Testing local isolates of entomopathogenic nematodes against the green stink bug Nezara viridula L.

Keywords: isolates of entomopathogenic nematodes, biological control, Steinernema feltiae, Steinernema carpocapsae

Abstract

Aim of study: The green vegetable bug Nezara viridula L. is a polyphage that is spread all over the world, but in the last 10 years it has entered the territory of the Russian Federation. The use of biological protection against this pest is an important task in the country. We used the entomopathogenic nematodes (EPN) Steinernema feltiae and Steinernema carpocapsae to control N. viridula.

Area of study: Federal Research Center of Biological Plant Protection (FRCBPP), Krasnodar Krai, Russia, 2019-2020.

Material and methods: A laboratory test was carried out with adults and nymphs of N. viridula. Each species of EPN (S. carpocapsae and S. feltiae) was used at doses of 50, 75 and 100 individuals infective larvae per insect. The initial material for analysis was collected on soybean crops in the crop rotation of the FRCBPP. The experimental results were assessed using ANOVA.

Main results: Laboratory tests of the EPN S. carpocapsae and S. feltiae caused the death of up to 98.0% of nymphs and up to 91.4% of adults of N. viridula. The species S. feltiae turned out to be the most effective, as allowed the pathogen to develop in shorter periods of time, and caused the death of 81.9-91.4% adults and of 92.0-98.0% nymphs.

Research highlights: This study showed that during the period of growth and development of larvae, the use of EPN is more effective in nymphs than on adults.

Downloads

Download data is not yet available.

References

Abbot WS, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18(1): 265-267. https://doi.org/10.1093/jee/18.2.265a

Bhat AH, Askary TH, 2020. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt J Biol Pest Control 30: 31. https://doi.org/10.1186/s41938-020-0212-y

Burjanadze M, Kharabadze N, Сhkhidze N, 2020. Testing local isolates of entomopathogenic microorganisms against Brown Marmorated Stink Bug Halyomorpha halys in Georgia. BIO web conf. 18(95): 00006. https://doi.org/10.1051/bioconf/20201800006

Cortés-Martínez CI, Chavarría-Hernández N, 2020. Production of entomopathogenic nematodes in submerged monoxenic culture: A review. Biotechnol Bioeng 117(12): 3968-3985. https://doi.org/10.1002/bit.27515

Cruz-Martínez H, Ruiz-Vega J, Matada Mas-Ortíz PT, Cortés-Martínez CI, Osas-Diaz JR, 2017. Formulation of entomopathogenic nematodes for crop pest control - A review. Plant Prot Sci 53(1): 15-24. https://doi.org/10.17221/35/2016-PPS

Divya K, Sankar M, 2009. Entomopathogenic nematodes in pest management. Ind J Sci Technol 2(7): 53-60. https://doi.org/10.17485/ijst/2009/v2i7.12

El Aalaoui M, Mokrini F, Dababat AA, Lahlali R, Sbaghi M, 2022. Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae). Sci Rep 12: 7590. https://doi.org/10.1038/s41598-022-11709-4

Esquivel JF, Musolin DL, Jones WA, Rabitsch W, Greene JK, Toewn MD, et al., 2018. Nezara viridula (L.). In: Invasive stink bugs and related species (Pentatomidae); McPherson JE (ed); CRC Press, NY, USA, pp: 351-423. https://doi.org/10.1201/9781315371221-7

Gaugler R, Wang Y, Campbell JF, 1994. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: defences against entomopathogenic nematode attack. J Invert Pathol 64(3): 193-99. https://doi.org/10.1016/S0022-2011(94)90150-3

Guide BA, Soares EA, Itimura CRB, Alves VS, 2016. Entomophatogenic nematodes in the control of cassava root mealybug Dysmicoccus sp. (Hemiptera: Pseudococcidae). Revista Colombiana de Entomologia 42: 16-21. https://doi.org/10.25100/socolen.v42i1.6664

Harman WC, Catchot AL, Gore J, Henry WB, Cook DR, 2021. The impact of brown stink bug (Hemiptera: Pentatomidae) damage during the seedling stage on field corn and yield. J Econ Entomol 114: 1607-1612. https://doi.org/10.1093/jee/toab098

Jaffuel G, Imperiali N, Shelby K, Campos-Herrera R, Geisert R, Maurhofer M, et al., 2019. Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Sci Rep 9: 1-12. https://doi.org/10.1038/s41598-019-39753-7

Jagodič A, Trdan S, Laznik Ž, 2019. Entomopathogenic nematodes: can we use the current knowledge on belowground multitrophic interactions in future plant protection programmes? - Review. Plant Prot Sci 55(4): 243-254. https://doi.org/10.17221/24/2019-PPS

Javed S, Khanum TA, Khan S, 2020. Biocontrol potential of entomopathogenic nematode species against Tribolium confusum (Jac.) (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae) under laboratory conditions. Egypt J Biol Pest Control 30: 5. https://doi.org/10.1186/s41938-020-0206-9

Koneru SL, Salinas H, Flores GE, Hong RL, 2016. The bacterial community of entomophylic nematodes and host beetles. Mol Ecol 25(10): 2312-2324. https://doi.org/10.1111/mec.13614

Lopes Nanzer SL, Reccchia GH, Chacón-Orozco JG, Satochi Abe SR, Maringoli Cardoso JF, Leite LG, 2021. Assessment of entomopathogenic nematodes and their symbiotic bacteria to control the stink bugs Euschistus heros and Dichelops melacanthus (Heteroptera: Pentatomidae) in the soybean-corn succession system. Turk J Zool 45(SI-1): 356-371. https://doi.org/10.3906/zoo-2104-53

Mohan SH, 2015. Entomopathogenic nematodes and their bacterial symbionts as lethal bioagents of Lepidopteran pests. Biocontrol of Lepidopteran Pests 43(1): 273-288. https://doi.org/10.1007/978-3-319-14499-3_13

Navaneethan TH, Strauch O, Besse S, Bonhomme A, Ehlers RU, 2010. Influence of humidity and a surfactant-polymer-formulation on the control potential of the entomopathogenic nematode Steinernema feltiae against diapausing codling moth larvae (Cydia pomonella L.) (Lepidoptera: Tortricidae). BioСontrol 55(6): 777-788. https://doi.org/10.1007/s10526-010-9299-5

Ogier JC, Pagès S, Frayssinet M, Gaudriault S, 2020. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Microbiome 8(1): 25. https://doi.org/10.1186/s40168-020-00800-5

Peçen A, Kepenekci İ, 2022. Efficacy of entomopathogenic nematode isolates from Turkey against wheat stink bug, Aelia rostrata Boheman (Hemiptera: Pentatomidae) adults under laboratory conditions. Egypt J Biol Pest Control 32(1): 91. https://doi.org/10.1186/s41938-022-00590-y

Pervez R, Jacob TK, Devasahayam S, Eapen SJ, 2014. Penetration and infectivity of entomopathogenic nematodes against Lema sp. infesting turmeric. J Spic Arom Crops 23(1): 71-75.

Portilla M, Zhang M, Glover JP, Reddy GVP, Johnson C, 2022. Lethal concentration and sporulation by contact and direct spray of the entomopathogenic fungus Beauveria bassiana on different stages of Nezara viridula (Heteroptera: Pentatomidae). J Fungi 8: 1164. https://doi.org/10.3390/jof8111164

Pushnya M, Rodionova E, Snesareva E, 2020. Development of the elements of the biological system for protecting crops against the southern green stink bug Nezara viridula L. (Hemiptera: Pentatomidae) in Krasnodar Krai. BIO web conf. 21 (1). 00037. https://doi.org/10.1051/bioconf/20202100037

Rahoo AM, Gowen SR, Mukhtar T, Rahoo RK, 2017. Reproductive potential and host searching ability of entomopathogenic nematode, Steinernema feltiae. Pak J Zool 49(1): 229-34. https://doi.org/10.17582/journal.pjz/2017.49.1.229.234

Robert CAM, Frank DL, Leach KA, Turlings TCJ, Hibbard BE, Erb M, 2013. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore. J Chem Ecol 39: 507-515. https://doi.org/10.1007/s10886-013-0264-5

Ruiu L, Marche MG, Mura ME, Tarasco E, 2022. Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis. Pest Manage Sci 78(12): 5437-5443. https://doi.org/10.1002/ps.7166

Selvan S, Campbell JF, Gaugler R, 1993. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J Invert Pathol 62(3): 278-284. https://doi.org/10.1006/jipa.1993.1113

Shapiro-Ilan DI, Morales-Ramos JA, Rojas MG, 2016. In vivo production of entomopathogenic nemаtodes. Meth Mol Biol 1477: 137-158. https://doi.org/10.1007/978-1-4939-6367-6_11

Thrash B, Catchot AL, Gore J, Cook D, Musser FR, 2021. Effects of soybean plants population on yield loss. J Econ Entomol 114: 702-709. https://doi.org/10.1093/jee/toaa279

Vashisth S, Chandel YS, Sharma PK, 2013. Entomopathogenic nematodes - A review. Agr Sci Rev 34(3): 163-175. https://doi.org/10.5958/j.0976-0741.34.3.001

Vicente-Díez I, Blanco-Pérez R, Chelkha M, Puelles M, Pou A, Campos-Herrera R, 2021. Exploring the use of entomopathogenic nematodes and the natural products derived from their symbiotic bacteria to control the grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Insects 12(11): 1033. https://doi.org/10.3390/insects12111033

Published
2023-08-07
How to Cite
PUSHNYA, M. V., RODIONOVA, E. Y., BALAKHNINA, I. V., SNESAREVA, E. G., KREMNEVA, O. Y., & ISMAILOV, V. Y. (2023). Testing local isolates of entomopathogenic nematodes against the green stink bug Nezara viridula L. Spanish Journal of Agricultural Research, 21(3), e10SC01. https://doi.org/10.5424/sjar/2023213-20239
Section
Plant protection