Effect of green seaweed meal blend on feed quality and zootechnical performance in shrimp (Penaeus vannamei) juveniles

Keywords: Ulva spp, Enteromorpha spp, Caulerpa spp, growth, digestibility, feed quality

Abstract

Aim of study: To evaluate a green seaweed meal in the diets of Penaeus vannamei juveniles, comprising Ulva spp., Caulerpa spp. and Enteromorpha spp. as a feed blend at inclusion levels at 4% and 8%.

Area of study: Universidad Nacional Agraria La Molina, Lima, Perú.

Material and methods: Analyses were conducted to determine the pellet quality through percentages of dry matter retention (DMR), protein loss and water absorption capacity; and to evaluate the effect of this seaweed meal in the digestibility and zootechnical shrimp performance. Three treatments (diets) were formulated to contain 0% (control diet), 4% (M4) and 8% (M8 of green seaweed meals (blend)), in isonitrogenous (crude protein; 300 g kg-1) and isocaloric (3.3 Mcal kg-1) diets. The shrimps were reared at a density of 286 juveniles m-3 for 29 days in a recirculating aquaculture system (RAS).

Main results: Among the diets, M4 had the highest DMR value (97.06%), whereas M8 had highest water absorption capacity (185.48%) with lower % of protein loss between the treatments diets. No differences were observed in the zootechnical performance, except for survival (p<0.05), with the M8 diet having highest mortality rate (44.4%) between the treatments diets.

Research highlights: Incorporating 4% green seaweed meal in shrimp feed supported adequate growth and survival of juvenile P. vannamei with adequate DMR values, water absorption capacity, protein loss and high apparent dry matter digestibility and apparent digestibility of the reference diet.

Downloads

Download data is not yet available.

References

Aaqillah-Amr MA, Hidir A, Azra MN, Ahmad-Ideris AR, Abualreesh MH, Noordiyana MN, et al., 2021. Use of pelleted diets in commercially farmed decapods during juvenile stages: A review. Animals 11(6): 1761. https://doi.org/10.3390/ani11061761

APHA, 1998. Standard methods for the examination of the water and wastewater, 22nd ed. Am Public Health Assoc, Washington, USA.

AOAC, 2005. Official Methods of Analysis, 18th ed., Horwitz W. (Ed), Association of Official Analytical Chemists, Gaithersburg, MD, USA.

Argüello‐Guevara W, Molina‐Poveda C, 2013. Effect of binder type and concentration on prepared feed stability, feed ingestion and digestibility of Litopenaeus vannamei broodstock diets. Aquac Nutr 19(4): 515-522. https://doi.org/10.1111/anu.12003

Buschmann A, Camus C, Infante J, Neori A, Israel A, Hernández-González M, et al., 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52(4): 391-406. https://doi.org/10.1080/09670262.2017.1365175

Cai J, Lovatelli A, Aguilar-Manjarrez J, Cornish L, Dabbadie L, Desrochers A, et al., 2021. Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular No. 1229. Rome.

Cerecer-Cota E, Ricque-Marie D, Mendoza-Cano F, Nieto-López MG, Cruz-Suárez LE, Ramirez-Wong B, et al., 2005. Pellet stability, hardness, influence feed consumption of Pacific white shrimp. Glob Aquacult Advocate 8: 84-85.

Cheney D, 2016. Toxic and harmful seaweeds. In: Seaweed in health and disease prevention, chapt. 13; Fleurence J & Levine I (eds). Acad Press, pp: 407-421. https://doi.org/10.1016/B978-0-12-802772-1.00013-0

Choubert G, Delanoue J, Luquet P, 1982. Digestibility in fish-improved device for the automatic collection of feces. Aquaculture 29: 185-189. https://doi.org/10.1016/0044-8486(82)90048-5

Costa Rezende P, Soares M, Guimarães AM, da Rosa Coelho J, Seiffert WQ, Dias Schleder D, et al., 2021. Brown seaweeds added in the diet improved the response to thermal shock and reduced Vibrio spp. in pacific white shrimp post‐larvae reared in a biofloc system. Aquac Res 52(6): 2852-2861. https://doi.org/10.1111/are.15136

Cruz-Suárez L, Ricque-Marie D, Tapia-Salazr MY, Guajardo-Barbosa C, 2000. Uso de harina de kelp (Macrocystis pyrifera) en alimentos para camarón. In: Avances en nutrición acuícola V; Cruz-Suárez LE et al. (eds). pp: 227-266. Centro de Investigaciones y de Estudios Avanzados, I.P.N. Mérida, Yucatán.

Cruz-Suárez LE, Ruiz-Díaz PP, Cota-Cerecer E, Nieto-Lopez MG, Guajardo-Barbosa C, Tapia-Salazar M, et al., 2006. Revisión sobre algunas características físicas y control de calidad de alimentos comerciales para camarón en México. In: Avances en nutrición acuícola VIII; Cruz-Suárez LE et al. (eds). pp: 330-370. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.

Cruz‐Suárez LE, Tapia‐Salazar M, Nieto‐López MG, Guajardo‐Barbosa C, Ricque‐Marie D, 2009. Comparison of Ulva clathrata and the kelps Macrocystis pyrifera and Ascophyllum nodosum as ingredients in shrimp feeds. Aquac Nutr 15(4): 421-430. https://doi.org/10.1111/j.1365-2095.2008.00607.x

Cuzon G, Guillaume J, Cahu C, 1994. Composition, preparation and utilization of feeds for Crustacea. Aquaculture 124(1-4): 253-267. https://doi.org/10.1016/0044-8486(94)90387-5

Elizondo-González R, Quiroz-Guzmán E, Escobedo-Fregoso C, Magallón-Servín P, Peña-Rodríguez A, 2018. Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. PeerJ 6: e4459. https://doi.org/10.7717/peerj.4459

FAO, 2022. The state of world fisheries and aquaculture 2022. Towards blue transformation. Rome.

Fleurence J, 2016. Seaweeds as food. In: seaweed in health and disease prevention; Fleurence J & Levine I (eds). pp: 149-167. Academic Press. https://doi.org/10.1016/B978-0-12-802772-1.00005-1

Guillaume J, Choubert G, 2004. Fisiología digestiva y digestibilidad de los nutrientes en los peces. In: Nutrición y alimentación de peces y crustáceos; Guillaume J et al. (eds.). pp: 53-86. Mundi-Prensa, Madrid.

Hernandez-Carmona G, Freile-Pelegrin Y, Hernandez-Garibay E, 2013. Functional ingredients from algae for foods and nutraceuticals. In: Food science, technology and nutrition; Domínguez H (ed.). pp: 475-516. Woodhead Publ Series. https://doi.org/10.1533/9780857098689.3.475

Kidgell JT, Magnusson M, de Nys R, Glasson CR, 2019. Ulvan: A systematic review of extraction, composition and function. Algal Res 39: 101422. https://doi.org/10.1016/j.algal.2019.101422

Kidgell JT, Carnachan SM, Magnusson M, Lawton RJ, Sims IM, Hinkley SF, et al., 2021. Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohydr Polym 264: 118010. https://doi.org/10.1016/j.carbpol.2021.118010

Lahaye M, Robic A, 2007. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8(6): 1765-1774. https://doi.org/10.1021/bm061185q

Lakshmi DS, Sankaranarayanan S, Gajaria TK, Li G, Kujawski W, Kujawa J, et al., 2020. A short review on the valorization of green seaweeds and ulvan: Feedstock for chemicals and biomaterials. Biomolecules 10(7): 991. https://doi.org/10.3390/biom10070991

Little DC, Newton RW, Beveridge MC, 2016. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc Nutr Soc 75(3): 274-286. https://doi.org/10.1017/S0029665116000665

Mohammed IR, Iman A, Eman ZA, Wedad A, Hani S, Hashem AM, et al., 2020. A review on the diversity, chemical and pharmacological potential of the green algae genus Caulerpa. South Afr J Bot132: 226-241. https://doi.org/10.1016/j.sajb.2020.04.031

Mohan K, Ravichandran S, Muralisankar T, Uthayakumar V, Chandirasekar R, Seedevi P, et al., 2019. Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immunol 86: 1177-1193. https://doi.org/10.1016/j.fsi.2018.12.072

Moreira A, Cruz S, Marques R, Cartaxana P, 2021. The underexplored potential of green seaweed in aquaculture. Rev Aquacult 00: 1-22. https://doi.org/10.1111/raq.12580

Naiel MA, Alagawany M, Patra AK, El-Kholy AI, Amer MS, Abd El-Hack ME, 2020. Beneficial impacts and health benefits of seaweed phenolic molecules on fish production. Aquaculture 534: 736186. https://doi.org/10.1016/j.aquaculture.2020.736186

NRC, 2011. Nutrient requirements of fish and shrimp. National Research Council, National Academies Press.

Obaldo LG, Divakaran S, Tacon AG, 2002. Method for determining the physical stability of shrimp feeds in water. Aquac Res 33(5): 369-377. https://doi.org/10.1046/j.1365-2109.2002.00681.x

Pastore SCG, Gaiotto JR, Ribeiro FAZ, Nunes AJP, 2012. Boas práticas de fabricação e formulação de rações para peixes. In: NUTRIAQUA: Nutrição e Alimentação de Espécies de Interesse Para a Aquicultura Brasileira; Machado Fracalossi D, Cyrino Eurico P, (eds.). pp: 295- 346. Sociedade Brasileira de Aquicultura e Biologia Aquática.

Paul VJ, Fenical W, 1982. Toxic feeding deterrents from the tropical marine alga Caulerpa bikinensis (Chlorophyta). Tetrahedron Lett 23(48): 5017-5020. https://doi.org/10.1016/S0040-4039(00)85561-6

Paul VJ, Littler MM, Littler DS, Fenical W, 1987. Evidence for chemical defense in tropical green alga Caulerpa ashmeadii (Caulerpaceae: Chlorophyta): Isolation of new bioactive sesquiterpenoids. J Chem Ecol 13: 1171-1185. https://doi.org/10.1007/BF01020547

Percival E, 1979. The polysaccharides of green, red and brown seaweeds: Their basic structure, biosynthesis and function. Brit Phycol J 14(2): 103-117. https://doi.org/10.1080/00071617900650121

Piana E, Gautier D, Cooper R, 2018. Evaluating stunning methods in tropical shrimp aquaculture. Health & Welfare, Global Aquaculture Alliance https://www.globalseafood.org/advocate/evaluating-stunning-methods-in-tropical-shrimp-aquaculture/?headlessPrint=AAAAAPIA9c8r7gs82oW.

Qin Y, 2018. Production of seaweed-derived food hydrocolloids. In: Bioactive seaweeds for food applications; Qin Y (ed.). pp: 53-69. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-813312-5.00003-0

Reverter M, Bontemps N, Lecchini D, Banaigs B, Sasal P, 2014. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture 433: 50-61. https://doi.org/10.1016/j.aquaculture.2014.05.048

Robic A, Gaillard C, Sassi JF, Lerat Y, Lahaye M, 2009. Ultrastructure of Ulvan: A polysaccharide from green seaweeds. Biopolymers 91(8): 652-664. https://doi.org/10.1002/bip.21195

Synytsya A, Copíková J, Kim WJ, Park YI, 2015. Cell wall polysaccharides of marine algae. In: Handbook of Marine Biotechnology, pp: 543-590. Springer. https://doi.org/10.1007/978-3-642-53971-8_22

Takeuchi T, 1988. Determination of digestibility by an indirect method. In: Fish nutrition and mariculture; Watanabe T, (ed.) The general aquaculture course. Kanagawa Int Fish Training Centre, Japan Int Coop Agency, Tokyo.

Thanigaivel S, Chandrasekaran N, Mukherjee A, Thomas J, 2016. Seaweeds as an alternative therapeutic source for aquatic disease management. Aquaculture 464: 529-536. https://doi.org/10.1016/j.aquaculture.2016.08.001

Tziveleka LA, Ioannou E, Roussis V, 2019. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr Polym 218: 355-370. https://doi.org/10.1016/j.carbpol.2019.04.074

Valenzuela-Cobos JD, Vargas-Farías CJ, 2020. Study about the use of aquaculture binder with tuna attractant in the feeding of white shrimp (Litopenaeus vannamei). Rev Mex Ing Quim 19(1): 355-361. https://doi.org/10.24275/rmiq/Bio615

Volpe MG, Varricchio E, Coccia E, Santagata G, Di Stasio M, Malinconico M, et al., 2012. Manufacturing pellets with different binders: Effect on water stability and feeding response in juvenile Cherax albidus. Aquaculture 324: 104-110. https://doi.org/10.1016/j.aquaculture.2011.10.029

Wijesekara I, Pangestuti R, Ki SK, 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 84(1): 14-21. https://doi.org/10.1016/j.carbpol.2010.10.062

Yang Q, Zhou X, Zhou Q, Tan B, Chi S, Dong X, 2009. Apparent digestibility of selected feed ingredients for white shrimp Litopenaeus vannamei Boone. Aquacult Res 41(1): 78-86. https://doi.org/10.1111/j.1365-2109.2009.02307.x

Published
2023-07-27
How to Cite
VARGAS-CÁRDENAS, J., BRITO, L. O., SILVA, S. M. B. C., SOTO-RODRÍGUEZ, I., & GÁLVEZ, A. O. (2023). Effect of green seaweed meal blend on feed quality and zootechnical performance in shrimp (Penaeus vannamei) juveniles. Spanish Journal of Agricultural Research, 21(3), e0605. https://doi.org/10.5424/sjar/2023213-19901
Section
Animal production