Simulating improved combinations tillage-rotation under dryland conditions
Abstract
Crop simulation models allow analyzing various tillage-rotation combinations and exploring management scenarios. This study was conducted to test the DSSAT (Decision Support System for Agrotechnology Transfer) modelling system in rainfed semiarid central Spain. The focus is on the combined effect of tillage system and winter cereal-based rotations (cereal/legume/fallow) on the crop yield and soil quality. The observed data come from a 16-year field experiment. The CERES and CROPGRO models, included in DSSAT v4.5, were used to simulate crop growth and yield, and DSSAT-CENTURY was used in the soil organic carbon (SOC) and soil nitrogen (SN) simulations. Genetic coefficients were calibrated using part of the observed data. Field observations showed that barley grain yield was lower for continuous cereal (BB) than for vetch (VB) and fallow (FB) rotations for both tillage systems. The CERES-Barley model also reflected this trend. The model predicted higher yield in the conventional tillage (CT) than in the no tillage (NT) probably due to the higher nitrogen availability in the CT, shown in the simulations. The SOC and SN in the top layer only, were higher in NT than in CT, and decreased with depth in both simulated and observed values. These results suggest that CT-VB and CT-FB were the best combinations for the dry land conditions studied. However, CT presented lower SN and SOC content than NT. This study shows how models can be a useful tool for assessing and predicting crop growth and yield, under different management systems and under specific edapho-climatic conditions.Downloads
References
Al-Kaisi M, Yin X, 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotations. J Environ Qual 34: 437-445. http://dx.doi.org/10.2134/jeq2005.0437 PMid:15758095
Altieri MA, 1999. The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74: 19-31. http://dx.doi.org/10.1016/S0167-8809(99)00028-6
Álvaro-Fuentes J, Paustian K, 2011. Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: quantifying management and climate effects. Plant Soil 338(1-2): 261-272. http://dx.doi.org/10.1007/s11104-010-0304-7
Álvaro-Fuentes J, Arrúe JL, Cantero-Martinez C, Lopez MV, 2008. Aggregate breakdown during tillage in a Mediterranean loamy soil. Soil Till Res 101: 62-68. http://dx.doi.org/10.1016/j.still.2008.06.004
Basso B, Gargiulo O, Paustian K, Robertson GP, Porter CH, Grace PR, Jones JW, 2011. Procedures for initializing soil organic carbon pools in the DSSAT-CENTURY model for agricultural systems. Soil Sci Soc Am 75(1): 69-78. http://dx.doi.org/10.2136/sssaj2010.0115
Blake GR, Hartge KH, 1986. Particle density. In: Methods of soil analysis. Part 1 - Physical and mineralogical methods (Klute A, ed.), 2nd edition. Am Soc of Agronomy, Madison, WI, USA.
Blanco-Canqui H, Lal R, 2008. No-tillage and soil-profile carbon sequestration: An on farm assessment. Soil Sci Soc Am J 72: 693-701. http://dx.doi.org/10.2136/sssaj2007.0233
Bonari E, Mazzoncini M, Caliandro A, 1994. Cropping and farming systems in Mediterranean areas. Proc III European Society of Agronomy Congress, Padova (Italy). pp: 636-644.
Boote KJ, Jones JW, Hoogenboom G, Pickering NB, 1998. The CROPGRO model for grain legumes. In: Understanding options for agricultural production (Tsuji GY, Hoogenboom G, Thornton, eds.). Kluwer Acad Publ, Boston, USA, pp: 99-128.
Bremner JM, Mulvaney CS, 1982. Nitrogen-Total. In: Methods of soil analysis, Part 2: Chemical and microbiological properties (Page AL, Miller RH, Keeney DR eds.), 2nd edition. Agronomy Society of America, Madison, WI, USA.
Buschiazzo DE, Panigatti JL, Unger PN, 1998. Tillage effects on soil properties and crop production in the subhumid and semiarid Argentinean Pampas. Soil Till Res 49: 105-116. http://dx.doi.org/10.1016/S0167-1987(98)00160-3
Carter MR, Rennie DA, 1982. Changes in soil quality under zero tillage farming systems: distribution of microbial biomass and mineralizable C and N potentials. Can J Soil Sci 62: 587-597. http://dx.doi.org/10.4141/cjss82-066
Dolan MS, Clapp CE, Allmaras RR, Baker JM, Molina JA, 2006. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Till Res 89: 221-231. http://dx.doi.org/10.1016/j.still.2005.07.015
Foereid B, Hogh-Jensen H, 2004. Carbon sequestration potential of organic agriculture in northern Europe - A modelling approach. Nutr Cycl Agroecosys 68: 13-24. http://dx.doi.org/10.1023/B:FRES.0000012231.89516.80
Gabriel JL, Quemada M, 2011. Replacing bare fallow with cover crops in a maize cropping system: yield, N uptake and fertiliser fate. Eur J Agron 34: 133-143. http://dx.doi.org/10.1016/j.eja.2010.11.006
Gál A, Vyn TJ, Michéli E, Kladivko EJ, McFee WW, 2007. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil Till Res 96: 42-51. http://dx.doi.org/10.1016/j.still.2007.02.007
Galdos MV, Cerri CC, Cerri CEP, Paustian K, Van Antwerpen R, 2009. Simulation of soil carbon dynamics under sugarcane with the CENTURY model. Soil Sci Soc Am J 73: 802-811. http://dx.doi.org/10.2136/sssaj2007.0285
Gijsman AJ, Hoogenboom G, Parton WJ, Kerridge PC, 2002. Modifying DSSAT crop models for low input agricultural systems using a soil organic matter-residue module from CENTURY. Agron J 94: 462-474. http://dx.doi.org/10.2134/agronj2002.0462
Godwin DC, Singh U, 1998. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In: Understanding options for agricultural production (Tsuji GY, Hoogenboom G, Thornton, eds.). Kluwer Acad Publ, Boston, pp: 55-77.
Godwin D, Ritchie JT, Singh U, Hunt L, 1990. A user's guide to CERES Wheat-V2.10. Int Fertiliz Develop Center, Muscle Shoals, AL, USA.
Goyne PJ, Milroy SP, Lilley JM, Hare JM, 1993. Radiation interception, radiation use efficiency and growth of barley cultivars. Aust J Agric Res 44: 1351-1366. http://dx.doi.org/10.1071/AR9931351
Gregory PJ, Tennant D, Belford RK, 1992. Root and shoot growth, and water and light use efficiency of barley and wheat crops grown on a shallow duplex soil in a mediterranean-type environment. Aust J Agric Res 43: 555-573. http://dx.doi.org/10.1071/AR9920555
Halvorson AD, 2000. Spring wheat response to tillage and nitrogen fertilization in rotation with sunflower and winter wheat. Agron J 92: 136-144.
Halvorson AD, Wienhold BJ, Black A, 2002. Tillage, nitrogen, and cropping systems effects on soil carbon sequestration. Soil Sci Soc Am J 66: 906-912. http://dx.doi.org/10.2136/sssaj2002.0906
Hernanz JL, Sánchez-Girón V, Navarrete L, 2009. Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric Ecosyst Environ 133: 114-122. http://dx.doi.org/10.1016/j.agee.2009.05.009
Hoogenboom G, Jones JW, Porter CH, Wilkens PW, Boote KJ, Hunt LA, Tsuji GY, 2010. Decision support system for agrotechnology transfer, Vers 4.5. Volume 1: Overview. University of Hawaii, Honolulu, HI, USA.
Huggins DR, Allmaras RR, Clapp CE, Lamb JA, Randall GW, 2007. Corn soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Sci Soc Am J 71: 255-258. http://dx.doi.org/10.2136/sssaj2005.0231
Hussain J, Olson KR, Ebehar SA, 1999. Long-Term tillage effects on soil chemical properties and organic matter fractions. Soil Sci Soc Am J 63: 1335-1341. http://dx.doi.org/10.2136/sssaj1999.6351335x
Klute A, Dirksen C, 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: Methods of soil analysis, Part 1. Physical and mineralogical methods (Klute A, ed). ASA and SSSA, Madison, WI, USA, pp: 635-662.
Lacasta C, Meco R, 1996. Influencia del laboreo en las propiedades químicas de los suelos. Congreso Nacional de Agricultura de Consevación: rentabilidad y medio ambiente. Córdoba, 2-4 de Octubre. pp: 153-155.
Landau S, Mitchell RAC, Barnett V, Colls JJ, Craigon J, Moore KL, Payne RW, 1998. Testing winter wheat simulation models' predictions against observed UK grain yields. Agr Forest Meteorol 89: 85-99. http://dx.doi.org/10.1016/S0168-1923(97)00069-5
López-Bellido L, Fuentes M, Castillo JE, López-Garrido FJ, Fernández EJ, 1996. Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed Mediterranean conditions. Agron J 88: 783–791. http://dx.doi.org/10.2134/agronj1996.00021962008800050016x
Lugato E, Berti A, 2008. Potential carbon sequestration in a cultivated soil under different climate change scenarios: A modelling approach for evaluating promising management practices in north-east Italy. Agr Ecosyst Environ 128: 97–103. http://dx.doi.org/10.1016/j.agee.2008.05.005
Madejón E, Moreno F, Murillo JM, Pelegrín F, 2007. Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil Till Res 94: 346-352. http://dx.doi.org/10.1016/j.still.2006.08.010
Martin Lammerding D, Hontoria C, Tenorio J.L, Walter I, 2011. Mediterranean dryland farming: Effect of tillage practices on selected soil properties. Agron J 103(2): 382–389.
Martín-Rueda I, M.Mu-oz-Guerra L, Yunta F, Esteban E, Tenorio JL, Lucena JJ, 2007. Tillage and crop rotation effects on barley yield and soil nutrients on a Carciortidic Haploxeralf. Soil Till Res 92: 1-9. http://dx.doi.org/10.1016/j.still.2005.10.006
McGill WB,1996. Review and classification of ten soil organic matter (SOM) models. In: Evaluation of soil organic matter models using existing long-term datasets. NATO ASI Series I, vol 38. (Powslon DS, Smith P, Smith JU, eds.). Springer-Verlag, Heidelberg, pp: 111–132. http://dx.doi.org/10.1007/978-3-642-61094-3_9
Melero S, López-Garrido R, Murillo J.M, Moreno F, 2009. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Till Res 104: 292-298. http://dx.doi.org/10.1016/j.still.2009.04.001
Motta ACV, Reaves DW, Touchton JT, 2002. Tillage intensity effects on chemical indicators of soil quality in two coastal plain soils. Commun Soil Sci Plant Anal 33: 913-932. http://dx.doi.org/10.1081/CSS-120003074
Mu-oz A, López-Pi-eiro A, Ramírez M, 2007. Soil quality attributes of conservation management regimes in a semi-arid region of south western Spain. Soil Till Res 95: 255-265. http://dx.doi.org/10.1016/j.still.2007.01.009
Murillo JM, Moreno F, Pelegrin F, 2001. Respuesta del trigo y girasol al laboreo tradicional y de conservación bajo condiciones de secano (Andalucía Occidental). Invest Agr: Prod Prot Veg 16: 395-406.
Nelson DW, Sommers LE, 1996. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 3. Chemical methods (Sparks DL, eds.). SASSSA. Madison, USA. pp: 961-1010.
Otter-Nacke S, Ritchie JT, Godwin DC, Singh U, 1991. A user’s guide to CERES Barley-v 2.1. Int Fertiliz Develop Center, Muscle Shoals, AL, USA.
Papadakis J, 1966. Climates of the world and their agricultural potentialities. Editorial Albatros, Buenos Aires, 174 pp.
Parton WJ, McKeown B, Kirchner V, Ojima DS, 1992. CENTURY user's manual. Colorado State Univ., NREL Publ., Fort Collins, CO, USA.
Peel MD, 1998. Crop rotations for increased productivity. North Dakota State Univ. Ext. Serv., Fargo, ND, USA.
Peigne B, Roger-Estrade D, 2007. Is conservation tillage suitable for organic farming? A review. Soil Use Manage 23: 129-144. http://dx.doi.org/10.1111/j.1475-2743.2006.00082.x
Pryor R, 2006. Switching to no-till can save irrigation water. Univ Nebraska-Lincoln Ext Pub EC196-3. Available in http://ianrpubs.unl.edu/epublic/live/ec196/build/ec196-3.pdf [12 June 2012].
Rhoton FE, 2000. Influence of time in soil response to no-till practices. Soil Sci Soc Am J 64: 700-709. http://dx.doi.org/10.2136/sssaj2000.642700x
Richards LA, 1947. Pressure membrane apparatus construction and use. Agr Eng 28: 451-454.
Ritchie JT, Otter-Nacke S, 1985. Description and performance of CERES-Wheat: a user-oriented wheat yield model. USDA-ARS, ARS 38: 159-175.
Silgram M, Shepherd MA, 1999. The effects of cultivation on soil nitrogen mineralization. Adv Agron 65: 267-311. http://dx.doi.org/10.1016/S0065-2113(08)60915-3
Smith P, Fang C, Dawson JJC, Moncrieff JB, 2008. Impact of global warming on soil organic carbon. Adv Agron 97: 1-43. http://dx.doi.org/10.1016/S0065-2113(07)00001-6
Sombrero A, De Benito A, 2010. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Till Res 107: 64-70. http://dx.doi.org/10.1016/j.still.2010.02.009
Sombrero A, De Benito A, González I, Álvarez MA, 2007. Influencia del laboreo sobre las propiedades químicas del suelo en agricultura de conservación. ITACYL. Innovación y Tecnología Agroalimentaria 1: 71-78.
Sommer R, Piggin C, Haddad A, Hajdibo A, Hayek P, Khalil Y, 2012. Simulating the effects of zero tillage and crop residue retention on water relations and yield of wheat under rainfed semiarid Mediterranean conditions. Field Crops Res 132: 40-52. http://dx.doi.org/10.1016/j.fcr.2012.02.024
Travasso MI, Magrin GO, 1998. Utility of CERES-barley under Argentine conditions. Field Crops Res 57(3): 329-333. http://dx.doi.org/10.1016/S0378-4290(98)00079-3
Triplett GB, Dick WA, 2008. No-tillage crop production: a revolution in agriculture. Agron J 100: 153-165. http://dx.doi.org/10.2134/agronj2007.0005c
Verhulst N, Govaerts B, Verachtert E, Castellanos-Navarrete A, Mezzalama M, Wall P, Deckers J, Sayre KD, 2010. Conservation agriculture, improving soil quality for sustainable production systems? In: Advances in soil science: food security and soil quality (Lal R, Stewart BA, eds.). CRC Press. Boca Raton, FL, USA, pp: 137-208.
West TO, Post WM, 2002. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66: 1930-1946. http://dx.doi.org/10.2136/sssaj2002.1930
Willmott Cort J, 1982: Some comments on the evaluation of model performance. Bull Amer Meteor Soc 63: 1309-1313. 2.0.CO;2" target="_blank">http://dx.doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.