Impact of nutritional and sanitary management on Apis mellifera colony dynamics and pathogen loads

Keywords: honey bees, Varroa destructor, beekeeping, chemical control, nutrition

Abstract

Aim of study: The aim of this study was to assess the impact of the mite control strategies combined with nutritional management on honey bee colony dynamics and survival during winter, the following spring, and summer.

Area of study: Santa Fe province in central Argentina.

Material and methods: We set two apiaries with 40 colonies each and fed one apiary with high fructose corn syrup (HFCS) and the other with sucrose syrup (SS). Within each apiary, we treated half the colonies against Varroa mites and half of these treated colonies also received a pollen patty.  The other half of the colonies remained untreated and did not received pollen patties. All colonies were sampled for Varroa infestation level, Nosema ceranae abundance and colony strength seven times during a year (from summer 2016 to autumn 2017). We computed autumn mite invasion and colony losses at each sampling time.

Main results: Colonies fed with HFCS had more brood cells during the study that those fed with SS and treated colonies had fewer adult bees and Varroa infestation than untreated colonies. No significant effect of the protein supplementation was observed on any of the response variables. , SS colonies from all groups had significantly more mites drop counts than HFCS colonies.

Research highlights: Considering that a reduced frequency of application is desirable, our results suggested that nutrition management could enhance chemical treatment effectiveness since honey bees might profit from improved nutrition. However, a better understanding of the nutritional requirements of the colonies under field conditions is needed.

Downloads

Download data is not yet available.

References

Abou-Shaara HF, 2017. Effects of various sugar feeding choices on survival and tolerance of honey bee workers to low temperatures. J Entomol Acarol Res 49: 6200. https://doi.org/10.4081/jear.2017.6200

Al Toufailia H, Amiri E, Scandian L, Per Kryger P, Ratnieks FLW, 2014. Towards integrated control of Varroa: effect of variation in hygienic behaviour among honey bee colonies on mite population increase and deformed wing virus incidence. J Apicult Res 53(5): 555-562. https://doi.org/10.3896/IBRA.1.53.5.10

Alaux C, Ducloz F, Crauser D, Le Conte Y, 2010. Diet effects on honeybee immunocompetence. Biol Lett 6: 562-565. https://doi.org/10.1098/rsbl.2009.0986

Alaux C, Dantec C, Parrinello H, Le Conte Y, 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genom 12: 496. https://doi.org/10.1186/1471-2164-12-496

Annoscia D, Zanni V, Galbrait D, Quirici A, Grozinger C, Bortolomeazzi R, Nazzi F, 2017. Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honeybees (Apis mellifera) infested by Varroa mite ectoparasites. Sci Reports 7: 6258. https://doi.org/10.1038/s41598-017-06488-2

Basualdo M, Barragán S, Vanagas L, García C, Solana H, Rodriguez E, Bedascarrasbure E, 2013. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae). J Econ Entomol 106(4): 1553-1558. https://doi.org/10.1603/EC12466

Berry JA, Hood WM, Pietravalle S, Delaplane KS, 2013. Field-level sublethal effects of approved bee hive chemicals on honey bees (Apis mellifera L). PLoS ONE 8(10): e76536. https://doi.org/10.1371/journal.pone.0076536

Beyer M, Junk J, Eickermann M, Clermont A, Kraus F, Georges C, et al., 2018. Winter honey bee colony losses, Varroa destructor control strategies, and the role of weather conditions: Results from a survey among beekeepers. Res Vet Sci 118: 52-60. https://doi.org/10.1016/j.rvsc.2018.01.012

Bogdanov S, 2006. Contaminants of bee products. Apidologie 37: 1-18. https://doi.org/10.1051/apido:2005043

Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, van Engelsdorp D, 2012. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 58: 613-620. https://doi.org/10.1016/j.jinsphys.2011.12.011

Branchiccela B, Castelli L, Corona M, Díaz-Cetti S, Invernizzi C, Martínez de la Escalera G, et al., 2019. Impact of nutritional stress on the honeybee colony health. Sci Reports 9: 10156. https://doi.org/10.1038/s41598-019-46453-9

Carroll MJ, Meikle WG, Mcfrederick QS, Rothman JA, Brow N, Weiss M, et al., 2018. Pre-almond supplemental forage improves colony survival and alters queen pheromone signaling in overwintering honey bee colonies. Apidologie 49: 827-837. https://doi.org/10.1007/s13592-018-0607-x

Dainat B, Dietemann V, Imdorf A, Charrière JD, 2020. A scientific note on the 'Liebefeld method' to estimate honeybee colony strength: its history, use, and translation. Apidologie 51: 422-427. https://doi.org/10.1007/s13592-019-00728-2

DeGrandi-Hoffman G, Chen Y, 2015. Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci 10: 170-176. https://doi.org/10.1016/j.cois.2015.05.007

DeGrandi-Hoffman G, Chen Y, Rivera R, Carroll M, Chambers M, Hidalgo G, Watkins de Jong E, 2016. Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie 47: 186-196. https://doi.org/10.1007/s13592-015-0386-6

Di Pasquale G, Alaux C, Le Conte Y, Odoux JF, Pioz M, Vaissière BE, et al., 2016. Variations in the availability of pollen resources affect honey bee health. PLoS ONE 11(9): e0162818. https://doi.org/10.1371/journal.pone.0162818

Dietemann V, Pflugfelder J, Anderson D, Charrière JD, Chejanovsky N, et al., 2012. Varroa destructor: research avenues towards sustainable control. J Apicult Res 51(1): 125-132. https://doi.org/10.3896/IBRA.1.51.1.15

Dietemann V, Nazzi F, Martin SJ, Anderson DL, Locke B, et al., 2013. Standard methods for Varroa research. In: The Coloss Beebook, Vol II: standard methods for Apis mellifera pest and pathogen research; Dietemann V, Ellis JD, Neumann P (eds). J Apicult Res 52(1): 1-54. https://doi.org/10.3896/IBRA.1.52.4.16

Döke MA, Frazier M, Grozinger CM, 2015. Overwintering honeybees: biology and management. Curr Opin Insect Sci 10: 185-193. https://doi.org/10.1016/j.cois.2015.05.014

Dolezal AG, Toth AL, 2018. Feedbacks between nutrition and disease in honey bee health. Curr Opin Insect Sci 26: 114-119. https://doi.org/10.1016/j.cois.2018.02.006

El Agrebi N, Steinhauer N, Tosi S, Leinartz L, de Graaf DC, Saegerman C, 2021. Risk and protective indicators of beekeeping management practices. Sci Total Environ 799: 149381. https://doi.org/10.1016/j.scitotenv.2021.149381

Frey E, Rosenkranz P, 2014. Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations. J Econ Entomol 107(2): 508-515. https://doi.org/10.1603/EC13381

Fries I, 2010. Nosema ceranae in European honey bees (Apis mellifera). J Inver Pathol 103: 73-79. https://doi.org/10.1016/j.jip.2009.06.017

Fries.I, Camazine S, 2001. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 32: 199-214. https://doi.org/10.1051/apido:2001122

Fries I, Chauzat M, Chen Y, Doublet V, Genersch E, et al., 2013. Standard methods for Nosema research. In: The Coloss Beebook: Vol II: Standard methods for Apis mellifera pest and pathogen research; Dietemann V, Ellis JD, Neumann P (eds). J Apicult Res 52(1): 1-28. https://doi.org/10.3896/IBRA.1.52.4.16

Frizzera D, Del Fabbro S, Ortis G, Zanni V, Bortolomeazzi R, Nazzi F, Annoscia D, 2020. Possible side effects of sugar supplementary nutrition on honey bee health. Apidologie 51: 594-608. https://doi.org/10.1007/s13592-020-00745-6

Giacobino A, Bulacio-Cagnolo N, Merke J, Orellano E, Bertozzi E, Masciangelo G, et al., 2014. Risk factors associated with the presence of Varroa destructor in honey bee colonies from east-central Argentina. Prev Vet Med 115: 280-287. https://doi.org/10.1016/j.prevetmed.2014.04.002

Giacobino A, Pacini A, Molineri A, Bulacio-Cagnolo N, Merke J, Orellano E, et al., 2017. Environment or beekeeping management: What explains better the prevalence of honeybee colonies with high levels of Varroa destructor? Res Vet Sci 112: 1-6. https://doi.org/10.1016/j.rvsc.2017.01.001

Giacobino A., Pacini A, Molineri A, Rodriguez G, Crisanti P, Bulacio-Cagnolo N, et al., 2018. Potential associations between the mite Varroa destructor and other stressors in honeybee colonies (Apis mellifera L.) in temperate and subtropical climate from Argentina. Prev Vet Med 159: 143-152. https://doi.org/10.1016/j.prevetmed.2018.09.011

Goodwin RM, Taylor MA, Mcbrydie HM, Cox HM, 2006. Drift of Varroa destructor-infested worker honey bees to neighbouring colonies. J Apicult Res 45(3): 155-156. https://doi.org/10.1080/00218839.2006.11101335

Gray A, Adjlane N, Arab A, Ballis A, Brusbardis V, Charrière JD, et al., 2020. Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018-2019, and the effects of a new queen on the risk of colony winter loss. J Apicult Res 59(5): 744-751. https://doi.org/10.1080/00218839.2020.1797272

Greatti M, Milani N, Nazzi F, 1992. Reinfestation of an acaricide-treated apiary by Varroa jacobsoni Oud. Exp App Acarol 16: 279-286. https://doi.org/10.1007/BF01218569

Haber AI, Steinhauer NA, van Engelsdorp D, 2019. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J Econ Entomol 112(4): 1509-1525. https://doi.org/10.1093/jee/toz088

Herbert EJ, Shimanuki H, Caron D, 1977. Optimum protein levels required by honey bees (Hymenoptera, Apidae) to initiate and maintain brood rearing. Apidologie 8: 141-146. https://doi.org/10.1051/apido:19770204

Jacques A, Laurent M, Ribiere-Chabert M, Saussac M, Bougeard S, Budge GE, et al., 2017. A pan-European epidemiological study reveals honeybee colony survival depends on beekeeper education and disease control. PLoS ONE 12(3): e0172591. https://doi.org/10.1371/journal.pone.0172591

Kuszewska K, Miler K, Woyciechowski M, 2019. Honeybee rebel workers preferentially respond to high concentrations of sucrose. Apidologie 50: 253-261. https://doi.org/10.1007/s13592-019-00641-8

Le Conte Y, Ellis M, Ritter W, 2010. Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41: 353-363. https://doi.org/10.1051/apido/2010017

Little CM, Shutler D, Williams GR, 2016. Associations among Nosema spp. fungi, Varroa destructor mites, and chemical treatments in honeybees, Apis mellifera. J Apicult Res 54(4): 378-385 https://doi.org/10.1080/00218839.2016.1159068

Lodesani M, Costa C, 2005. Limits of chemotherapy in beekeeping: development of resistance and the problem of residues. Bee World 86(4): 102-109. https://doi.org/10.1080/0005772X.2005.11417324

Lodesani M, Costa C, Besana A, Dall'Olio R, Franceschetti S, Tesoriero D, Vaccari G, 2014. Impact of control strategies for Varroa destructor on colony survival and health in northern and central regions of Italy. J Apicult Res 53(1): 155-164. https://doi.org/10.3896/IBRA.1.53.1.17

Lodesani M, Franceschetti S, Dall'ollio R, 2019. Evaluation of early spring bio-technical management techniques to control varroosis in Apis mellifera. Apidologie 50: 131-140. https://doi.org/10.1007/s13592-018-0621-z

Lu C, Warchol KM, Callahan RA, 2014. Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. B Insectol 67(1): 125-130.

Mariani F, Maggi M, Porrini M, Fuselli S, Caraballo G, Brasesco C, et al., 2012. Parasitic interactions between Nosema spp. and Varroa destructor in Apis mellifera colonies. Zootecnia Trop 30(1): 81-90.

Martín-Hernández R, Higes M, Pérez JL, Nozal MJ, Gómez L, Meana A, 2007. Short term negative effect of oxalic acid in Apis mellifera iberiensis. Span J Agric Res 5(4): 474-480. https://doi.org/10.5424/sjar/2007054-270

Molineri A, Giacobino A, Pacini A, Bulacio-Cagnolo N, Merke J, Orellano E, et al., 2018. Environment and Varroa destructor management as determinant of colony losses in apiaries under temperate and subtropical climate. J Apicult Res 57(4): 551-564. https://doi.org/10.1080/00218839.2018.1475697

Neupane KR, Thapa RB, 2005. Alternative to off-season sugar supplement feeding of honeybees. J Inst Agric Anim Sci 26: 77-81. https://doi.org/10.3126/jiaas.v26i0.615

Pacini A, Giacobino A, Molineri A, Bulacio-Cagnolo N, Aignasse A, Zago L, et al., 2016. Risk factors associated with the abundance of Nosema spp. in apiaries located in temperate and subtropical conditions after honey harvest. J Apicult Res 55(4): 342-350. https://doi.org/10.1080/00218839.2016.1245396

Rangel J, Tarpy DR, 2016. In-hive miticides and their effect on queen supersedure and colony growth in the honey bee (Apis mellifera). J Environ Anal Toxicol 6(3): 377. https://doi.org/10.4172/2161-0525.1000377

Rosenkranz P, Aumeier P, Ziegelmann B, 2010. Biology and control of Varroa destructor. J Inver Pathol 103: 96-119. https://doi.org/10.1016/j.jip.2009.07.016

Sammataro D, Weiss M, 2013. Comparison of productivity of colonies of honey bees, Apis mellifera, supplemented with sucrose or high fructose corn syrup. J Insect Sci 13(1): 19. https://doi.org/10.1673/031.013.1901

Schneider S, Eisenhardt D, Rademacher E, 2012. Sublethal effects of oxalic acid on Apis mellifera (Hymenoptera: Apidae): changes in behavior and longevity. Apidologie 43: 218-225. https://doi.org/10.1007/s13592-011-0102-0

Semkiw P, Skubida P, Pohorecka K, 2013. The amitraz strips efficacy in control of Varroa destructor after many years application of amitraz in apiaries. J Api Sci 57(1): 107-121. https://doi.org/10.2478/jas-2013-0012

Severson DW, Erickson Jr. EH, 1984. Honey bee (Hymenoptera: Apidae) colony performance in relation to supplemental carbohydrates. J Econ Entomol 77(6): 1473-1478. https://doi.org/10.1093/jee/77.6.1473

Smart M, Pettis J, Rice N, Browning Z, Spivak M, 2016. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE 11(3): e0152685. https://doi.org/10.1371/journal.pone.0152685

Straub L, Williams GR, Pettis J, Fries I, Neumann P, 2015. Superorganism resilience: Eusociality and susceptibility of ecosystem service providing insects to stressors. Curr Opin Insect Sci 12: 109-112. https://doi.org/10.1016/j.cois.2015.10.010

Terpin B, Perkins D, Richter S, Leavey JK, Snell TW, Pierson JA, 2019. A scientific note on the effect of oxalic acid on honey bee larvae. Apidologie 50: 363-368. https://doi.org/10.1007/s13592-019-00650-7

Tsuruda JM, Chakrabarti P, Sagili RR, 2021. Honey bee nutrition. Vet Clin Food Anim 37: 505-519. https://doi.org/10.1016/j.cvfa.2021.06.006

Van der Steen J, 2007. Effect of a home-made pollen substitute on honey bee colony development. J Apicult Res 46(2): 114-119. https://doi.org/10.1080/00218839.2007.11101377

Van Dooremalen C, Stam E, Gerritsen L, Cornelissen B, van der Steen J, van Langevelde F, Blacquière T, 2013. Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. J Insect Physiol 59: 487-493. https://doi.org/10.1016/j.jinsphys.2013.02.006

Wheeler M, Robinson, G, 2014. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup. Sci Rep 4: 5726. https://doi.org/10.1038/srep05726

Wu JY, Anelli CM, Sheppard WS, 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS ONE 6(2): e14720. https://doi.org/10.1371/journal.pone.0014720

Zhu W, Schmehl DR, Mullin CA, Frazier JL, 2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9(1): e77547. https://doi.org/10.1371/journal.pone.0077547

Published
2022-11-14
How to Cite
Giacobino, A., Pacini, A., Molineri, A., Bulacio-Cagnolo, N., Merke, J., Orellano, E., Gaggiotii, M., & Signorini, M. (2022). Impact of nutritional and sanitary management on Apis mellifera colony dynamics and pathogen loads. Spanish Journal of Agricultural Research, 20(4), e0305. https://doi.org/10.5424/sjar/2022204-19634
Section
Agricultural environment and ecology