Multivariate spatial sample reduction of soil chemical attributes by means of application zones

Keywords: clustering, dissimilarity matrix, precision agriculture, sampling design.

Abstract

Aim of study: In precision agriculture, the definition of Application Zones (AZs) in agricultural areas consists in delimiting the area in subareas with similar characteristics, using soil chemical attributes. To such end, the use of clustering methods is common. Therefore, the AZs make up a database that can be used to target future soil sampling, thus seeking a possible sample reduction. The objective of this paper is to assess the acquisition of sample configurations, with reduced sample size, contained in application zones generated by spatial multivariate clustering. The sampling protocol proposed in this work evaluated five clustering methods (C-means, Fanny, K-means, Mcquitty, and Ward) for the creation of AZs, and, through these AZs, to obtain reduced sample configurations with 50% and 75% of the initial sampling points.

Area of study: Commercial agricultural area, Cascavel, Brazil.

Material and methods: Data of the soil chemical attributes from a commercial agricultural area were used, referring to three soybean harvest years (2013-2014; 2014-2015; and 2015-2016). The clustering methods considered a dissimilarity matrix that aggregates the information about the Euclidean distance between the sample elements and the spatial dependence structure of the attributes.

Main results: The results indicated division of the agricultural area into two or three AZs for the aforementioned harvest years, considering the K-means method. Comparing all the reduced sample configurations with the initial one, it was observed that the one proportionally reduced by 25% was the most effective to obtain a reduced sample configuration.

Research highlights: The sampling protocol using AZs showed that it is possible to reduce the sample size.

Downloads

Download data is not yet available.

References

Aikes Jr J, de Souza EG, Bazzi CL, Sobjak R, 2021. Thematic maps and management zones for precision agriculture: systematic literature study, protocols, and practical cases. Poncã, Curitiba.

Alencar NM, dos Santos AC, de Paula Neto JJ, Rodrigues MOD, de Oliveira LBT, 2019. Variabilidade das perdas de solo em Neossolo Quartzarênico sob diferentes coberturas no ecótono Cerrado-Amazônia. Agrarian 12(43): 71-78. https://doi.org/10.30612/agrarian.v12i43.8081

Anderson JR, Hardy EE, Roach JT, Witmer RE, 2001. A land use and land cover classification system for use with remote sensor data. U.S. Government Print Office. Washington DC.

Bayrakdar ME, 2020a. Employing sensor network based opportunistic spectrum utilization for agricultural monitoring. Sust Comput: Inform Syst 27: 100404. https://doi.org/10.1016/j.suscom.2020.100404

Bayrakdar ME, 2020b. Enhancing sensor network sustainability with fuzzy logic based node placement approach for agricultural monitoring. Comput Electron Agric 174: 105461. https://doi.org/10.1016/j.compag.2020.105461

Benedetti R, Piersimoni F, Postiglione P, 2015. Sampling spatial units for agricultural surveys. Springer, Berlin. https://doi.org/10.1007/978-3-662-46008-5

Bernardi ACC, Naime JM, Resende AV, Bassoi LH, Inamasu RY, 2014. Agricultura de precisão: Resultados de um novo olhar. Embrapa, São Paulo.

Bezdek JC, 1981. Pattern recognition with fuzzy objective function algorithms. Springer, Boston. https://doi.org/10.1007/978-1-4757-0450-1

Cambardella CA, Moorman T, Parkin T, Karlen D, Novak J, Turco R, Konopka A, 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58: 1501-1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x

Carvalho JRP, Nicollela G, 2002. Uso de geoestatística na definição de plano de amostragem em levantamento de parâmetros do solo-uma proposta. Embrapa Informática Agropecuária, Campinas.

Chipeta MG, Terlouw DJ, Phiri KS, Diggle PJ, 2017. Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure. Environmetrics 28(1): e2425. https://doi.org/10.1002/env.2425

Cressie NAC, 2015. Statistics for spatial data, rev. ed. John Wiley & Sons, New York. 928 pp.

Dal'Canton LE, Guedes LPC, Uribe-Opazo MA, 2021. Reduction of sample size in the soil physical-chemical attributes using the multivariate effective sample size. J Agric Stud 9(1): 357-376. https://doi.org/10.5296/jas.v9i1.17473

Davies DL, Bouldin DW, 1979. A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1: 224-227. https://doi.org/10.1109/TPAMI.1979.4766909

Delmelle E, 2009. Spatial sampling. In: The SAGE handbook of spatial analysis, pp: 183-206. https://doi.org/10.4135/9780857020130.n10

Diggle P, Lophaven S, 2006. Bayesian geostatistical design. Scand J Stat 33(1): 53-64. https://doi.org/10.1111/j.1467-9469.2005.00469.x

Dunn JC, 1974. Well-separated clusters and optimal fuzzy partitions. J Cybern 4(1): 95-104. https://doi.org/10.1080/01969727408546059

Embrapa, 2013. Sistema Brasileiro de Classificação de Solos, 3ed. Centro Nacional de Pesquisa de Solos, Empresa Brasileira de Pesquisa Agropecuária, Brasília. 306 pp.

Facco BFL, Pegoraro A, 2019. Utilização de sistemas de aeronaves remotamente pilotadas na agricultura de precisão. Rev Geonorte 10(34): 129-152. https://doi.org/10.21170/geonorte.2019.V.10.N.34.129.152

Faraco MA, Uribe-Opazo MA, Silva EAA, Johann JA, Borssoi J, 2008. Seleção de modelos de variabilidade espacial para elaboração de mapas temáticos de atributos físicos do solo e produtividade da soja. Rev Bras de Ciênc Solo 32(2): 463-476. https://doi.org/10.1590/S0100-06832008000200001

Gavioli A, Souza EG, Bazzi CL, Guedes LPC, Schenatto K, 2016. Optimization of management zone delineation by using spatial principal components. Comput Electron Agric 127: 302-310. https://doi.org/10.1016/j.compag.2016.06.029

Gonçalves JRM, Ferraz GA, Reynaldo ÉF, Marin DB, Ferraz PF, 2020. Comparative economic analysis of soil sampling methods used in precision agriculture. An Acad Bras Cienc 92(suppl. 1): e20190277. https://doi.org/10.1590/0001-3765202020190277

Gower JC, 1971. A general coefficient of similarity and some of its properties. Biometrics 27(4): 857-871. https://doi.org/10.2307/2528823

Guedes LP, Uribe-Opazo MA, Ribeiro Jr. PJ, Dalposso GH, 2018. Relationship between sample design and geometric anisotropy in the preparation of thematic maps of chemical soil attributes. Eng Agr 38: 260-269. https://doi.org/10.1590/1809-4430-eng.agric.v38n2p260-269/2018

Haining R, 2015. Spatial sampling. International Encyclopedia of the Social & Behavioral Sciences 23: 185-190. https://doi.org/10.1016/B978-0-08-097086-8.72065-4

Halkidi M, Vazirgiannis M, Batistakis Y, 2000. Quality scheme assessment in the clustering process. Eur Conf Principles of Data Mining and Knowledge Discovery, Lyon, France. Proc PKDD, pp. 265-276. https://doi.org/10.1007/3-540-45372-5_26

Hubert LJ, Levin JR, 1976. A general statistical framework for assessing categorical clustering in free recall. Psychol Bull 83(6): 1072-1080. https://doi.org/10.1037/0033-2909.83.6.1072

Journel AG, Huijbregts CJ, 1976. Mining geostatistics. Academic Press, London.

Kaufman L, Rousseeuw PJ, 2009. Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, New Jersey.

Kerry R, Oliver MA, Frogbrook ZL, 2010. Sampling in precision agriculture. In: Geostatistical applications for precision agriculture, pp. 35-63. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9133-8_2

Krippendorff K, 2013. Content analysis an introduction to its methodology, 2nd ed. Sage Publ Ltd, California. 412 pp.

Landim PMB, 2006. Sobre geoestatística e mapas. Terrae Didatica 2(1): 19-33. https://doi.org/10.20396/td.v2i1.8637463

MacQueen J, 1967. Some methods for classification and analysis of multivariate observations. Proc 5th Symp Mathematical Statistics and Probability, Berkeley. pp. 281-297.

Maity A, Sherman M, 2012. Testing for spatial isotropy under general designs. J Stat Plan Infer 142(5): 1081-1091. https://doi.org/10.1016/j.jspi.2011.11.013

Maltauro TC, Guedes LPC, Uribe-Opazo MA, 2019. Reduction of sample size in the analysis of spatial variability of non-stationary soil chemical attributes. Eng Agr 39 (spec issue): 56-65. https://doi.org/10.1590/1809-4430-eng.agric.v39nep56-65/2019

Maltauro TC, Guedes LPC, Uribe-Opazo MA, Canton LED, 2021. A genetic algorithm for resizing and sampling reduction of non-stationary soil chemical attributes optimizing spatial prediction. Span J Agric Res 19(4): e0210. https://doi.org/10.5424/sjar/2021194-17877

Marchant B, Lark R, 2010. Sampling in precision agriculture, optimal designs from uncertain models. In: Geostatistical applications for precision agriculture, pp. 65-87. Springer. https://doi.org/10.1007/978-90-481-9133-8_3

McQuitty LL, 1966. Similarity analysis by reciprocal pairs for discrete and continuous data. Educ Psychol Measur 26(4): 825-831. https://doi.org/10.1177/001316446602600402

Mendes AM, Locatelli M, Quisen RC, Vieira AH, 2001. Amostragem de solo para as culturas de pupunha, freijó e castanha-do-brasil. Embrapa 202 (01): 1-2.

Molin JP, 2006. Agricultura de precisão aprimora o gerenciamento. Visão Agrícola 5: 115-118.

Oliver MA, Webster R, 1989. A geostatistical basis for spatial weighting in multivariate classification. Math Geol 21(1): 15-35. https://doi.org/10.1007/BF00897238

Prudente VHR, Mercante E, Johann JA, de Souza CHW, Oldoni LV, Almeida L, et al., 2021. Comparison between vegetation index obtained by active and passive proximal sensors. J Agric Stud 9(2): 391-405. https://doi.org/10.5296/jas.v9i2.18462

R Development Core Team, 2020. R: A language and environment for statistical computing. Version 4.0.0. R Foundation for Statistical Computing, Vienna, Austria.

Resende DB, de Abreu Jr CAM, Martins GD, José O, Marques LCMX, 2020. Uso de imagens tomadas por aeronaves remotamente pilotadas para detecção da cultura do milho infestada por Spodoptera frugiperda. Rev Bras de Geogr Fís 13(1): 156-166. https://doi.org/10.26848/rbgf.v13.1.p156-166

Ribeiro Jr PJ, Diggle PJ, 2001. geoR: a package for geostatistical analysis. R-NEWS1. 15-18.

Rodrigues Jr FA, Vieira LB, Queiroz DMD, Santos NT, 2011. Geração de zonas de manejo para cafeicultura empregando-se sensor SPAD e análise foliar. Rev Bras Eng Agríc Ambient 15(8): 778-787. https://doi.org/10.1590/S1415-43662011000800003

Schenatto K, Souza EG, Bazzi CL, Bier VA, Betzek NM, Gavioli A, 2016. Data interpolation in the definition of management zones. Acta Sci Technol 38(1): 31-40. https://doi.org/10.4025/actascitechnol.v38i1.27745

Scherer FS, Maldaner S, dos Santos Mello MV, Miranda PB, da Cunha Lima A, Luz AR, 2018. Construção de um sensor de condutividade elétrica do solo: uma proposta multidisciplinar. Ciência e Natura 40 (Edição especial: II mostra de projetos da UFSM): 107-110. https://doi.org/10.5902/2179460X35507

Srinivasan A, 2006. Handbook of precision agriculture: Principles and applications. CRC Press, NY. https://doi.org/10.1201/9781482277968

Siqueira DS, Marques Jr J, Pereira GT, 2010. The use of landforms to predict the variability of soil and orange attributes. Geoderma 155(1-2): 55-66. https://doi.org/10.1016/j.geoderma.2009.11.024

Wang JF, Jiang CS, Hu MG, Cao ZD, Guo YS, Li LF, et al., 2013. Design-based spatial sampling: Theory and implementation. Environ Model Softw 40: 280-288. https://doi.org/10.1016/j.envsoft.2012.09.015

Ward Jr JH, 1963. Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301): 236-244. https://doi.org/10.1080/01621459.1963.10500845

Yi J, Du Y, Wang X, He Z, Zhou C, 2013. A clustering analysis of eddies' spatial distribution in the South China Sea. Ocean Sci 9(1): 171-182. https://doi.org/10.5194/os-9-171-2013

Published
2023-05-03
How to Cite
MALTAURO, T. C., GUEDES, L. P. C., URIBE-OPAZO, M. A., & CANTON, L. E. D. (2023). Multivariate spatial sample reduction of soil chemical attributes by means of application zones. Spanish Journal of Agricultural Research, 21(2), e0205. https://doi.org/10.5424/sjar/2023212-19521
Section
Agricultural engineering