Design and implementation of an automatic pressure-control system for a mobile sprayer for greenhouse applications
Abstract
This article presents the design and development of an embedded automatic pressure-control system for a mobile sprayer working in greenhouses. The pressure system is mounted on a commercial vehicle, it is composed of two on/off electrovalves and one proportional electrovalve. The hardware developed is based on an embedded microprocessor and provides a low-cost and robust solution. The resulting embedded system has been tested on a spraying system mounted on a manned vehicle. Furthermore, an easy-tuning non-linear PI (Proportional Integral) controller to achieve the desired pressure profile is designed and implemented in the embedded system. Many physical experiments show the best performance of such controller compared with a typical PI controller. Experiments covering the pressure range from 2 to 14 bar obtained a mean error less than 0.3 bar. Summing up, a low-cost automatic pressure-control system is developed, it ensures a uniform decomposition of the liquid sprayed on plants, and it works properly over a wide variable-pressure range.Downloads
References
Adams BA, Conger JB, Troutt PE, 2003. Design of a mobile automated greenhouse sprayer. Technical report. Biosyst Eng Environ Sci Dept. Univ of Tennessee, USA. 43 pp.
Åström KJ, Murray RM, 2008. Feedback systems: An introduction for scientists and engineers. Princeton Univ Press, Princeton, NJ, USA.
Atmel Corp., 2009. ATmega64–8-bit AVR Microcontroller with 64KB in system programmable flash. Datasheet, 2009. Available in http://www.atmel.com/devices/atmega64.aspx [September 2012].
García AM, Gadea, R, 2004. Diagnóstico de salud laboral en invernaderos agrícolas de Almería (Diagnose of the working health in greenhouses of Almería). Comisiones Obreras de Andalucía, Sevilla, ed. 261 pp.
Guzmán JL, Medina R, Rodríguez F, Sánchez-Hermosilla J, Berenguel M, 2004. Pressure control of a mobile spraying system. Span J Agric Res 2(2): 181-190.
Guzmán JL, Rodríguez F, Sánchez-Hermosilla J, Berenguel M, 2008. Robust pressure control in a mobile robot for spraying tasks. T ASABE 51(2): 715-727.
Lee SQ, Kim Y, Gweon D, 2000. Continuous gain scheduling control for a micro-positioning system: simple, robust and no overshoot response. Control Eng Pract 8(2): 133-138.
http://dx.doi.org/10.1016/S0967-0661(99)00147-1
Luecke J, 2004. Analog and digital circuits for electronic control system applications: using the TI MSP430 microcontroller. Newnes Publ, London, UK.
PMCid:1200641
Mandow A, Gómez de Gabriel JM, Martínez JL, Muñoz VF, Ollero A, García-Cerezo A, 1996. The autonomous mobile robot Aurora for greenhouse operation. IEEE Robot Autom Mag 3(4): 18-28.
http://dx.doi.org/10.1109/100.556479
Martínez JL, Egea FJ, Garrido A, Martínez M, Aguilera PA, López E, 2002. Assessment of relevant factors and relationships concerning human dermal exposure to pesticides in greenhouse applications. Pest Manage Sci 58(8): 784-790.
http://dx.doi.org/10.1002/ps.524
PMid:12192902
Moltó E, Martín B, Gutierrez A, 2001. Pesticida loss reduction by automatic adaptation of spraying on globular trees. J Agric Eng Res 78(1): 35-41.
http://dx.doi.org/10.1006/jaer.2000.0622
Nuyttens D, Braekman P, Windey S, Sonck B, 2009. Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manage Sci 65: 781-790.
http://dx.doi.org/10.1002/ps.1755
PMid:19326359
Pawlowski A, Guzmán JL, Rodríguez F, Sánchez-Hermosilla J, 2006. Sistema empotrado para el control de la presión de pulverización de productos fitosanitarios en invernaderos sobre robots móviles (Embedded system for spraying control of phytosanitary products in greenhouses using mobile robots). Spanish Automatic Control Conference, Spanish Committee of Automatic Control, September, Almería, pp. 641-648.
Rodríguez C, Guzmán JL, Berenguel M, 2011. Una metodología para el diseño de un controlador PI no-lineal. Aplicación a un sistema de tanques (A methodology for the design of a non-linear PI controller. Application to a tanks system). Spanish Automatic Control Conference, Spanish Committee of Automatic Control, September, Sevilla, pp. 83-88.
Sánchez-Hermosilla J, Rincón VJ, Páez F, Agüera F, Carvajal F, 2011. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops. Pest Manage Sci 67(8): 942-947.
http://dx.doi.org/10.1002/ps.2135
PMid:21394883
Solanelles F, Escolá A, Planas S, Rosell JR, Camp F, Gràcia F, 2006. An electronic control system for pesticide application proporcional to the Canopo width of tree crops. Biosyst Eng 95(4): 473-481.
http://dx.doi.org/10.1016/j.biosystemseng.2006.08.004
Subramanian V, Burks TF, Singh S, 2005. Autonomous greenhouse sprayer vehicle using machine vision and ladar for steering control. Appl Eng Agr 21(5): 935-943.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.