Shading screens for the improvement of the night time climate of unheated greenhouses

  • J. I. Montero Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centre de Cabrils. 08348 Cabrils, Barcelona
  • P. Muñoz Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centre de Cabrils. 08348 Cabrils, Barcelona
  • M. C. Sánchez-Guerrero Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro La Mojonera, Camino San Nicolás, 1 04745 La Mojonera, Almería
  • E. Medrano Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro La Mojonera, Camino San Nicolás, 1 04745 La Mojonera, Almería
  • D. Piscia Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centre de Cabrils. 08348 Cabrils, Barcelona
  • P. Lorenzo Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro La Mojonera, Camino San Nicolás, 1 04745 La Mojonera, Almería
Keywords: movable shading, CFD model, roof temperature, thermal inversion

Abstract

The objective of this work was to study the effect of shading screens, normally used during the day for cooling purposes, on the night-time climate of unheated greenhouses. For this purpose, first a number of experimental measurements were taken during cold nights to characterise the greenhouse climate both with and without an aluminised external screen. Secondly a Computational Fluid Dynamic (CFD) model of greenhouse was developed. After validation of the model by comparison with experimental data, the model was used to simulate the greenhouse climate for different sky conditions ranging from cloudless to overcast nights. Simulations were performed for a greenhouse with internal and external shading screens and for the same greenhouse without screens. Experimental results showed the positive effect of an external shading screen, whose use increased night-time temperature and reduced the risk of thermal inversion. Its effect was much stronger under clear sky conditions. The CFD model supported this conclusion and provided a detailed explanation of the temperature behaviour of all the greenhouse types considered. CFD simulations proved that an aluminised screen placed inside the greenhouse at gutter height gave the greatest thermal increase. Therefore, external or internal screens can help to increase the sustainability of greenhouse production in areas with mild winter climates by enhancing the use of solar energy stored in the greenhouse soil during the previous day and released at night-time.

Downloads

Download data is not yet available.

References

ASHRAE, 1989. ASHRAE Handbook Fundamentals. Atlanta, GA, USA. 

Baeza EJ, 2007. Optimización del diseño de los sistemas de ventilación en invernaderos tipo parral. Tesis doctoral. Escuela Politécnica Superior, Universidad de Almería, Spain. 

Baeza EJ, Perez-Parra J, Montero JI, Bailey B, Lopez JC, Gazquez JC, 2009. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst Eng 104(1): 86-96.
http://dx.doi.org/10.1016/j.biosystemseng.2009.04.008 

Bailey BJ, 1981. The reduction of thermal radiation in glasshouses by thermal screens. J Agr Eng Res 26: 215-224.
http://dx.doi.org/10.1016/0021-8634(81)90106-2 

Baille A, López JC, Bonachela S, González-Real MM, Montero JI, 2006. Night energy balance in a heated low-cost plastic greenhouse. Agr Forest Meteorol 137: 107-118.
http://dx.doi.org/10.1016/j.agrformet.2006.03.008 

Berdahl P, Martin M, 1984. Emissivity of clear skies. Solar Energy 32(5): 663-665.
http://dx.doi.org/10.1016/0038-092X(84)90144-0 

Bliss RW, 1961. Atmospheric radiation near the surface of the ground. Solar Energy 5: 103.
http://dx.doi.org/10.1016/0038-092X(61)90053-6 

Bot GPA, 1983. Greenhouse climate: from physical processes to a dynamic model. Wageningen Agric Univ, The Netherlands, 240 pp. 

Boulard T, Baille A, 1993. A simple greenhouse climate control incorporating effects of ventilation and evaporative cooling. Agr Forest Meteorol 65: 3-4.
http://dx.doi.org/10.1016/0168-1923(93)90001-X 

Bournet PE, Chassériaux G, Winiarek V, 2006. Simulation of energy transfers in a partitioned glasshouse during daytime using a bi-band radiation model. Acta Hort (ISHS) 719: 357-364. 

Bournet PE, Ould Khaoua SA, Boulard T, 2007. Numerical prediction of the effect of vents arrangements on the ventilation and energy transfers in a multispan glasshouse using a bi-band radiation model. Biosyst Eng 98: 224–234.
http://dx.doi.org/10.1016/j.biosystemseng.2007.06.007 

Bournet PE, Boulard T, 2010. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Comput Electron Agr 74: 195-217.
http://dx.doi.org/10.1016/j.compag.2010.08.007 

Brugger M, Montero JI, Baeza E, Pérez-Parra J, 2003. Computational fluid dynamic modeling to improve the design of the spanish parral style greenhouse. ASAE Annual Int Meeting. Paper Nº: 034046. 

Duffie JA, Beckman WA, 1980. Solar engineering of thermal processes. Wiley-Intersci, NY. 775 pp. 

Escobar I, 2004. Acolchado de suelo con plásticos reflectantes en el cultivo de judía de mata baja en invernadero. Tesis Doctoral. Universidad Politécnica de Madrid, 178 pp. 

Fatnassi H, Boulard T, Bouirden L, 2003. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agr Forest Meteorol 118: 97-111.
http://dx.doi.org/10.1016/S0168-1923(03)00071-6 

Iglesias N, 2005. Estudio de las condiciones térmicas y lumínicas y determinación de alternativas tecnológicas para el ahorro de energía en invernaderos de la Patagonia Norte-Argentina. Tesis Doctoral. Escola Tècnica Superior d'Enginyeria Agrària. Universitat de Lleida, Lleida, Spain, 160 pp. 

Kacira M, Short T, Stowell RR, 1998. A CFD evaluation of naturally ventilated, multi-span, sawtooth greenhouses. T ASAE 41(3): 833-836. 

Kacira M, Sase S, Okushima L, 2004. Effects of side vents and span numbers on wind-induced natural ventilation of a gothic multi-span greenhouse. Jpn Agr Res Quarter 38(4): 227–233.Kim K, Yoon JY, Kwon HJ, Han JH, Son JE, Nam SW, Giacomelli GA, Lee IB, 2008. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosyst Eng 100: 245–255. 

Kittas C, Katsoulas N, Baille A, 2003. Influence of aluminized thermal screens on greenhouse microclimate and night transpiration. Acta Hortic 614: 387-392. 

Lee IB, Short TH, 1998. Predicted effects of internal horizontal screens on natural ventilation of a multi-span greenhouse. ASAE 91st Annual Int Meeting, Paper No. 987014. 

López JC, 2003. Sistemas de calefacción en invernaderos cultivados de judía en el litoral mediterráneo. Tesis doctoral. Escuela Politécnica Superior, Univ. de Almería, Spain. 164 pp. 

Lorenzo P, Sánchez-Guerrero MC, Medrano E, García ML, Caparrós I, Giménez M, 2003. External greenhouse mobile shading: effect on microclimate, water use efficiency and yield of a tomato crop grown under different salinity levels of the nutrient solution. Acta Hortic 609: 181-186. 

Lorenzo P, Sánchez-Guerrero MC, Medrano E, García ML, Caparrós I, Coelho G, Giménez M, 2004. Climate control in the summer season: a comparative study of: external mobile shading and fog system. Acta Hortic 659: 189-194. 

Lorenzo P, Sanchez-Guerrero MC, Medrano E, Escobar I, 1997. Gestión del clima en la horticultura intensiva del sur mediterráneo. Horticultura 119: 80-83. 

Mistriotis A, Bot G, Picuno P, Scarasscia-Mugnozza G, 1997. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agr Forest Meteorol 85: 217-228.
http://dx.doi.org/10.1016/S0168-1923(96)02400-8 

Molina-Aiz FD, Valera DL, Alvarez AJ, 2004. Measurement and simulation of climate inside Almeria-type greenhouses using computational fluid dynamics. Agr Forest Meteorol 125, 33–51.
http://dx.doi.org/10.1016/j.agrformet.2004.03.009 

Montero JI, Castilla N, Gutiérrez De Ravé E, Bretones F, 1985. Climate under plastic in the Almería area. Acta Hortic 170: 227-234. 

Montero JI, Bretones F, Castilla N, 1986. Comparación del microclima en invernadero de cubierta doble y sencilla en Almería. Actas II Congreso Sociedad Española de Ciencias Hortícolas, 21-25 Abril Córdoba (Spain). 

Montero JI, Muñoz P, Antón A, Iglesias N, 2005. Computational fluid dynamics modelling of nighttime energy fluxes in unheated greenhouses. Acta Hortic 693: 403-410. 

Piscia D, Montero JI, Melé M, Flores J, Perez-Parra J, Baeza EJ, 2012. A CFD model to study above roof shade and on roof shade of greenhouses. Acta Hort (ISHS) 952: 133-139. 

Reichrath S, Davies TW, 2002. Using CFD to model the internal climate of greenhouse: past, present and future. Agronomie 22: 3-19.
http://dx.doi.org/10.1051/agro:2001006 

Stanghellini C, 1994. Balance hídrico y manejo de microclima en invernadero. In: Tecnología de invernaderos (Díaz JR, Pérez J, eds). Junta de Andalucía/FIAPA, Almería, Spain, pp. 49-62. 

Swinbank WC, 1963. Long-wave radiation from clear skies. Quart J Royal Meteorol Soc 89: 339-348.
http://dx.doi.org/10.1002/qj.49708938105 

Teitel M, 2010. Using computational fluid dynamics simulations to determine pressure drops on woven screens. Biosyst Eng 105: 172-179.
http://dx.doi.org/10.1016/j.biosystemseng.2009.10.005 

Teitel M, Segal I, 1995. Net thermal radiation under shading screens. J Agr Eng Res 61: 19-26.
http://dx.doi.org/10.1006/jaer.1995.1026 

Teitel M, Peiper UM, Zvieli Y, 1996. Shading screens for frost protection. Agr Forest Meteorol 81: 273-286.
http://dx.doi.org/10.1016/0168-1923(95)02321-6 

Tognoni F, 1990. Effects of stressful and unstressful low temperature on vegetable crops: morphological and physiological aspects. Acta Hortic 281: 183-189.

Published
2013-01-21
How to Cite
Montero, J. I., Muñoz, P., Sánchez-Guerrero, M. C., Medrano, E., Piscia, D., & Lorenzo, P. (2013). Shading screens for the improvement of the night time climate of unheated greenhouses. Spanish Journal of Agricultural Research, 11(1), 32-46. https://doi.org/10.5424/sjar/2013111-411-11
Section
Agricultural engineering