Predictive modelling in grape berry weight during maturation process: comparison of data mining, statistical and artificial intelligence techniques
Abstract
Environmental and geographical factors are two of the key aspects conditioning the growth of any crop, in such a way that the ability to predict significant variables of grape maturation can be highly useful to vine-growers. Berry weight is one of the variables monitored during this period, and the wineries have called for the development of an accurate prediction model. This study compares various types of data mining (DM) and artificial intelligence (AI) algorithms for developing an efficient prediction model for determining the variations in weight of grape berries during the ripening process according to the environmental and geographical properties not only throughout the ripening period but throughout the plant’s cycle. The final objective is the search for a model that is efficient for data for new years with different properties to those in the past. This model helps the grower to harvest the grapes on the most suitable date for producing the best possible wine.Downloads
References
Aha D.W., Kibler D., Albert M.K., 1991. Instancebased learning algorithms. Mach Learn 6, 37-66. http://dx.doi.org/10.1007/BF00153759
Amerine M.A., 1956. The maturation of wine grapes. Wine and Vine 37, 27-30.
Amerine M.A., Winkler R.A.J., 1944. Composition and quality of musts and wines of California grapes. Hilgardia 15, 493-673.
APA, 2004. Order APA/3465/2004, of 20 October, approving the Regulation of the Qualified Designation of Origin 'Rioja' and its Regulatory Board. Boletín Oficial del Estado No. 259, 27/10/2004.
Behera S.K., Panda R.K., 2009. Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modelling. Agr Water Manage 96(11), 1532-1540. http://dx.doi.org/10.1016/j.agwat.2009.06.016
Bergqvist J., Dokoozlian N., Ebisuda N., 2001. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California". Am J Enol Viticult 52(1), 1-7.
BOE, 2003. Legislation 24/2003, of 10 July, about vine and wine. Boletín Oficial del Estado No. 165, 11/7/2003.
Bojacá C.R., Gil R., Cooman A., 2009. Use of geostatistical and crop growth modelling to assess the variability of greenhouse tomato yield caused by spatial temperature variations. Comput Electron Agr 65(2), 219-227. http://dx.doi.org/10.1016/j.compag.2008.10.001
Buttrose M.S., Hale C.R., Kliewer W.M., 1971. Effect of Temperature on the Composition of 'Cabernet Sauvignon' Berries. Am J Enol Viticult 22, 71-75.
Castejón-Limas M., Ordieres-Meré J.B., Martínez-De-Pisón-Ascacíbar F.J., Vergaragonzález E.P., 2004. Outlier detection and data cleaning in multivariate non-normal samples: the PAELLA algorithm. Data Min Knowl Disc 9(2), 171-187. http://dx.doi.org/10.1023/B:DAMI.0000031630.50685.7c
Coombe, B.G., 1992. Research on development and ripening of the grape berry. Am J Enol Viticult 43, 101-110.
Due G., Morris M., Pattison S., Coombe B.G., 1993. Modelling grapevine phenology against weather: considerations based on a large data set. Agr Forest Meteorol 65(1-2), 91-106. http://dx.doi.org/10.1016/0168-1923(93)90039-K
Ebadi A., May P., Coombe B.G., 1996. Effect of shortterm temperature and shading on fruit-set, seed and berry development in model vines of V. vinifera, cvs Chardonnay and Shiraz. Aust J Grape Wine Res 2(1), 2-9. http://dx.doi.org/10.1111/j.1755-0238.1996.tb00087.x
Girona J., Marsal J., Mata M., Del Campo J., Basile B., 2009. Phenological sensitivity of berry growth and composition of tempranillo grapevines (Vitis vinifera L.) to water stress. Aust J Grape Wine Res 15(3), 268-277. http://dx.doi.org/10.1111/j.1755-0238.2009.00059.x
Gorban A., Kegl B., Wunsch D., Zinovyev A., 2007. Principal manifolds for data visualisation and dimension reduction, LNCSE 58. Springer, Berlin-Heidelberg-NY.
Greer D.H., Weston C., 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct Plant Biol 37, 206-214. http://dx.doi.org/10.1071/FP09209
Haykin S., 1999. Neural networks, a comprehensive foundation (2nd ed.). Prentice Hall, NJ, USA.
Huglin P., 1998. Biologie et ecologie de la vigne. Ed. Payot-Laussana, Paris. [In French].
Jackson R.S., 2008. Wine science, 3rd Edition. Principles and applications. Elsevier Inc.
Li S.T., Shue L.Y., 2004. Data mining to aid policy making in air pollution management. Expert Syst Appl 27, 331-340. http://dx.doi.org/10.1016/j.eswa.2004.05.015
Mackay D.J.C., 1998. Introduction to Gaussian processes. Dept. of Physics, Cambridge Univ, UK.
Mareca I., 1983. Origen, composición y evolución del vino. Ed. Alhambra S.A. [In Spanish].
Martínez De Toda F., Sancha J.C., 1995. Variedades de vid cultivadas en Rioja a lo largo de la historia. Zubía monográfico 7, 9-13. [In Spanish].
Ollat N., Diakou-Verdin P., Carde J.P., Barrieu F., Gaudillère J.P., Moing A., 2002. Grape berry development: a review. J Int Sciences Vigne Vin 36(3), 109-131.
Pascual Bellido N., Cabrerizo Cristóbal A., 1995. Distribución espacial del viñedo de rioja en relación con los condicionantes ambientales. Berceo 129, 75-95. [In Spanish].
Peynaud E., 1989. Enología práctica. Ed. Mundi-prensa. Madrid. [In Spanish].
Portnoy S., Koenker R., 1997. The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators. Stat Sci 12(4), 279-300. http://dx.doi.org/10.1214/ss/1030037960
Quinlan J.R., 1992. Learning with continuous classes. Proc Australian Joint Conf on Artificial Intelligence. World Scientific, Singapore. pp. 343-348.
Ribéreau-Gayon J., Peynaud E., Sudraud P., Ribéreau-Gayon P., 1982. Ciencias y técnicas del vino. Tomo 2: Características de los vinos. Maduración del racimo. Ed. Hemisferio Sur. [In Spanish].
Ribéreau-Gayon P., Dubourdieu D., Donéche B., Lonvaud A., 2006. Handbook of Enology, Volume 1 - The microbiology of wine and vinifications, 2nd ed. Chapter 10: The grape and its maturation. John Wiley & Sons Ltd.
Shevade S.K., Keerthi S.S., Bhattacharyya C., Murthy K.R.K., 1999. Improvements to SMO algorithm for SVM regression. Technical Report CD-99-16. Control Division Dept of Mechanical and Production Engineering, Nat Univ Singapore.
Smola A.J., Scholkopf B., 1998. A tutorial on support vector regression. NeuroCOLT2 Technical Report Series-NC2-TR-1998-030.
Stout Q.F., 2008. Unimodal regression via prefix isotonic regression. Comput Stat Data Anal 53, 289–297. http://dx.doi.org/10.1016/j.csda.2008.08.005
Valdés-Gómez H., Celette F., García De Cortá-Zar-Atauri I., Jara-Rojas F., Gary C., 2009. Modelling soil water content and grapevine growth and development with the STICS crop-soil model under two different water management strategies. J Int Sci Vigne Vin 43(1), 13-28.
Wilkinson G.N., Rogers C.E., 1973. Symbolic descriptions of factorial models for analysis of variance. Appl Stat 22, 392-399. http://dx.doi.org/10.2307/2346786
Williams C.K.I., 1998. Prediction with Gaussian processes: from linear regression to linear prediction and beyond. In: Learning and inference in graphical models (Jordan M.I., ed). Kluwer Academic Press, pp. 599-621. http://dx.doi.org/10.1007/978-94-011-5014-9_23
Witten I.H., Frank E., 2005. Data mining: practical machine learning tools and techniques, 2nd ed. Morgan Kaufmann, San Francisco, CA, USA.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.