biochemical composition and digestive enzyme activity of young Cyprinus carpio (Linn.) and Cirrhinus mrigala (Ham.). J Aquacult Trop 15(2): 135-144.

Neves M, Balen RE, Meurer F, Baumgartner G, Braga AF, 2015. Exigência de proteína digestível para alevinos de pacu (Piaractus mesopotamicus) alimentados com ração à base de farelo de soja. Agr 8: 204-209.

NRC, 2011. Nutrient requirements of fish and shrimp. National Research Council, Washington DC., pp: 171-172.

Rostagno HS, Albino LFT, Donzele JL, et al., 2011. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. Universidade Federal de Viçosa, Viçosa, MG, Brazil.

Sá MVC, 2012. Limnocultura: limnologia para aquicultura. Edições UFC, Fortaleza, 218 pp.

Saint-Paul U, 1986. Potential for aquaculture of South American fishes: A review. Aquacult 54: 205-240. https://doi.org/10.1016/0044-8486(86)90329-7

Statsoft Inc, 2005. Statistica Data Analysis Software System, vers 7.0. http://www.statsoft.com.

Sugiura SH, Dong FM, Rathbone CK, et al. 1998. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquacult 159: 177-202. https://doi.org/10.1016/S0044-8486(97)00177-4

Published
2021-12-21
How to Cite
Aguiar, N. C., Zadinelo, I. V., Dias, P. S., Mauerwerk, M. T., Bombardelli, R. A., & Meurer, F. (2021). Short communication: Sodium chloride levels in pacu (Piaractus mesopotamicus) fingerling feeds free of fish meal. Spanish Journal of Agricultural Research, 20(1), e06SC01. https://doi.org/10.5424/sjar/2022201-17111
Section
Animal production