Trends and gaps in tomato grafting literature: a systematic approach

  • Elen P. P. BENTO-DA-SILVA Programa de Pós-graduação em Agronomia, Universidade Federal de Goiás, Av. Nerópolis, s/n, Campus Samambaia, Goiânia, Goiás, Brazil https://orcid.org/0000-0001-8070-366X
  • Sara R. MENDONÇA Programa de Pós-graduação em Agronomia, Universidade Federal de Goiás, Av. Nerópolis, s/n, Campus Samambaia, Goiânia, Goiás, Brazil https://orcid.org/0000-0001-6917-6264
  • Moemy G. DE MORAES Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança, s/n, Campus Samambaia, Goiânia, Goiás, Brazil https://orcid.org/0000-0002-2217-1199
Keywords: bibliometric analysis, Solanum lycopersicum L., research network, research partnership, graft

Abstract

Aim of study: To investigate the trends and existing research gaps in tomato grafting by employing scientometric methods.

Area of study: In silico at SCOPUS database.

Material and methods: Research articles were retrieved by combining the search terms related to tomato and grafting. The articles were selected according to pre-established criteria. Temporal trends and scientometric indexes were determined. Bibliometric mappings were conducted to determine the main countries, authors, and journals that published articles on tomato grafting; and to acquire collaboration and keywords co-occurrence networks. Technical aspects of tomato grafting were analyzed.

Main results: A total of 397 research articles published from 1944 to 2020 were analyzed. The number of publications on tomato grafting increased at an annual rate of 8.8%. The USA and Spain are notable in terms of the number of published and cited articles. The USA and European countries had the highest number of collaborations. European authors had the strongest research connections. Interspecific grafts (61.83%) and experiments in controlled conditions (82.87%) predominated. The growing interest in tomato grafting has been observed as a means of overcoming environmental issues as well as yield and quality improvement.

Research highlights: Collaboration among research groups contributed to a higher research impact on the theme. The mitigation of abiotic stresses and fruit quality has risen as significant concerns for tomato crops.

Downloads

Download data is not yet available.

References

Albacete A, Andújar C, Dodd I, Giuffrida F, Hichri I, Lutts S, et al., 2015. Rootstock-mediated variation in tomato vegetative growth under drought, salinity and soil impedance stresses. Acta Hortic 1086: 141-146. https://doi.org/10.17660/ActaHortic.2015.1086.17

Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y, 2006. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18(5): 1134-1151. https://doi.org/10.1105/tpc.105.040725

Araya NA, Chiloane TS, Rakuambo JZ, Maboko MM, du Plooy CP, Amoo SO, 2021. Effect of environmental variability on fruit quality and phytochemical content of soilless grown tomato cultivars in a non-temperature-controlled high tunnel. Sci Hortic 288(110378): 1-15. https://doi.org/10.1016/j.scienta.2021.110378

Arefin SMA, Zeba N, Solaiman AH, Naznin MT, Azad MOK, Tabassum M, et al., 2019. Evaluation of compatibility, growth characteristics, and yield of tomato grafted on potato ('pomato'). Horticulturae 5(37): 1-9. https://doi.org/10.3390/horticulturae5020037

Aria M, Cuccurullo C, 2017. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr 11(4): 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Badawy MA, Abdel-Wahab A, Sayed EG, 2020. Increasing tomato (Solanum lycopersicum L.) tolerance of water stress conditions by using some agricultural practices. Plant Arch 20(1): 2655-2676.

Bausher MG, 2011. Grafting technique to eliminate rootstock suckering of grafted tomatoes. Hortscience 46(4): 596-598. https://doi.org/10.21273/HORTSCI.46.4.596

Bausher MG, 2013. Graft angle and its relationship to tomato plant survival. Hortscience 48(1): 34-36. https://doi.org/10.21273/HORTSCI.48.1.34

Bhowmik D, Kumar KPS, Paswan S, Srivastava S, 2012. Tomato - a natural medicine and its health benefits. Phytojournal 1(1): 24-36.

Bie Z, Nawaz MA, Huang Y, Lee JM, Colla G, 2017. Introduction to vegetable grafting. In: Vegetable grafting: principles and practices; Colla G, Pérez-Alfocea F, Schwarz D, (eds.). pp: 1-21. CABI Publ, Wallingford. https://doi.org/10.1079/9781780648972.0001

Carvalho LTS, Melo DM, Vargas PF, Santos HCA, Ferreira JV, 2020. Tomato grafting onto Solanaceae genotypes to control bacterial wilt (Ralstonia solanacearum Smith 1896). Pesqui Agropecu Trop 50: e63476. https://doi.org/10.1590/1983-40632020v5063476

Coban A, Akhoundnejad Y, Dere S, Dasgan HY, 2020. Impact of salt-tolerant rootstock on the enhancement of sensitive tomato plant responses to salinity. Hortscience 55(1): 35-39. https://doi.org/10.21273/HORTSCI14476-19

Dalpé R, 2002. Bibliometric analysis of biotechnology. Scientometrics 55(2): 189-213. https://doi.org/10.1023/A:1019663607103

de Bem Oliveira I, Nunes R, Mattiello L, Barros-Ribeiro S, Souza IP, Coelho ASG, et al., 2019. Research and partnership in studies of sugarcane using molecular markers: a scientometric approach. Scientometrics 119(1): 335-355. https://doi.org/10.1007/s11192-019-03047-6

Djidonou D, Simonne AH, Koch KE, Brecht K, Zhao X, 2016. Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. Hortscience 51(12): 1618-1624. https://doi.org/10.21273/HORTSCI11275-16

Ellegaard O, Wallin JA, 2015. The bibliometric analysis of scholarly production: how great is impact? Scientometrics 105: 1809-1831. https://doi.org/10.1007/s11192-015-1645-z

Estañ MT, Martinez-Rodríguez MM, Pérez-Alfocea F, Flowers TJ, Bolarín MC, 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56(412): 703-712. https://doi.org/10.1093/jxb/eri027

Fan J, Yang R, Li X, Zhao W, Zhao F, Wang S, 2015. The processes of graft union formation in tomato. Hortic Environ Biotechnol 56(5): 569-574. https://doi.org/10.1007/s13580-015-0009-1

FAOSTAT, 2019. On-line and multilingual database. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/ [Oct, 2021].

Feng X, Guo K, Yang C, Li J, Chen H, Liu X, 2019. Growth and fruit production of tomato grafted onto wolfberry (Lycium chinense) rootstock in saline soil. Sci Hortic 255: 298-305. https://doi.org/10.1016/j.scienta.2019.05.028

Fortunato S, Bergstrom CT, Börner K, Evans JA, Helbing D, Milojevic S, et al., 2018. Science of science. Science 359(6379): 1-21. https://doi.org/10.1126/science.aao0185

Frey C, Acebes JL, Encina A, Álvarez R, 2020. Histological changes associated with graft union development in tomato. Plants 9(11): 1479-1492. https://doi.org/10.3390/plants9111479

GBIF, 2021. Solanaceae. The Global Biodiversity Information Facility. https://www.gbif.org/ [Oct, 2021].

Guimarães MA, Garcia MFN, Tello JPJ, Lemos-Neto HS, Lima-Neto BP, Rabelo JS, 2019. Tomato grafting on rootstock of Jilo, Cocona and Jurubeba. Hortic Bras 37: 138-145. https://doi.org/10.1590/s0102-053620190203

Han M, Cao BL, Liu SS, Sin, KX, 2019. Effects of rootstock and scion interactions on ascorbate-glutathione cycle in tomato seedlings under low temperature stress. Acta Hortic Sin 46(1): 65-73.

Holbrook NM, Shashidhar VR, James RA, Munns R, 2002. Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53(373): 1503-1514. https://doi.org/10.1093/jxb/53.373.1503

Kakabadze N, 2018. The peculiarities of vegetable grafting technology in Georgia. Bull Georg Nat Acad Sci 12(4): 125-129.

Kim M, Canio W, Kessler S, Sinha N, 2001. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293: 287-289. https://doi.org/10.1126/science.1059805

King DA, 2004. The scientific impact of nations. Nature 430: 311-437. https://doi.org/10.1038/430311a

Koseoglu MA, 2016. Mapping the institutional collaboration network of strategic management research: 1980-2014. Scientometrics 109(1): 203-226. https://doi.org/10.1007/s11192-016-1894-5

Lee JM, Oda M, 2010. Grafting of herbaceous vegetable and ornamental crops. Hortic Rev 28(2): 61-124. https://doi.org/10.1002/9780470650851.ch2

Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, et al., 2010. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127(2): 93-105. https://doi.org/10.1016/j.scienta.2010.08.003

Li L, Li C, Lee GI, Howe GA, 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. P Natl Acad Sci USA 99(9): 6416-6421. https://doi.org/10.1073/pnas.072072599

Louws FJ, Suchoff D, Kressin J, Panthee D, Driver J, Gunter C, 2018. Integrating grafting and emerging products to manage soilborne diseases of tomato. Acta Hortic 1207: 249-254. https://doi.org/10.17660/ActaHortic.2018.1207.34

McAvoy T, Freeman JH, Rideout SL, Olson SM, Paret ML, 2012. Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. Hortscience 47(5): 621-625. https://doi.org/10.21273/HORTSCI.47.5.621

Mudge K, Janick J, Scofield S, Goldschmidt EE, 2009. A history of grafting. Hortic Ver 35(9): 437-493. https://doi.org/10.1002/9780470593776.ch9

Nabout JC, Parreira MR, Teresa FB, Carneiro FM, Cunha HF, Ondei LS, et al., 2015. Publish (in a group) or perish (alone): the trend from single- to multi-authorship in biological papers. Scientometrics 102: 357-364. https://doi.org/10.1007/s11192-014-1385-5

Nkansah GO, Ahwireng AK, Amoatey C, Ayarna AW, 2013. Grafting onto African eggplant enhances growth, yield and fruit quality of tomatoes in tropical Forest ecozones. J Appl Hortic 15(1): 16-20. https://doi.org/10.37855/jah.2013.v15i01.03

Notaguchi M, Kurotani K, Sato Y, Tabata R, Kawakatsu Y, Okayasu K, et al., 2020. Cell-cell adhesion in plant grafting is facilitated by b-1,4-glucanases. Plant Sci 369: 698-702. https://doi.org/10.1126/science.abc3710

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al., 2022. Vegan: community ecology package. R package version 2.6-2". https://CRAN.R-project.org/package=vegan.

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A, 2016. Rayyan - a web and mobile app for systematic reviews. Syst Rev 5(210): 1-10. https://doi.org/10.1186/s13643-016-0384-4

Pal BP, Nath BV, 1944. The accumulation and movement of nicotine in reciprocal grafts between tobacco and tomato plants. Proc Ind Acad Sci 20(3): 79-87. https://doi.org/10.1007/BF03049792

Pardo-Alonso JL, Carreño-Ortega Á, Martínez-Gaitán CC, Callejón-Ferre ÁJ, 2019a. Combined influence of cutting angle and diameter differences between seedlings on the grafting success of tomato using the splicing technique. Agronomy 9(5): 1-15. https://doi.org/10.3390/agronomy9010005

Pardo-Alonso JL, Carreño-Ortega Á, Martínez-Gaitán CC, Golasi I, Galán MG, 2019b. Conventional industrial robotics applied to the process of tomato grafting using the splicing technique. Agronomy 9(880): 1-17. https://doi.org/10.3390/agronomy9120880

Pardo-Alonso JL, Carreño-Ortega A, Martínez-Gaitán CC, Fatnassi H, 2020. Behavior of different grafting strategies using automated technology for splice grafting technique. Appl Sci 10(2745): 1-15. https://doi.org/10.3390/app10082745

Parreira MR, Machado KB, Logares R, Diniz-Filho JAF, Nabout JC, 2017. The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics 113(3): 1539-1550. https://doi.org/10.1007/s11192-017-2502-z

Petran A, Hoover E, 2014. Solanum torvum as a compatible rootstock in interspecific tomato grafting. J Hortic 1(1): 1-4.

Pina A, Errea P, 2005. A review of new advances in mechanism of graft compatibility- incompatibility. Sci Hortic 106: 1-11. https://doi.org/10.1016/j.scienta.2005.04.003

Pranckutè R, 2021. Web of science (WoS) and Scopus: the titans of bibliographic information in today's academic world. Publications 9(1): 1-12. https://doi.org/10.3390/publications9010012

R Development Core Team, 2020. R: A language and environment for statistical computing. Vienna, Austria. https://www.r-project.org/.

Rivard CL, Louws FJ, 2006. Grafting for disease resistance in Heirloom tomatoes. North Carolina Coop Ext Serv Bull Ag-675.

Rivard CL, O'Connell S, Peet MM, Louws FJ, 2010. Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis 94(8): 1015-1021. https://doi.org/10.1094/PDIS-94-8-1015

Sakata Y, Ohara T, Sugiyama M, 2007. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hortic 731: 159-170. https://doi.org/10.17660/ActaHortic.2007.731.22

Savvas D, Öztekin GB, Tepecik M, Ropokis A, Tüzel Y, Ntatsi G, et al., 2017. Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. J Hortic Sci Biotechnol 92(3): 294-302. https://doi.org/10.1080/14620316.2016.1265903

Sifres A, Blanca J, Nuez F, 2011. Pattern of genetic variability of Solanum habrochaites in its natural area of distribution. Genet Resour Crop Evol 58: 347-360. https://doi.org/10.1007/s10722-010-9578-0

Silva ES, Menezes DV, Silva EG, Goto R, Lima PP, 2016. Different methods of grafting and activity of antioxidant enzymes in tomato. Rev Bras Cienc Agrar 11(4): 267-271. https://doi.org/10.5039/agraria.v11i4a5392

Singh H, Kumar P, Chaudhari S, Edelstein M, 2017. Tomato grafting: a global perspective. Hortscience 52(10): 1328-1336. https://doi.org/10.21273/HORTSCI11996-17

Tunçay Çaǧatay S, Çalik Koç G, Rezaei F, Darcansoy Iseri O, Sahin FI, Haberal M, 2020. Evaluation of production conditions of tomato grafted with different tobacco rootstocks and determining nicotine content and quality of fruit. Acta Agric Slov 115(2): 297-305. https://doi.org/10.14720/aas.2020.115.2.1244

Uddin MN, Hossain MA, Burritt DJ, 2016. Salinity and drought stress: similarities and differences in oxidative responses and cellular redox regulation. In: Water stress and crop plants: a sustainable approach; Ahmad P (ed.). pp: 86-101. Wiley-Blackwell, New York. https://doi.org/10.1002/9781119054450.ch7

Van-Eck NJ, Waltman L, 2010. Software survey: VOSViewer, a computer program for bibliometric mapping. Scientometrics 84(2): 523-528. https://doi.org/10.1007/s11192-009-0146-3

Venema JH, Dijk BE, Bax JM, van Hasselt PR, Elzenga TM, 2008. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63(1-3): 359-367. https://doi.org/10.1016/j.envexpbot.2007.12.015

Wuchty S, Jones BF, Uzzi B, 2007. The increasing dominance of teams in production of knowledge. Science 316(5827): 1036-1039. https://doi.org/10.1126/science.1136099

Xie L, Dong C, Shang Q, 2019. Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato. BMC Plant Biol 19(373): 1-12. https://doi.org/10.1186/s12870-019-1976-7

Xie Y, Tan H, Sun G, Li H, Liang D, Xia H, et al., 2020. Grafting alleviates cadmium toxicity and reduces its absorption by tomato. J Soil Sci Plant Nutr 20(2): 1-8. https://doi.org/10.1007/s42729-020-00289-9

Zeist AR, Resende JTV, Giacobbo CL, Faria CMDR, Dias DM, 2017. Graft takes of tomato on other solanaceous plants. Rev Caatinga 30(2): 513-520. https://doi.org/10.1590/1983-21252017v30n227rc

Zeist AR, Resende JTV, Zanin DS, Silva ALBR, Perrud AC, Bueno GA, et al., 2020. Effect of acclimation environments, grafting methods and rootstock RVTC-66 on the seedling development and production of tomato. Sci Hortic 271(109496): 1-6. https://doi.org/10.1016/j.scienta.2020.109496

Zhang Z, Liu Y, Cao B, Chen Z, Xu K, 2020. The effectiveness of grafting to improve drought tolerance in tomato. Plant Growth Regul 91: 157-167. https://doi.org/10.1007/s10725-020-00596-2

Zhao X, Wang Z, Liu S, Wang R, Tian S, 2015. Grading system of tomato grafting machine based on machine vision. Proc 8th Int Congr on Image and Signal Processing, Shenyang (China), Oct 14-16. pp: 604-609. https://doi.org/10.1109/CISP.2015.7407950

Zhu JK, 2016. Abiotic stress signaling and responses in plants. Cell 167: 313-324. https://doi.org/10.1016/j.cell.2016.08.029

Published
2023-07-24
How to Cite
BENTO-DA-SILVA, E. P. P., MENDONÇA, S. R., & DE MORAES, M. G. (2023). Trends and gaps in tomato grafting literature: a systematic approach. Spanish Journal of Agricultural Research, 21(3), e0904. https://doi.org/10.5424/sjar/2023213-19793
Section
Plant production (Field and horticultural crops)