Effect of dietary vegetable lipid sources on the growth performance and whole-body fatty acid profile of giant trahira, Hoplias lacerdae

Keywords: carnivorous fish, essential fatty acids, Neotropical fish, vegetable oils, Aquaculture

Abstract

Aim of study: To evaluate which vegetable lipid source promotes better growth performance, whole-body composition and fatty acid profile for juvenile giant trahira (Hoplias lacerdae).

Area of study: Fish Nutrition Laboratory of the University of Viçosa (UFV), MG, Brazil.

Material and methods: A 50-day feed trial with four treatments, consisting of diets containing different vegetable lipid sources (canola, linseed, soybean or olive oil), was conducted with juveniles of 4.76 ± 0.50 cm and 1.97 ± 0.20 g.

Main results: There were no effects of vegetable lipid sources on growth performance. Fish fed diets containing canola oil had higher body lipid deposition and fish fed with linseed oil had lower body lipid content (up to -19.29%) than fish from other treatments. Fish fed canola oil showed lower proportions of saturated fatty acids (up to -11.27%) in the body. Fish fed diets containing soybean oil and linseed oil showed the highest percentages of linoleic and α-linolenic fatty acids, respectively. Fish fed diets containing soybean and linseed oils also had higher total polyunsaturated fatty acids content (up to +81.14%). Fish fed diets containing linseed oil had lower content of monounsaturated fatty acids (up to -58.59%) and higher content of docosahexaenoic (up to +175%) and eicosapentaenoic (not detectable to detectable) acids.

Research highlights: Juveniles of giant thraira can alter the whole-body fatty acid profile due to their ability to desaturate and elongate the n3 and n6 series fatty acids. Linseed oil was identified as lipid source for this fish species.

Downloads

Download data is not yet available.

References

Abbasi A, Oujifard A, Torfi MM, Habibi H, Nafisi BM, 2020. Dietary simultaneous replacement of fish meal and fish oil with blends of plant proteins and vegetable oils in yellowfin seabream (Acanthopagrus latus) fry: Growth, digestive enzymes, antioxidant status and skin mucosal immunity. Aquac Nutr 26(4): 1131-1142. https://doi.org/10.1111/anu.13070

Alhazzaa R, Nichols PD, Carter CG, 2018. Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Rev Aquacult 11(4): 1195-1218. https://doi.org/10.1111/raq.12287

AOAC, 2000. Official methods of analysis, 17th edn. Assoc Offic Anal Chem Int, Gaithersburg, MD, USA.

Arslan M, Rinchard J, Dabrowski K, Portella MC, 2008. Effects of different dietary lipid sources on the survival, growth, and fatty acid composition of south american catfish, Pseudoplatystoma fasciatum, surubim, juveniles. J World Aquac Soc 39: 51-61. https://doi.org/10.1111/j.1749-7345.2007.00133.x

Asdari R, Aliyu-Paiko R, Hashim R, Ramachandran S, 2011. Effects of different dietary lipid sources in the diet for Pangasius hypophythalmus (Sauvage, 1878) juvenile on growth performance, nutrient utilization, body indices and muscle and liver fatty acid composition. Aquac Nutr 17: 44-53. https://doi.org/10.1111/j.1365-2095.2009.00705.x

Balfry SK, Higgs DA, 2001. Influence of dietary lipid composition on the immune system and disease resistance of finfish. In: Nutrition and fish health; Lim C & Webster Cd (Eds), The Haworth Press Inc., NY, pp: 213-234.

Bell JG, Mcghee F, Campbell PJ, Sargent JR, 2003. Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil "wash out". Aquac 218: 515-528. https://doi.org/10.1016/S0044-8486(02)00462-3

Castro LFC, Tocher DR, Monroig O, 2016a. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res 62: 25-40. https://doi.org/10.1016/j.plipres.2016.01.001

Castro LFC, Corraze G, Diógenes AF, Larroquet L, Panserat S, Oliva-Teles A, 2016b. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles. Br J Nutr 116(1): 19-34. https://doi.org/10.1017/S000711451600163X

Chen Y, Sun Z, Liang Z, Xie Y, Su J, Luo Q, Wang A, 2020. Effects of dietary fish oil replacement by soybean oil and L-carnitine supplementation on growth performance, fatty acid composition, lipid metabolism and liver health of juvenile largemouth bass, Micropterus salmoides. Aquac 516: 734596. https://doi.org/10.1016/j.aquaculture.2019.734596

Cyrino JEP, Portz L, Martino YR, 2000. Retenção de proteína e energia em juvenis de "Black Bass" Micropterus salmoides. Sci Agric 57: 609-616. https://doi.org/10.1590/S0103-90162000000400003

Emery JA, Hermon K, Hamid NK, Donald JA, Turchini GM, 2013. Δ-6 desaturase substrate competition: dietary linoleic acid (18∶ 2n-6) has only trivial effects on α-linolenic acid (18∶3n-3) bioconversion in the teleost rainbow trout. PLoS One 8(2): e57463. https://doi.org/10.1371/journal.pone.0057463

Faria MDR, Cavalcante-Neto A, Allaman IB, Gomes ADO, Moreira RG, Hallerman EM, Hilsdorf AWS, 2019. The potential of Hoplias malabaricus (Characiformes: Erythrinidae), a Neotropical carnivore, for aquaculture. Aquac Fish 4(3): 89-97. https://doi.org/10.1016/j.aaf.2019.01.002

Folch J, Lees M, Stanley GS, 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1): 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5

Fountoulaki EVA, Hurtado RGK, Karacostas INI, Alexis MN, 2009. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile: Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures. Aquac 289(3-4): 317-326. https://doi.org/10.1016/j.aquaculture.2009.01.023

Francis DS, Turchini GM, Jones PL, DE Silva SS, 2006. Effects of dietary oil source on growth and fillet fatty acid composition of Murray cod, Maccullochella peelii peelii. Aquac 253: 547-556. https://doi.org/10.1016/j.aquaculture.2005.08.008

Francis DS, Turchini GM, Jones PL, De Silva SS, 2007. Growth performance, feed efficiency and fatty acid composition of juvenile Murray Cod, Maccullochella peelii peelii, fed graded levels of canola and linseed oil. Aquac Nutr 13: 335-350. https://doi.org/10.1111/j.1365-2095.2007.00480.x

Glencross BD, 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquac 1: 71-124. https://doi.org/10.1111/j.1753-5131.2009.01006.x

Gomes AD, Tolussi CE, Boëchat IG, Pompêo ML, Cortez MP, Honji RM, Moreira RG, 2016. Fatty acid composition of tropical fish depends on reservoir trophic status and fish feeding habit. Lipids 51(10): 1193-1206. https://doi.org/10.1007/s11745-016-4196-z

Graeff A, Tomazelli A, 2007. Fontes e níveis de óleo na alimentação da carpa comum (Cyprinus capio, L.) na fase de crescimento. Ciênc Agrotec 31: 1545-1541. https://doi.org/10.1590/S1413-70542007000500041

Hatlen B, Berge GM, Odom JM, Mundheim H, Ruyter B, 2012. Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon, Salmo salar L., fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture 364: 39-47. https://doi.org/10.1016/j.aquaculture.2012.07.005

Herzberg GR, Skinner C, Levy R, 1996. Eicosapentaenoic acid is oxidized more rapidly than docosahexaenoic acid by muscle and liver. Nutr Res 16(4): 639-644. https://doi.org/10.1016/0271-5317(96)00041-3

IUPAC, 1987. Standard methods for the analysis of oils, fats and derivatives, 7th ed. Paquot C, Hautfenne A (Eds). Blackwell Sci Publ, Oxford, London, 151 pp.

Kasai RYD, Salaro AL, Zuanon JAS, Sabarense CM, Tavares MM, Campelo DAV, 2011. Feed training of giant trahira fingerlings fed diets containing different levels of vitamin C. Rev Bras Zootecn 40: 463-468. https://doi.org/10.1590/S1516-35982011000300001

Kostik V, Memeti S, Bauer B, 2013. Fatty acid composition of edible oils and fats. J Hyg Eng Des 4: 112-116.

Loro VL, Luz RK, 2020. Aspectos da biologia, reprodução e manejo de Hoplias malabaricus e Hoplias lacerdae. In: Espécies nativas para a piscicultura no Brasil, 3rd ed; Baldisserotto B (ed). Editora UFSM, Santa Maria, Brazil, pp: 229-244.

Losekann ME, Neto JR, Emanuelle T, Pedron FA, Lazzari R, Bergamin GT, et al., 2008. Alimentação do jundiá com dietas contendo óleos de arroz, canola ou soja. Cienc Rural 38: 225-230. https://doi.org/10.1590/S0103-84782008000100036

Luz RK, Portella MC, 2005. Effects of feeding frequency on larval rearing of trairao (Hoplias lacerdae). Braz J Anim Sci 34(5): 1442-1448. https://doi.org/10.1590/S1516-35982005000500003

Luz RK, Salaro AL, Souto EF, Reis A, Sakabe R, 2001. Desenvolvimento de alevinos de trairão alimentados com dietas artificiais em tanques de cultivo. Braz J Anim Sci 30: 1159-1163. https://doi.org/10.1590/S1516-35982001000500004

Luz RK, Salaro AL, Souto EF, Okano WY, Lima RR, 2002. Training strategies trairao fingerlings (Hoplias cf. lacerdae). Braz J Anim Sci 31: 1881-1885. https://doi.org/10.1590/S1516-35982002000800002

Madsen L, Frøyland L, Dyrøy E, Helland K, Berge RK, 1998. Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation. J Lipid Res 39(3): 583-593. https://doi.org/10.1016/S0022-2275(20)33296-X

Martino RC, Cyrino JEP, Portz L, Trugo LC, 2002. Performance and fatty acid composition of surubim (Pseudoplatystoma coruscans) fed diets with animal and plant lipids. Aquac 209: 235-248. https://doi.org/10.1016/S0044-8486(01)00847-X

Matsushita M, Visentainer JV, Souza NE, Hayashi C, Santos Júnior OO, Silva ABM, Furuya WM, 2006. Centesimal composition and fatty acids profile of freshwater prawn. Braz J Anim Sci 34: 1577-1580.

Mourente G, Good JE, Bell JG, 2005. Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E2 and F2, immune function and effectiveness of a fish oil finishing diet. Aquac Nutr 11: 25-40. https://doi.org/10.1111/j.1365-2095.2004.00320.x

Nanton DA, Vegusdal A, Rorã AMB, Ruyter B, Baeverfjord G, Torstensen B, 2007. Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar) fed fish oil and vegetable oil. Aquac 265: 230-243. https://doi.org/10.1016/j.aquaculture.2006.03.053

Nayak M, Saha A, Pradhan A, Samanta M, Giri SS, 2017. Dietary fish oil replacement by linseed oil: Effect on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotus) fingerlings. Comp Biochem Physiol B Biochem Mol Biol 205: 1-12. https://doi.org/10.1016/j.cbpb.2016.11.009

Ng WK, Lim PK, Boey PL, 2003. Dietary lipid palm oil sources affects growth, fatty acid composition and muscle α-tocopherol concentration of African catfish (Clarias gariepinus). Aquac 215: 229-243. https://doi.org/10.1016/S0044-8486(02)00067-4

Nogueira GCCB, Salaro AL, Luz RK, Zuanon JAS, Lamberttuci DM, Salerno RA, et al., 2005. Desempenho produtivo de juvenis de trairão (Hoplias lacerdae) alimentados com rações comerciais. Rev Ceres 52(302): 401-497.

Ofori-Mensah S, Yildiz M, Arslan M, Eldem V, 2020. Fish oil replacement with different vegetable oils in gilthead seabream, Sparus aurata diets: Effects on fatty acid metabolism based on whole-body fatty acid balance method and genes expression. Aquac 529: 735609. https://doi.org/10.1016/j.aquaculture.2020.735609

Oliva-Teles A, Enes P, Peres H, 2015. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In: Feed and feeding practices in Aquaculture; Davis DA (Ed), Woodhead Publ, Oxford, pp: 203-233. https://doi.org/10.1016/B978-0-08-100506-4.00008-8

Olsen Y, 2011. Resources for fish feed in future mariculture. Aquac Environ Interact 1: 187-200. https://doi.org/10.3354/aei00019

Oyakawa OT, Mattox GM, 2009. Revision of the Neotropical trahiras of the Hoplias lacerdae species-group (Ostariophysi: Characiformes: Erythrinidae) with descriptions of two new species. Neotrop Ichthyol 7(2): 117-140. https://doi.org/10.1590/S1679-62252009000200001

Paulino RR, Pereira RT, Fontes TV, Oliva-Teles A, Peres H, Carneiro DJ, Rosa PV, 2018. Optimal dietary linoleic acid to linolenic acid ratio improved fatty acid profile of the juvenile tambaqui (Colossoma macropomum). Aquac 488: 9-16. https://doi.org/10.1016/j.aquaculture.2018.01.014

Pontes MD, Campelo DAV, Ferraz RB, Zuanon JA, Furuya WM, Salaro AL, 2019. Soybean and linseed oil in replacement of fish oil in diets for female lambari Astyanax altiparanae Garutti & Britski, 2000. Lat Am J Aquat Res 47(2): 260-269. https://doi.org/10.3856/vol47-issue2-fulltext-6

Ramos ARP, Campelo DAV, Carneiro CLS, Zuanon JAS, Matta SLP, Furuya WM, Salaro AL, 2022. Optimal dietary L-glutamine level improves growth performance and intestinal histomorphometry of juvenile giant trahira (Hoplias lacerdae), a Neotropical carnivorous fish species. Aquac 547, 737469. https://doi.org/10.1016/j.aquaculture.2021.737469

Regost C, Arzel J, Robin J, Rosenlund G, Kaushik SJ, 2003. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima) 1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquac 217: 465-482. https://doi.org/10.1016/S0044-8486(02)00259-4

Rostagno HS, Albino LFT, Donzele JL, Gomes PC, Oliveira RF, Lopes DC, et al., 2005. Tabelas brasileiras para suínos e aves: composição de alimentos e exigências nutricionais, 2nd ed, Viçosa: UFV, 186 pp.

Salaro AL, Luz RK, Nogueira GCCB, Reis A, Sakabe R, Lambertucci DM, 2003. Effect of two stocking rates on the trairão (Hoplias cf. lacerdae) fingerlings performance (Hoplias cf. lacerdae). Braz J Anim Sci 32(5): 1033-1036. https://doi.org/10.1590/S1516-35982003000500001

Salaro AL, Luz RK, Sakabe R, Kasai RYD, Lambertucci DM, 2008. Feeding levels for "trairão" juveniles (Hoplias lacerdae). Braz J Anim Sci 37: 967-970. https://doi.org/10.1590/S1516-35982008000600002

Salaro AL, Oliveira Junior JCD, Pontes MD, Oliveira KRBD, Neves Igada, Ferraz RB, Zuanon JAS, 2012. Replacement of moist ingredients in the feed training of carnivorous fish. Braz J Anim Sci 41(10): 2294-2298. https://doi.org/10.1590/S1516-35982012001000022

Sargent JR, Tocher DR, Bell JG, 2002. The lipids. In: Fish nutrition, 3rd ed; Halver JE (Ed), Acad Press, San Diego, USA, pp: 181-257. https://doi.org/10.1016/B978-012319652-1/50005-7

Shafaeipour A, Yavari V, Falahatkar B, Maremmazi JGH, Gorjipour E, 2008. Effects of canola meal on physiological and biochemical parameters in rainbow trout (Oncorhynchus mykiss). Aquac Nutr 14: 110-119. https://doi.org/10.1111/j.1365-2095.2007.00509.x

Tapiero H, Nguyen BAG, Couvreur P, Tew KD, 2002. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56: 215-222. https://doi.org/10.1016/S0753-3322(02)00193-2

Tocher DR, 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11(2): 107-184. https://doi.org/10.1080/713610925

Tocher DR, 2015. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquac 449: 94-107. https://doi.org/10.1016/j.aquaculture.2015.01.010

Torstensen BE, Bell JG, Rosenlund G, Henderson RJ, Graff IE, 2005. Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. J Agric Food Chem 53: 10166-10178. https://doi.org/10.1021/jf051308i

Trushenski JT, Rombenso AN, 2020. Trophic levels predict the nutritional essentiality of polyunsaturated fatty acids in fish-introduction to a special section and a brief synthesis. N Am J Aquac 82(3): 241-250. https://doi.org/10.1002/naaq.10137

Turchini GM, Gunasekera RM, De Silva SS, 2003a. Effect of crude oil extracts from trout offal as a replacement for fish oil in the diets of the Australian native fish Murray cod Maccullochella peelii peelii. Aquac Res 34(9): 697-708. https://doi.org/10.1046/j.1365-2109.2003.00870.x

Turchini GM, Mentasti T, Frøyland L, Orban E, Caprino F, Moretti VM, Valfré F, 2003b. Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). Aquac 225(1-4): 251-267. https://doi.org/10.1016/S0044-8486(03)00294-1

Turchini GM, Torstensen BE, Ng WK, 2009. Fish oil replacement in finfish nutrition. Rev Aquac 1: 10-57. https://doi.org/10.1111/j.1753-5131.2008.01001.x

Turchini GM, Francis DS, Senadheera SPSD, Thanuthong T, De Silva SS, 2011. Fish oil replacement with different vegetable oils in Murray cod: evidence of an "omega-3 sparing effect" by other dietary fatty acids. Aquac 315(3-4): 250-259. https://doi.org/10.1016/j.aquaculture.2011.02.016

Vargas RJ, Guimarães De Souza SM, Kessler AM, Baggio SR, 2008. Replacement of fish oil with vegetable oils in diets for jundiá (Rhamdia quelen Quoy and Gaimard 1824): effects on performance and whole-body fatty acid composition. Aquac Res 39(6): 657-665. https://doi.org/10.1111/j.1365-2109.2008.01946.x

Veras GC, Salaro AL, Zuanon JAS, Carneiro APS, Campelo DAV, Murgas LDS, 2010. Growth performance and body composition of giant trahira fingerlings fed diets with different protein and energy levels. Pesqu Agropec Bras 45: 1021-1027. https://doi.org/10.1590/S0100-204X2010000900012

Yildiz M, Eroldoğan TO, Ofori-Mensah S, Engin K, Baltaci MA, 2018. The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquac 488: 123-133. https://doi.org/10.1016/j.aquaculture.2017.12.030

Zambiazi RC, Przybylski R, Zambiazi MW, Mendonça CB, 2007. Fatty acid composition of vegetable oils and fats. Bol Cent Pesqu Proc Aliment 25(1): 11-120. https://doi.org/10.5380/cep.v25i1.8399

Zheng X, Leaver MJ, Tocher DR, 2009. Long-chain polyunsaturated fatty acid synthesis in fish: Comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) Δ6 fatty acyl desaturase gene promoters. Comp Biochem Physiol B Biochem Mol Biol 154(3): 255-263. https://doi.org/10.1016/j.cbpb.2009.06.010

Published
2022-11-10
How to Cite
Salaro, A. L., Felipe, T. R. A., Carneiro, C. L. S., Zuanon, J. A. S., Sabarense, C. M., Carneiro, A. P. S., Furuya, W. M., Veras, G. C., & Campelo, D. A. V. (2022). Effect of dietary vegetable lipid sources on the growth performance and whole-body fatty acid profile of giant trahira, Hoplias lacerdae. Spanish Journal of Agricultural Research, 20(4), e0609. https://doi.org/10.5424/sjar/2022204-18977
Section
Animal production