Reflectance spectroscopy: a tool for predicting soil properties related to the incidence of Fe chlorosis

  • J. C. Cañasveras Sánchez Departamento de Agronomía, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba
  • V. Barrón Departamento de Agronomía, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba
  • M. C. del Campillo Departamento de Agronomía, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba
  • R. A. Viscarra Rossel Departamento de Agronomía, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba
Keywords: iron chlorosis, MIR, NIR, partial least squares regression, reflectance spectroscopy

Abstract

Chlorosis due to iron (Fe) deficiency (internervial yellowing) is the most important nutritional problem a susceptible plant can have in calcareous soils. Fe chlorosis is related with calcium carbonate equivalent (CCE), clay content and Fe extracted with oxalate (Feo). Reflectance spectroscopy (RS) is a rapid, non-destructive, less expensive alternative tool that can be used to enhance or replace conventional methods of soil analysis. The aim of this work was to assess the usefulness of RS for the determination of some properties of Mediterranean soils including clay content, CCE, Feo, cation exchange capacity (CEC), organic matter (OM) and pH in water (pHw), with emphasis on those with a specially marked influence on the risk of Fe chlorosis. To this end, we used partial least-squares regression (PLS) to construct calibration models, leave-one-out cross-validation and an independent validation set. Our results testify to the usefulness of qualitative soil interpretations based on the variable importance for projection (VIP) as derived by PLS decomposition. The accuracy of predictions in each of the Vis-NIR, MIR and combined spectral regions differed considerably between properties. The R2adj and root mean square error (RMSE) for the external validation predictions were as follows: 0.83 and 37 mg kg-1 for clay content in the Vis-NIR-MIR range; 0.99 and 25 mg kg-1 for CCE, 0.80 and 0.1 mg kg-1 for Feo in the MIR range; 0.93 and 3 cmolc kg-1 for CEC in the Vis-NIR range; 0.87 and 2 mg kg-1 for OM in the Vis-NIR-MIR range, 0.61 and 0.2 for pHw in the MIR range. These results testify to the potential of RS in the Vis, NIR and MIR ranges for efficient soil analysis, the acquisition of soil information and the assessment of the risk of Fe chlorosis in soils.

Downloads

Download data is not yet available.

References



Akaike H, 1973. Information theory and an extension of maximum likelihood principle. 2nd Int Symp on Information Theory (Petrov BN, Csáki F, eds.). Akadémia Kiadó, Budapest, Hungary, pp: 267–281. 

Ben-Dor E, Banin A, 1990. Near infrared reflectance analysis of carbonate concentration in soils. Appl Spectrosc 44: 1064–1069.
http://dx.doi.org/10.1366/0003702904086821 

Ben-Dor E, Banin A, 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59: 364–372.
http://dx.doi.org/10.2136/sssaj1995.03615995005900020014x 

Benítez ML, Pedrajas VM, del Campillo MC, Torrent J, 2002. Iron chlorosis in olive in relation to soil properties. Nutr Cycl Agroecosys 62: 47–52.
http://dx.doi.org/10.1023/A:1015116732580 

Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG, 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132: 273–290.
http://dx.doi.org/10.1016/j.geoderma.2005.04.025 

Cañasveras JC, Barrón V, del Campillo MC, Torrent J, Gómez JA, 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma 158: 78–84.
http://dx.doi.org/10.1016/j.geoderma.2009.09.004 

Chang CW, Laird DA, Mausbach MJ, Hurburgh CR, 2001. Near-infrared reflectance spectroscopy-principal component regression analyses of soil properties. Soil Sci Soc Am J 65: 480–490.
http://dx.doi.org/10.2136/sssaj2001.652480x 

Del Campillo MC, Torrent J, 1992. Predicting the incidence of iron chlorosis in calcareous soils of southern Spain. Commun Soil Sci Plant Anal 23: 399–416.
http://dx.doi.org/10.1080/00103629209368598 

Díaz I, del Campillo MC, Barrón V, Torrent J, 2010. Predicting the occurrence of iron chlorosis in grapevine with tests based on soil iron forms. J Ins Sci Vigne Vin 44: 77–85. 

Drouineau G, 1942. Dosage rapide du calcaire actif du sol: nouvelles données sur la separation et la nature des fractions calcaires. Ann Agron 12: 441–450. 

Fernández-Escobar R, Barranco D, Benlloch M, 1993. Overcoming iron chlorosis in olive and peach trees using a low-pressure trunk-injection method. HortScience 28: 192–194. 

González MC, 1990. Métodos analíticos para análisis de suelos. Dirección General de Investigación, Extensión y Capacitación Agrarias (Ed), Colección Información Técnica Agraria, Serie Agricultura, Badajoz, España.

 

Hunt GR, 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42: 501–513.
http://dx.doi.org/10.1190/1.1440721 

Inskeep WP, Bloom PR, 1987. Soil chemical factors associated with soybean chlorosis in Calciaquolls of western Minnesota. Agron J 79: 779–789.
http://dx.doi.org/10.2134/agronj1987.00021962007900050005x 

Janik LJ, Merry RH, Skjemstad JO, 1998. Can mid-infrared diffuse reflectance analysis replace soil extractions? Aust J Exp Agric 38: 681–696.
http://dx.doi.org/10.1071/EA97144 

Loeppert RH, Hallmark CT, 1985. Indigenous soil properties influencing the availability of iron in calcareous soils. Soil Sci Soc Am J 49: 597–603.
http://dx.doi.org/10.2136/sssaj1985.03615995004900030013x 

Loeppert RH, Geiger SC, Hartwig RC, Morris DR, 1988. A comparison of indigenous soil factors influencing the Fe-deficiency chlorosis of sorghum and soybean in calcareous soils. J Plant Nutr 11: 1481–1492.
http://dx.doi.org/10.1080/01904168809363904 

Madari BE, Reeves JB III, Machado PLOA, Guimarães CM, Torres E, McCarty GW, 2006. Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols. Geoderma 136: 245–259.
http://dx.doi.org/10.1016/j.geoderma.2006.03.026 

Malley DF, Martin PD, Ben-Dor E, 2004. Application in analysis of soils. In: Near-Infrared Spectroscopy in Agriculture (Roberts CA, Workman J, Reeves JB III, eds). Soil Science Society of America, Madison, WI, USA, pp: 729–784. 

McCarty GW, Reeves JB III, 2006. Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Sci 171: 94–102.
http://dx.doi.org/10.1097/01.ss.0000187377.84391.54 

Morris DR, Loeppert EH, Moore TJ, 1990. Indigenous soil factors influencing iron chlorosis of soybean in calcareous soils. Soil Sci Soc Am J 54: 1329–1336.
http://dx.doi.org/10.2136/sssaj1990.03615995005400050021x 

Nanni MR, Dematte JAW, 2006. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J 70: 393–407.
http://dx.doi.org/10.2136/sssaj2003.0285 

Nguyen TT, Janik LJ, Raupach M, 1991. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies. Aust J Soil Res 29: 49–67.
http://dx.doi.org/10.1071/SR9910049 

Scheinost AC, Chavernas A, Barrón V, Torrent J, 1998. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxides in soils. Clays Clay Miner 46: 528–536.
http://dx.doi.org/10.1346/CCMN.1998.0460506 

Schinas S, Rowell DL, 1977. Lime-induced chlorosis. J Soil Sci 117: 291–294. 

Schwertmann U, 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit sauer Ammoniumoxalat-Lösung. Z Pflanzenernähr Düng Bodenkd 105, 194–202.
http://dx.doi.org/10.1002/jpln.3591050303 

Sellitto VM, Fernandes RBA, Barrón V, Colombo C, 2009. Comparing two different spectroscopic techniques for the characterization of soil iron oxides: Diffuse versus bi-directional reflectance. Geoderma 149: 2–9.
http://dx.doi.org/10.1016/j.geoderma.2008.11.020 

Sherman DM, Waite TD, 1985. Electronic spectra of Fe3+ oxides and oxyhydroxides in the near infrared to ultraviolet. Am Mineral 70: 1262–1269. 

Soil Survey Staff, 1992. Soil survey laboratory methods manual. Soil Survey Investigations Report 42. USDA-SCS, National Soil Survey Center, Lincoln, NE, USA. 

Van Wesemael JCH, 1955. De Bepaling van Het Calciumcarbonaatgehalte van Gronden. Chem Weekblad 51: 35–36. 

Viscarra-Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO, 2006. Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131: 59–75.
http://dx.doi.org/10.1016/j.geoderma.2005.03.007 

Viscarra-Rossel RA, 2007. Robust modelling of soil diffuse reflectance spectra by bagging-partial least squares regression. J Near Infrared Spec 15: 39–47.
http://dx.doi.org/10.1255/jnirs.694 

Viscarra-Rossel RA, 2008. ParLes: Software for chemometric analysis of spectroscopy data. Chemometr Intell Lab 90: 72–83.
http://dx.doi.org/10.1016/j.chemolab.2007.06.006 

Wold S, Sjöström M, Eriksson L, 2001. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58: 109–130.
http://dx.doi.org/10.1016/S0169-7439(01)00155-1 

Yaalon DH, 1957. Problems of soil testing on calcareous soils. Plant Soil 8: 275–288.
http://dx.doi.org/10.1007/BF01666162 

Yangüas R, del Campillo MC, Torrent J, 1997. Predicción de la incidencia de la clorosis férrica en melocotonero cultivado en suelos calcareos. Agrochimica 41: 120–129.

Published
2012-07-24
How to Cite
Cañasveras Sánchez, J. C., Barrón, V., del Campillo, M. C., & Viscarra Rossel, R. A. (2012). Reflectance spectroscopy: a tool for predicting soil properties related to the incidence of Fe chlorosis. Spanish Journal of Agricultural Research, 10(4), 1133-1142. https://doi.org/10.5424/sjar/2012104-681-11
Section
Soil science