Vegetable peas (Pisum sativum L.) diversity: An analysis of available elite germplasm resources with relevance to crop improvement

Keywords: cluster analysis, PCA, SSR markers

Abstract

Aim of study: To determine the amount of diversity in pea breeding materials with the objective to classify a set of potential parents carrying novel/economic variations that could be used in future breed pea varieties.

Area of study: ICAR–Indian Institute of Vegetable Research, Varanasi.

Material and methods: A total of 45 pea accessions were analysed for phenotypic and molecular diversity using 17 agro-morphological traits and 52 SSR markers.

Main results: All traits under investigation showed considerable genetic variation. The genotypes exhibited 6.7, 2.7 and 12-fold variation for traits viz., pods/plant, 10-pod weight and yield/plant, respectively. Among 52 SSR markers, 22 were found to be polymorphic. A total of 90 allelic variants were detected, with an average of 2.7 alleles/locus. PIC and D-values for markers AA135 (0.79 and 0.81) and PSMPSAD51 (0.7 and 0.74) were the highest, while AB40 (0.19 and 0.2) had the lowest. Two principal components PC1 and PC2 explained 46.96 and 23.96% of total variation, respectively. The clustering based on agro-morphological traits differentiated 45 individuals into three mega clusters, while SSR markers-based clustering classified these accessions into four groups.

Research highlights: Based on their uniqueness, we identified a set of genotypes (VRPD-2, VRPD-3, PC-531, ‘Kashi Nandini’, ‘Kashi Udai’, ‘Kashi Mukti’, ‘Arkel’, VRPE-101, ‘Azad Pea-3’, EC865944, VRPM-901 and VRP-500) harbouring genes for various economic traits. The findings presented here will be extremely useful to breeders who are working on improvement of peas through selective introgression breeding.

Downloads

Download data is not yet available.

References

Ahmad S, Kaur S, Lamb-Palmer ND, Lefsrud M, Singh J, 2015. Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content. Crop J 3: 238-245. https://doi.org/10.1016/j.cj.2015.03.005

Aman F, Ara N, Shah SMA, 2021. Genetic diversity among pea (Pisum sativum L.) genotypes for maturity and yield traits. Sarhad J Agric 37: 386-397. https://doi.org/10.17582/journal.sja/2021/37.2.386.397

Arif U, Ahmad MJ, Rabbani MA, Arif AA, 2020. Assessment of genetic diversity in pea (Pisum sativum L.) landraces based on physico-chemical and nutritive quality using cluster and principal component analysis. Pak J Bot 52(2): 575-580. https://doi.org/10.30848/PJB2020-2(2)

Baranger A, Aubert G, Arnau G, Lainé AL, Deniot G, et al., 2004. Genetic diversity within Pisum sativum using protein- and PCR-based markers. Theor Appl Genet 108: 1309-1321. https://doi.org/10.1007/s00122-003-1540-5

Bari MAA, Zheng P, Viera I, Worral H, Szwiec S, Ma Y, et al., 2021. Harnessing genetic diversity in the USDA pea germplasm collection through genomic prediction. Front Genet 24(12): 707754. https://doi.org/10.3389/fgene.2021.707754

Bashir S, Shah SZA, Naz RMM, Hamid A, Anjum S, Zahid N, et al., 2019. Physicochemical evaluation of field pea (Pisum sativum L.) landraces under rainfed conditions of AJK-Pakistan. Pure Appl Biol 8: 1033-1042. https://doi.org/10.19045/bspab.2019.80044

Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert JB, Siol M, Jacquin F, et al., 2015. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genom 16: 105. https://doi.org/10.1186/s12864-015-1266-1

Checa O, Rodriguez M, Wu X, Blair M, 2020. Introgression of the Afila gene into climbing garden pea (Pisum sativum L.). Agronomy 10: 1537. https://doi.org/10.3390/agronomy10101537

Cieslarová J, Smýkal P, Dočkalová Z, Hanáček P, Procházka S, Hýbl M, Griga M, 2011. Molecular evidence of genetic diversity changes in pea (Pisum sativum L.) germplasm after long-term maintenance. Genet Resour Crop Evol 58: 439-451. https://doi.org/10.1007/s10722-010-9591-3

Devi J, Sanwal SK, Koley TK, Dubey RK, Singh PM, Singh B, 2018a. Variability and character association studies for horticultural and quality traits in garden pea (Pisum sativum L. var. hortense). Veg Sci 45: 161-165.

Devi J, Mishra GP, Sanwal SK, Dubey RK, Singh PM, Singh B, 2018b. Development and characterization of penta-flowering and triple-flowering genotypes in garden pea (Pisum sativum L. var. hortense). PLoS One 13: e0201235. https://doi.org/10.1371/journal.pone.0201235

Devi J, Sanwal SK, Koley TK, Mishra GP, Karmakar P, Singh PM, Singh B, 2019. Variations in the total phenolics and antioxidant activities among garden pea (Pisum sativum L.) genotypes differing for maturity duration, seed and flower traits and their association with the yield. Sci Hortic 244: 141-150.

Devi J, Dubey RK, Mishra GP, Sagar V, Verma RK, Singh PM, Singh J, 2021. Inheritance and stability studies of multi-flowering trait in vegetable pea (Pisum sativum L.), and its contribution in yield improvement. Sci Hortic 287: 110235. https://doi.org/10.1016/j.scienta.2018.09.048

Devi J, Mishra GP, Sagar V, Kaswan V, Dubey RK, Singh PM, et al., 2022. Gene-based resistance to Erysiphe species causing powdery mildew disease in peas (Pisum sativum L.). Genes 13: 316. https://doi.org/10.3390/genes13020316

Doyle JJ, Doyle JL, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15. https://doi.org/10.2307/2419362

Dyachenko EA, Ryzhova NN, Vishnyakova MA, Kochieva EZ, 2014. Molecular genetic diversity of the pea (Pisum sativum L.) from the Vavilov Research Institute collection detected by the AFLP analysis. Russ J Genet 50: 916-924. https://doi.org/10.1134/S102279541409004X

Earl DA, VonHoldt BM, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7

Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, et al., 2006. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142: 86-91. https://doi.org/10.1111/j.1601-5223.2005.01906.x

Espósito MA, Martin EA, Cravero VP, Cointry E, 2007. Characterization of pea accessions by SRAP's markers. Sci Hortic 113: 329-335. https://doi.org/10.1016/j.scienta.2007.04.006

Gatti I, Espósito MA, Almirón P, Cravero VP, Cointry EL, 2011. Diversity of pea (Pisum sativum) accessions based on morphological data for sustainable field pea breeding in Argentina. Genet Mol Res 10: 3403-3410. https://doi.org/10.4238/2011.October.31.8

Gixhari B, Pavelková M, Ismaili H, Vrapi H, Jaupi A, Smýkal P, 2014. Genetic diversity of Albanian pea (Pisum sativum L.) landraces assessed by morphological traits and molecular markers. Czech J Genet Plant Breed 50: 177-184. https://doi.org/10.17221/227/2013-CJGPB

Gong Y, Xu S, Mao W, Hu Q, Zhang G, Ding J, Li Y, 2010. Developing new SSR markers from ESTs of pea (Pisum sativum L.). J. Zhejiang Univ Sci B 11: 702-707. https://doi.org/10.1631/jzus.B1000004

Izzah NK, Lee J, Perumal S, Park JY, Ahn K, Fu D, et al., 2013. Microsatellite-based analysis of genetic diversity in 91 commercial Brassica oleracea L. cultivars belonging to six varietal groups. Genet Resour Crop Evol 60: 1967-1986. https://doi.org/10.1007/s10722-013-9966-3

Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, et al., 2010. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10: 44. https://doi.org/10.1186/1471-2148-10-44

Kreplak J, Madoui MA, Cápal P, Nová, P, Labadie K, Aubert G, et al., 2019. A reference genome for pea provides insight into legume genome evolution. Nat Genet 51: 1411-1422. https://doi.org/10.1038/s41588-019-0480-1

Kumar D, Shubham, Dogra BS, Thakur S, Kumar S, Shiwani K, et al., 2021. Genetic evaluation of garden pea (Pisum sativum L.) for pod yield and its contributing traits. Biol Forum 13(1): 768-775.

Kumari P, Basal N, Singh AK, Rai VP, Srivastava CP, Singh, PK, 2013. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers. Genet Mol Res 12: 3540-3550. https://doi.org/10.4238/2013.March.13.12

Kumari T, Deka SC, 2021. Potential health benefits of garden pea seeds and pods: A review. Legum Sci 3. https://doi.org/10.1002/leg3.82

Kwon SJ, Brown AF, Hu J, McGee R, Watt C, Kisha T, et al., 2012. Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genom 34: 305-320. https://doi.org/10.1007/s13258-011-0213-z

Liu K, Spencer VM, 2004. PowerMarker: new genetic data analysis software. Version 3.23. Bioinformatics 9: 2128-2129. https://doi.org/10.1093/bioinformatics/bti282

Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, et al., 2005. Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111: 1022-1031. https://doi.org/10.1007/s00122-005-0014-3

Mishra GP, Dikshit HK, Kumari J, Priti, Tripathi K, Devi J, et al., 2020. Identification and characterization of novel penta‐podded genotypes in the cultivated lentil. Crop Sci 60: 1974-1985. https://doi.org/10.1002/csc2.20156

Mohamed A, García-Martínez S, Loumerem M, Pedro C, Ruiz JJ, Boubaker M, 2019. Assessment of genetic diversity among local pea (Pisum sativum L.) accessions cultivated in the arid regions of Southern Tunisia using agro-morphological and SSR molecular markers. Genet Resour Crop Evol 66: 1189-1203. https://doi.org/10.1007/s10722-019-00784-8

Mohan N, Aghora TS, Wani MA, Divya B, 2013. Garden pea improvement in India. J Hortl Sci 8: 125-164.

Nei M, 1972. Genetic distance between populations. Am Nat 106: 283-292. https://doi.org/10.1086/282771

Nisar M, Khan A, Wadood SF, Shah AA, Hanci F, 2017. Molecular characterization of edible pea through EST-SSR markers. Turk J Bot 41: 338-346. https://doi.org/10.3906/bot-1608-17

Ondrej M, Dostálová R, Hybl M, Odstrˇcilová L, Tyller R, Trojan R, 2011. Utilization of afila types of pea (Pisum sativum L.) resistant to powdery mildew (Erysiphe pisi DC.) in the breeding programs. Plant Soil Environ 49: 481-485. https://doi.org/10.17221/4161-PSE

PPV & FRA, 2007. Guidelines for the conduct of test for, uniformity and stability on field pea (Pisum sativum L.), pp: 1-9. Protection of Plant Varieties and Farmers' Rights Authority, Government of India.

Prakash N, Kumar R, Choudhary VK, Singh CM, 2015. Molecular assessment of genetic divergence in pea genotypes using microsatellite markers. Leg Res 39(2): 183-188. https://doi.org/10.18805/lr.v0iOF.7483

Ram H, 2021. Genetic diversity assessment in pea (Pisum sativum L.) using microsatellite Markers. Int J Bio-resour Stress Manag 12: 402-408. https://doi.org/10.23910/1.2021.2374a

RHS Colour Chart, 1986. The Royal Horticultural Society, London, in association with the Flower Council of Holland.

Sanwal SK, Kesh H, Devi J, Singh B, 2021. Analysis of trait association and genetic diversity in garden pea (Pisum sativum L.) genotypes under middle Gangetic plain region of India. Legum Res https://doi.org/10.18805/LR-4496

Sharma A, Sharma S, Kumar N, Rana RS, Sharma P, Kumar P, Rani M, 2022. Morpho-molecular genetic diversity and population structure analysis in garden pea (Pisum sativum L.) genotypes using simple sequence repeat markers. PLoS One 17: e0273499. https://doi.org/10.1371/journal.pone.0273499

Sharma R, Dar AA, Mahajan R, Sharma S, 2020. Molecular and biochemical characterisation of Indian germplasm of Pisum sativum L. Proc Natl Acad Sci India Sect B Biol Sci 90: 103-111. https://doi.org/10.1007/s40011-018-01069-3

Sharma VK, Sharma BB, 2013. Heterosis for earliness and green pod yield in garden pea (Pisum sativum var. hortens) under mid hill conditions of Garhwal. Bioinfolet 10: 1076-1078.

Singh A, Singh S, Prasad Bab JD, 2010. Heritability, character association and path analysis studies in early segregating population of field pea (Pisum sativum L. var. arvense). Int J Plant Breed Genet 5: 86-92. https://doi.org/10.3923/ijpbg.2011.86.92

Singh B, Chaubey T, Upadhyay DK, Jha A, Pandey SD, 2014. Morphological characterization of vegetable pea (Pisum sativum L. spp. hortense) genotypes and their application for distinctiveness, uniformity and stability testing. Legum Res 37: 547. https://doi.org/10.5958/0976-0571.2014.00674.2

Singh J, Dhall RK, Vikal Y, 2021. Genetic diversity studies in Indian germplasm of pea (Pisum sativum L.) using morphological and microsatellite markers. Genetika 53: 473-491. https://doi.org/10.2298/GENSR2102473S

Smykal P, Horacek J, Dostalova R, Hybl M, 2008a. Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet 49: 155-166. https://doi.org/10.1007/BF03195609

Smykal P, Hybl M, Corander J, Jarkovsky J, Flavell AJ, Griga M, 2008b. Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117: 413-424. https://doi.org/10.1007/s00122-008-0785-4

Stewart D, Graciet E, Wellmer F, 2016. Molecular and regulatory mechanisms controlling floral organ development. FEBS J 283: 1823-1830. https://doi.org/10.1111/febs.13640

Sureja AK, Sharma R, 2001. Genetic divergence in garden pea (Pisum sativum L.). Veg Sci 28: 63-4.

Tar'an B, Zhang C, Warkentin T, Tullu A, Vandenberg A, 2005. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48: 257-272. https://doi.org/10.1139/g04-114

Tzitzikas EN, Vincken JP, de Groot, J, Gruppen H, Visser RGF, 2006. Genetic variation in pea seed globulin composition. J Agric Food Chem 54: 425-433. https://doi.org/10.1021/jf0519008

Uhlarik A, Ćeran M, Živanov D, Grumeza R, Skøt L, Sizer-Coverdale E, Lloyd D, 2022. Phenotypic and genotypic characterization and correlation analysis of pea (Pisum sativum L.) diversity panel. Plants 11: 1321. https://doi.org/10.3390/plants11101321

Umar HMI, Shoaib-Ur-Rehman, Bilal M, Naqvi SA, Manzoor SA, Ghafoor A, et al., 2014. Evaluation of genetic diversity in pea (Pisum sativum) based on morpho-agronomic characteristics for yield and yield associated traits. J Biodivers Environ Sci 4: 323-328.

Weihai H, Jianlin W, Dan Ba, Dan HU, 2017. Analysis of protein content and genetic diversity in pea germplasm in Tibet. Asian Agric Res 09: 62-69.

Zohary D, Hopf M, Weiss E, 2012. Domestication of plants in the Old World: The origin and spread of domesticated plants in southwest Asia, Europe, and the Mediterranean basin, 4th ed. Oxford University Press; Oxford, UK. https://doi.org/10.1093/acprof:osobl/9780199549061.001.0001

Published
2023-05-16
How to Cite
DEVI, J., DUBEY, R. K., SAGAR, V., VERMA, R. K., SINGH, P. M., & BEHERA, T. K. (2023). Vegetable peas (Pisum sativum L.) diversity: An analysis of available elite germplasm resources with relevance to crop improvement. Spanish Journal of Agricultural Research, 21(2), e0701. https://doi.org/10.5424/sjar/2023212-19457
Section
Plant breeding, genetics and genetic resources