Influence of organic matter management on the activity and structure of soil microbial community in intensive tomato (Solanum lycopersicum L.) greenhouse farming

  • Francisco M. USERO Estación Experimental de Zonas Áridas - Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain https://orcid.org/0000-0002-4648-4202
  • José A. MORILLO Estación Experimental de Zonas Áridas - Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain https://orcid.org/0000-0003-1055-8836
  • Cristina ARMAS Estación Experimental de Zonas Áridas - Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain https://orcid.org/0000-0003-0356-8075
  • Marisa GALLARDO Department of Agronomy, University of Almería, Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain https://orcid.org/0000-0002-9031-8762
  • Rodney B. THOMPSON Department of Agronomy, University of Almería, Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain https://orcid.org/0000-0002-9323-5911
  • Francisco I. PUGNAIRE Estación Experimental de Zonas Áridas - Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain https://orcid.org/0000-0002-1227-6827
Keywords: amplicon sequencing, intensive agriculture, manure, tomato production, respiration

Abstract

Aim of study: Intensive agriculture impacts physical, chemical, and biological characteristics of soil; therefore, the addition of organic matter (OM) to soil can have significant implications for crop production. This study investigated the impact of three crop management systems on tomato production and soil microbial communities in intensive greenhouse farming.

Area of study: Province of Almería (Spain).

Material and methods: The three crop management systems included: (1) conventional management, using synthetic chemical fertilizers without OM application (CM); (2) conventional management, using synthetic chemical fertilizers with at least one OM application in the last three years (CMOM); and (3) fully organic management, featuring yearly OM applications and no use of synthetic chemical fertilizers (ORG).

Main results: Compared to CM soils, OM addition in CMOM and ORG led to higher soil NO3- and NH4+ content, which in turn increased nitrogen (N) availability, leading to an increase in soil respiration. The addition of OM also altered the composition of prokaryotic and fungal soil communities. Besides, the addition of OM reduced the presence and abundance of potential fungal pathogenic organisms, like Sclerotinia sp. and Plectosphaerella cucumerina. OM addition to conventionally managed greenhouses (CMOM) led to higher crop yields compared to CM greenhouses, resulting in an overall increase of 880 g m-2. Production under fully organic management (ORG) was lowest, possibly due to the nutrient and pest management practices used.

Research highlights: Our data show the importance of organic matter management in shaping microbial communities in intensive greenhouse systems, which can be a key factor in developing a more sustainable agriculture to feed a growing human population.

Downloads

Download data is not yet available.

References

Adams PB, Ayers WA, 1979. Ecology of Sclerotinia species. Phytopathology 69(8): 896-899. https://doi.org/10.1094/Phyto-69-896

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM, 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57: 233-266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

Baldocchi D, Tang J, Xu L, 2006. How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J Geophys Res Biogeosci111(2): 1-13. https://doi.org/10.1029/2005JG000063

Barberis E, Ajmone Marsan F, Scalenghe R, Lammers A, Schwertmann U, Edwards AC, et al., 1995. European soils overfertilized with phosphorus: Part 1. Basic properties. Fertil Res 45(3): 199-207. https://doi.org/10.1007/BF00748590

Battigelli JP, Spence JR, Langor DW, Berch SM, 2004. Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can J For Res 34(5): 1136-1149. https://doi.org/10.1139/x03-267

Bausenwein U, Gattinger A, Langer U, Embacher A, Hartmann HP, Sommer M, et al., 2008. Exploring soil microbial communities and soil organic matter: Variability and interactions in arable soils under minimum tillage practice. Appl Soil Ecol 40(1): 67-77. https://doi.org/10.1016/j.apsoil.2008.03.006

Benbi DK, Toor AS, Brar K, Dhall C, 2019. Soil respiration in relation to cropping sequence, nutrient management and environmental variables. Arch Agron Soil Sci 00: 1-15.

Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al., 2010. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25(8): 468-478. https://doi.org/10.1016/j.tree.2010.05.004

Blagodatskaya EV, Anderson TH, 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO2 of microbial communities in forest soils. Soil Biol Biochem 30(10-11): 1269-1274. https://doi.org/10.1016/S0038-0717(98)00050-9

Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6(1): 1-17. https://doi.org/10.1186/s40168-018-0470-z

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8): 852-857.

Bonanomi G, De Filippis F, Cesarano G, La Storia A, Ercolini D, Scala F, 2016. Organic farming induces changes in soil microbiota that affect agro- ecosystem functions. Soil Biol Biochem103: 327-336. https://doi.org/10.1016/j.soilbio.2016.09.005

Bonanomi G, Gaglione SA, Cesarano G, Sarker TC, Pascale M, Scala F, et al., 2017. Frequent applications of organic matter to agricultural soil increase fungistasis. Pedosphere 27(1): 86-95. https://doi.org/10.1016/S1002-0160(17)60298-4

Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn GB, De Goede RGM, et al., 2018. Soil quality - A critical review. Soil Biol Biochem120(Feb): 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030

Cajamar Caja Rural, 2019. Análisis de la campaña hortofrutícola de Almería. Campaña 2018/19. https://www.publicacionescajamar.es/series-tematicas/informes-coyuntura-analisis-de-campana/analisis-de-la-campana-hortofruticola-de-almeria-campana-2018-2019.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP, 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7): 581-583. https://doi.org/10.1038/nmeth.3869

Carlucci A, Raimondo ML, Santos J, Phillips AJL, 2012. Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy. Persoonia: Mol Phylog Evol Fungi 28: 34-48. https://doi.org/10.3767/003158512X638251

Cesarano G, De Filippis F, La Storia A, Scala F, Bonanomi G, 2017. Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Appl Soil Ecol 120: 254-264. https://doi.org/10.1016/j.apsoil.2017.08.017

Cheng J, Lee X, Tang Y, Zhang Q, 2019. Long-term effects of biochar amendment on rhizosphere and bulk soil microbial communities in a karst region, southwest China. Appl Soil Ecol 140: 126-134. https://doi.org/10.1016/j.apsoil.2019.04.017

Curiel-Yuste J, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S, 2007. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Chang Biol 13(9): 2018-2035. https://doi.org/10.1111/j.1365-2486.2007.01415.x

De Ponti T, Rijk B, Van Ittersum MK, 2012. The crop yield gap between organic and conventional agriculture. Agric Syst 108: 1-9. https://doi.org/10.1016/j.agsy.2011.12.004

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW, 2019. InfoStat version 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba.

Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, et al., 2019. PICRUSt2: An improved and extensible approach for metagenome inference. bioRxiv, Cold Spring Harbor Lab, 672295. https://doi.org/10.1101/672295

Duchicela J, Vogelsang KM, Schultz PA, Kaonongbua W, Middleton EL, Bever JD, 2012. Non-native plants and soil microbes: Potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands. New Phytol 196(1): 212-222. https://doi.org/10.1111/j.1469-8137.2012.04233.x

Estruch C, Macek P, Armas C, Pistón N, Pugnaire FI, 2020. Species identity improves soil respiration predictions in a semiarid scrubland. Geoderma 363: 114153. https://doi.org/10.1016/j.geoderma.2019.114153

Ewulo BS, Ojeniyi SO, Akanni DA, 2008. Effect of poultry manure on selected soil physical and chemical properties, growth, yield and nutrient status of tomato. Am-Euras J Sust Agr 2(1): 72-77.

Fang H, Olson BH, Asvapathanagul P, Wang T, Tsai R, Rosso D, 2020. Molecular biomarkers and influential factors of denitrification in a full-scale biological nitrogen removal plant. Microorganisms 8(1): 1-20. https://doi.org/10.3390/microorganisms8010011

Feng Y, Chen R, Hu J, Zhao F, Wang J, Chu H, et al., 2015. Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biol Biochem 81: 186-194. https://doi.org/10.1016/j.soilbio.2014.11.021

Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T, 2016. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol 7: 1-16. https://doi.org/10.3389/fmicb.2016.01446

Gallardo M, Thompson RB, Lopez-Toral JR, Fernandez MD, Granados R, 2006. Effect of applied N concentration in a fertigated vegetable crop on soil solution nitrate and nitrate leaching loss. Acta Hortic 700: 221-224. https://doi.org/10.17660/ActaHortic.2006.700.37

Gardes M, Bruns TD, 1993. ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Mol Ecol 2(2): 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, et al., 2013. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics 94: 289-301. https://doi.org/10.1016/j.jprot.2013.09.017

Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, et al., 2022. Linking soil microbial diversity to modern agriculture practices: A review. Int J Environ Res Public Health 19(5): 3141. https://doi.org/10.3390/ijerph19053141

Hartmann M, Frey B, Mayer J, Mäder P, Widmer F, 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9: 1177-1194. https://doi.org/10.1038/ismej.2014.210

Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O, 2017. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci Rep 7: 1-17. https://doi.org/10.1038/srep44382

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M, 2014. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucl Acid Res 42: 199-205. https://doi.org/10.1093/nar/gkt1076

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K, 2017. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucl Acids Res 45: D353-361. https://doi.org/10.1093/nar/gkw1092

Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al., 2005. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166(3): 1063-1068. https://doi.org/10.1111/j.1469-8137.2005.01376.x

Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP, 2020. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.01216

Lamptey S, Xie J, Li L, Coulter JA, Jagadabhi PS, 2019. Influence of organic amendment on soil respiration and maize productivity in a semi-arid environment. Agronomy 9(10): 1-13. https://doi.org/10.3390/agronomy9100611

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9): 814-821. https://doi.org/10.1038/nbt.2676

Lehman RM, Acosta-Martinez V, Buyer JS, Cambardella CA, Collins HP, Ducey TF, et al., 2015. Soil biology for resilient, healthy soil. J Soil Water Conserv 70(1): 12A-18A. https://doi.org/10.2489/jswc.70.1.12A

Li X, Ding C, Zhang T, Wang X, 2014. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol Biochem 72: 11-18. https://doi.org/10.1016/j.soilbio.2014.01.019

Lobo Jnr M, Lopes CA, Silva WLC, 2000. Sclerotinia rot losses in processing tomatoes grown under centre pivot irrigation in central Brazil. Plant Pathol 49(1): 51-56. https://doi.org/10.1046/j.1365-3059.2000.00394.x

MAPA, 2019. Anuario de estadística. https://www.mapa.gob.es/es/estadistica/temas/

Martin M, 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1): 10-12. https://doi.org/10.14806/ej.17.1.200

Maskey RP, Li FC, Qin S, Fiebig HH, Laatsch H, 2003. Chandrananimycins A ∼ C: Production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiotics 56(7): 622-629. https://doi.org/10.7164/antibiotics.56.622

Mbuthia LW, Acosta-Martínez V, DeBryun J, Schaeffer S, Tyler D, Odoi E, et al., 2015. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol Biochem 89: 24-34. https://doi.org/10.1016/j.soilbio.2015.06.016

N'Dayegamiye A, Nyiraneza J, Giroux M, Grenier M, Drapeau A, 2013. Manure and paper mill sludge application effects on potato yield, nitrogen efficiency and disease incidence. Agronomy 3(1): 43-58. https://doi.org/10.3390/agronomy3010043

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al., 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20: 241-248. https://doi.org/10.1016/j.funeco.2015.06.006

Papadopoulos AP, 1991. Growing greenhouse tomatoes in soil and in soilless media. Agriculture Canada Publication.

Pardossi A, Tognoni F, Incrocci L, 2004. Mediterranean greenhouse technology. ISHS, 28-34.

Pascoe IG, Nancarrow RJ, Copes CJ, 1984. Fusarium tabacinum on tomato and other hosts in Australia. T Brit Mycol Soc 82(2): 343-345. https://doi.org/10.1016/S0007-1536(84)80081-9

Pauvert C, Buée M, Laval V, Edel-Hermann V, Fauchery L, Gautier A, et al., 2019. Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol 1: 23-33. https://doi.org/10.1016/j.funeco.2019.03.005

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl Acids Res 41: 590-596. https://doi.org/10.1093/nar/gks1219

Rao TP, Ito O, 1998. Differences in root system morphology and root respiration in relation to nitrogen uptake among six crop species. JARQ 32: 97-103.

Savary S, Ficke A, Aubertot JN, Hollier C, 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4(4): 519-537. https://doi.org/10.1007/s12571-012-0200-5

Schumacher BA, 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. U.S. Environmental Protection Agency, Washington DC. https://www.chemterra.net/s/toc-comparison.pdf.

Scotti R, Bonanomi G, Scelza R, Zoina A, Rao MA, 2015. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr 15(2): 333-352. https://doi.org/10.4067/S0718-95162015005000031

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al., 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60

Senechkin IV, Speksnijder AGCL, Semenov AM, van Bruggen AHC, van Overbeek LS, 2010. Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments. Microb Ecol 60(4): 829-839. https://doi.org/10.1007/s00248-010-9670-1

Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, et al., 2004. Aerobic and anaerobic toluene degradation by a newly isolated. Appl Environ Microbiol 70(3): 1385-1392. https://doi.org/10.1128/AEM.70.3.1385-1392.2004

Song D, Tang J, Xi X, Zhang S, Liang G, Zhou W, et al., 2018. Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. Eur J Soil Biol 84: 1-10. https://doi.org/10.1016/j.ejsobi.2017.11.003

Soto F, Gallardo M, Thompson RB, Peña-Fleitas T, Padilla FM, 2015. Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production. Agr Ecosyst Environ 200(3): 62-70. https://doi.org/10.1016/j.agee.2014.10.022

Stapleton JJ, DeVay JE, 1986. Soil solarization: a non-chemical approach for management of plant pathogens and pests. Crop Prot 5(3): 190-198. https://doi.org/10.1016/0261-2194(86)90101-8

Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al., 2017. A communal catalogue reveals Earth's multiscale microbial diversity. Nature 551(7681): 457-463.

Valera DL, Belmonte LJ, Molina-Aiz FD, López A, Camacho F, 2017. The greenhouses of Almería, Spain: Technological analysis and profitability. Acta Hortic 1170: 219-226. https://doi.org/10.17660/ActaHortic.2017.1170.25

van Bruggen AHC, Sharma K, Kaku E, Karfopoulos S, Zelenev VV, Blok WJ, 2015. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl Soil Ecol 86: 192-201. https://doi.org/10.1016/j.apsoil.2014.10.014

Vilgalys R, Hester M, 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8): 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al., 2015. Transcribed spacer marker gene primers for microbial community surveys. mSystems 1(1): e0009-15. https://doi.org/10.1128/mSystems.00009-15

Wang B, Yang L, Zhang Y, Chen S, Gao X, Wan C, 2019. Investigation of the dynamical expression of Nostoc flagelliforme proteome in response to rehydration. J Proteomics 192(152): 160-168. https://doi.org/10.1016/j.jprot.2018.08.019

Wani SP, Gopalakrishnan S, 2013. Plant growth-promoting microbes for sustainable agriculture. In: Plant growth-promoting microbes for sustainable agriculture. Springer, pp: 19-46. https://doi.org/10.1007/978-981-13-6790-8_2

Wu X, Li J, Ji M, Wu Q, Wu X, Ma Y, et al., 2019. Non-synchronous structural and functional dynamics during the coalescence of two distinct soil bacterial communities. Front Microbiol 10: 1-11. https://doi.org/10.3389/fmicb.2019.01125

Wu Y, Li Y, Zheng C, Zhang Y, Sun Z, 2013. Organic amendment application influence soil organism abundance in saline alkali soil. Eur J Soil Biol 54: 32-40. https://doi.org/10.1016/j.ejsobi.2012.10.006

Xia Z, Wang Q, She Z, Gao M, Zhao Y, Guo L, et al., 2019. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Sci Total Environ 697: 134047. https://doi.org/10.1016/j.scitotenv.2019.134047

Xu J, Xu XD, Cao YY, Zhang WM, 2014. First report of greenhouse tomato wilt caused by Plectosphaerella cucumerina in China. Plant Dis 98(1): 158. https://doi.org/10.1094/PDIS-05-13-0566-PDN

Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion MJ, Berger B, et al., 2017. Calypso: A user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 33(5): 782-783. https://doi.org/10.1093/bioinformatics/btw725

Zebarth BJ, Neilsen GH, Hogue E, Neilsen D, 1999. Influence of organic waste amendments on selected soil physical and chemical properties. Can J Soil Sci 79(3): 501-504. https://doi.org/10.4141/S98-074

Zeffa DM, Fantin LH, Koltun A, de Oliveira ALM, Nunes MPBA, Canteri MG, et al., 2020. Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. Peer J 8: e7905. https://doi.org/10.7717/peerj.7905

Zink TA, Allen MF, 1998. The effects of organic amendments on the restoration of a disturbed coastal sage scrub habitat. Restor Ecol 6(1): 52-58. https://doi.org/10.1046/j.1526-100x.1998.00617.x

Published
2023-05-16
How to Cite
USERO, F. M., MORILLO, J. A., ARMAS, C., GALLARDO, M., THOMPSON, R. B., & PUGNAIRE, F. I. (2023). Influence of organic matter management on the activity and structure of soil microbial community in intensive tomato (Solanum lycopersicum L.) greenhouse farming. Spanish Journal of Agricultural Research, 21(2), e1101. https://doi.org/10.5424/sjar/2023212-19857
Section
Soil science