Effect of Pseudomonas syringae subsp. syringae on yield and biomass distribution in wheat

  • A.J. Valencia-Botin Centro Universitario de la Ciénega, Universidad de Guadalajara. 47820 Ocotlán, Jalisco
  • L.E. Mendoza-Onofre Producción de Semillas, Recursos Genéticos y Productividad. Campus Montecillo, Colegio de Postgraduados. 56230 Montecillo, Estado de México
  • H.V. Silva-Rojas Producción de Semillas, Recursos Genéticos y Productividad. Campus Montecillo, Colegio de Postgraduados. 56230 Montecillo, Estado de México
  • E. Valadez-Moctezuma Departamento de Fitotecnia, Universidad Autónoma Chapingo. 56230 Chapingo, Estado de México
  • L. Cordova-Tellez Producción de Semillas, Recursos Genéticos y Productividad. Campus Montecillo, Colegio de Postgraduados. 56230 Montecillo, Estado de México
  • H.E. Villaseñor-Mir Programa de Trigo, Campo Experimental Valle de México, INIFAP. 56230 Chapingo, Estado de México
Keywords: plant diseases, plant pathogenic bacteria, source-sink relationships, Triticum aestivum

Abstract

The effect of Pseudomonas syringae subsp. syringae on seed yield, aerial biomass production and partitioning in wheat (Triticum aestivum L.) is unknown. A field experiment was carried out in two locations of the Mexican Highlands (Montecillo and Chapingo) to evaluate the response of two wheat cultivars (‘Seri M82’ and ‘Rebeca F2000’) to four inoculum rates (106, 8, 10 cfu mL–1, plus a control without inoculum). Disease incidence and severity, seed yield, seed number and seed size were measured. At flowering and seed physiological maturity, aerial biomass production and distribution of main stem, secondary stems and total plant were recorded. Source-sink relationships during the grain filling period were estimated. Higher values of disease incidence and severity were observed at Chapingo; the same traits were also greater in ‘Seri’ than in ‘Rebeca’ at both sites (p < 0.05). Seed yield, seed number and seed size of ‘Rebeca’ were higher (p < 0.05) than that of ‘Seri’. The pathogen reduced (p < 0.05) plant height, seed yield, seed yield components, and biomass production of most organs of main and secondary stems. The magnitude of the reductions was similar in both cultivars at both sites. The effect of the bacteria at each location was higher (p < 0.05) at greater doses affecting seed number more than seed weight. Stems prevailed as sink organs, while laminae, sheaths, spikes, and other vegetative parts predominated as source organs. Plant disease records should complement crop physiological variables to evaluate and to explain bacterial disease effects

Downloads

Download data is not yet available.

References

Biemelt S., Sonnewald U., 2006. Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol 163, 307-318. http://dx.doi.org/10.1016/j.jplph.2005.10.011

Duveiller E., 1994. A pictorial series of disease assessment keys for bacterial leaf streak of cereals. Plant Dis 78, 137-141. http://dx.doi.org/10.1094/PD-78-0137

Duveiller E., Maraite H., 1993. Study of yield loss due to Xanthomonas campestris pv. undulosa in wheat under high rainfall temperate conditions. J Plant Dis Protect 100, 453-459.

Duveiller E., Van Ginkel M., Thijssen M., 1993. Genetic analysis of resistance to bacterial leaf streak caused by Xanthomonas campestris pv. undulosa in bread wheat. Euphytica 66, 35-43. http://dx.doi.org/10.1007/BF00023506

Espitia R.E., Villaseñor M.H.E., 2000. El rendimiento de grano en relación a la morfología, desarrollo y fisiología en trigo. In: El trigo de temporal en México (Villaseñor M.H.E., Espitia R.E., eds). SAGAR, INIFAP, CIRCE, Campo Experimental. Valle de México. Chapingo, México. pp. 53-83. [In Spanish].

Forster R.L., Schaad N.W., 1988. Control of black chaff of wheat with seed treatment and a foundation seed health program. Plant Dis 72, 935-938. http://dx.doi.org/10.1094/PD-72-0935

García E., 1988. Modificaciones al sistema de clasificación climática de Köppen. 4a. ed. Instituto de Geografía, UNAM, México. 220 pp.

González H.V., Grimaldo J.O., 1991. La investigación fisiotécnica en el Centro de Genética del Colegio de Postgraduados. Rev Fitotec Mex 14, 174-193.

Hernández L.A., Villaseñor M.H.E., Barrera G.E., RosaS R.M., 1998. Efecto de las enfermedades foliares sobre la calidad y micoflora en la semilla de trigo. Rev Fitotec Mex 21, 25-35.

López-Castañeda C., RichardS R.A., 1994. Variation in temperate cereals in rainfed environments I. Grain yield, biomass and agronomic characteristics. Field Crops Res 37, 51-62. http://dx.doi.org/10.1016/0378-4290(94)90081-7

SAS Institute., 1999. SAS/STAT introductory guide, Vers 8.0. SAS Institute. Cary, NC. USA. 1028 pp.

Schaad N.W., Forster R.L., 1985. A semiselective agar medium for isolating Xanthomonas campestris pv. translucens from wheat seeds. Phytopathology 75, 260-263. http://dx.doi.org/10.1094/Phyto-75-260

Slafer A.G., Calderini D.F., 2003. Herramientas fisiológicas para el mejoramiento del rendimiento de trigo. In: Estrategias y metodologías utilizadas en el mejoramiento de trigo: un enfoque multidisciplinario (Mohan K.M., Díaz de A.M., Castro M., eds). CIMMYT, INIA. Montevideo, Uruguay. pp. 13-24.

Solís-Moya E., Huerta-Espino J., Villase-or-Mir H.E., Aguado-Santacruz G.A., 2007. Stripe rust, phenology, yield and yield components in bread wheat (Triticum aestivum L.). Agrociencia-Mexico 41, 563-573.

Tillman B.L., Harrison S.A., Russin J.A., Clark C.A., 1996. Relationship between bacterial streak and black chaff symptoms in winter wheat. Crop Sci 36, 74-78. http://dx.doi.org/10.2135/cropsci1996.0011183X003600010013x

Valadez-Gutiérrez J., Mendoza-Onofre L.E., Vaquera-Huerta H., Córdova-Téllez L., Mendoza-Castillo M. Del C., García-De Los Santos G., 2006. Flowers thinning, seed yield and post-anthesis dry matter distribution in sorghum. Agrociencia-Mexico 40, 303-314.

Valencia-Botín A.J., Mendoza-Onofre L.E., Silva-Rojas H.V., Córdova-Téllez L., Espinosa-Victoria D., Valadez-Moctezuma E., Villaseñor-Mir H.E., 2007. Indicadores de agresividad y métodos de inoculación con bacterias fitopatógenas en plántulas y semillas de trigo 'Seri M82'. Rev Fitotec Mex 30, 255-259.

Villaseñor M.H.E., Espitia R.E., 2000. Variedades de trigo recomendadas para siembras de temporal en México. In: El trigo de temporal en México (Villaseñor M.H.E., Espitia R.E., eds). INIFAP, CIR CENTRO, México. pp. 151-176.

Villaseñor M.H.E., Espitia R.E., Huerta E.J., González I.R., Solís M.E., Peña B.J., 2004. Rebeca F2000, nueva variedad de trigo para siembras en temporales favorables e intermedios de México. Rev Fitotec Mex 27, 285-287.

Von Kietzell J., Baharuddin B., Toben H., Rudolph K., 1994. Identification and characterization of plant pathogenic pseudomonads with biolog microplates and microlog. In: Plant pathogenic bacteria (Lemattre M., Freigoun K., Rudolph K. and Swings J.G., eds). INRA. Versailles, France. pp. 281-286.

Zadoks J.C., Chang T.T., Konzak F.C., 1974. A decimal code for the growth stages of cereals. Weed Res 14, 415-421.

Zamsky E., Schaffer A.A., (eds), 1996. Photoassimilate distribution in plants and crops: source-sink relationships. Marcel Dekker, NY, USA. 905 pp.

Ziberstein M., Blum A., Eyal Z., 1985. Chemical desiccation of wheat plants as a simulator of postanthesis speckled leaf blotch stress. Phytopathology 75, 226-230. http://dx.doi.org/10.1094/Phyto-75-226

How to Cite
Valencia-Botin, A., Mendoza-Onofre, L., Silva-Rojas, H., Valadez-Moctezuma, E., Cordova-Tellez, L., & Villaseñor-Mir, H. (1). Effect of Pseudomonas syringae subsp. syringae on yield and biomass distribution in wheat. Spanish Journal of Agricultural Research, 9(4), 1287-1297. https://doi.org/10.5424/sjar/20110904-460-10
Section
Plant protection