Hindgut fermentation in pigs induced by diets with different sources of starch
Abstract
A proportion of dietary starch reaches the hindgut, being fermented there. The characteristics of in vitro caecal fermentation and microbial community in pigs given different sources of starch were studied. Twenty-four Duroc × (Landrace × Large White) gilts given diets based on barley (B), broken rice (R), maize (M) or peas (P) (n=6) for five weeks were slaughtered with 93.6 ± 6.41 kg. No differences (p>0.10) were recorded in caecal pH, total short chain fatty acid (SCFA) and total bacterial concentration, nor in in vitro gas production from caecal contents, indicating the lack of a quantitative dietary effect on caecal environment. This could be partly due to the length of fasting time before slaughter (around 10 h). Molar SCFA proportions did not differ among diets; however, relative proportion of Lactobacillus sobrius/amylovorus as the species-type in starch digestion in hindgut of pigs, was highest with P diet (p = 0.010), and gas production from potato starch as substrate with P diet was highest at 2 h incubation (p = 0.012), and higher than B and R diets at 4 (p = 0.055) and 6 (p = 0.10) h incubation. Caecal bacterial biodiversity was higher for M and R diets than for P and B diets (Shannon index, p = 0.003). Sources of resistant or slowly digestible starch such as peas promote a microbial community with a different profile and higher capacity to ferment the starch arriving to the organ than other sources which are mostly digested in the small gut.Downloads
References
AOAC, 2005. Official methods of analysis, 18th ed. (Horwitz W & Latimer GW, eds.), Assoc Offic Analyt Chem, Gaithersburg, MA, USA.
Argenzio RA, Southworth M, 1975. Sites of organic acid production and absorption in gastrointestinal tract of the pig. Am J Physiol 228: 454–460. PMid:235219
Bach Knudsen KE, 2011. Triennial Growth Symposium: Effects of polymeric carbohydrates on growth and development in pigs. J Anim Sci 89: 1965-1980. http://dx.doi.org/10.2527/jas.2010-3602 PMid:21278117
Bertipaglia LMA, Fondevila M, Van Laar H, Castrillo C, 2010. Effect of pelleting and pellet size of a concentrate for intensively reared beef cattle on in vitro fermentation by two different approaches. Anim Feed Sci Technol 159: 88-95. http://dx.doi.org/10.1016/j.anifeedsci.2010.05.010
Bird AR, Vuaran M, Brown I, Topping DL, 2007. Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. Br J Nutr 97: 134-144. http://dx.doi.org/10.1017/S0007114507250433 PMid:17217569
Buckland ST, Magurran AE, Green RE, Fewster RM, 2005. Monitoring change in biodiversity through composite indices. Phil Trans R Soc B 360: 243-254. http://dx.doi.org/10.1098/rstb.2004.1589 PMid:15814343 PMCid:PMC1569463
Canibe N, Bach Knudsen KE, 2001. Degradation and physicochemical changes of barley and pea fibre along the gastrointestinal tract of pigs. J Sci Food Agric 82: 27-39. http://dx.doi.org/10.1002/jsfa.985
Canibe N, Jensen BB, 2003. Fermented and non-fermented liquid feed to growing pigs: effect on aspects of gastrointestinal ecology and growth performance. J Anim Sci 81: 2019-2031. PMid:12926784
De Schrijver R, Vanhoof K, Vande Ginste J, 1999. Effect of enzyme resistant starch on large bowel fermentation in rats and pigs. Nutr Res 19: 927-936. http://dx.doi.org/10.1016/S0271-5317(99)00053-6
Denman SE, McSweeney CS, 2005. Quantitative (Real Time) PCR. In: Methods in gut microbial ecology for ruminants (Makkar H, McSweeney CS, eds). Springer, NY, pp: 105-115.
du Toit M, Dicks LMT, Holzapfel WH, 2001. Taxonomy of obligately homofermentative and facultatively heterofermentative lactobacilli in pig faeces. Lett Appl Microbiol 32: 199-204. http://dx.doi.org/10.1046/j.1472-765x.2001.00889.x PMid:11264753
Durmic Z, Pethick DW, Mullan BP, Schulze H, Accioly JM, Hampson DJ, 2000. Extrusion of wheat or sorghum and/or addition of exogenous enzymes to pig diets influences the large intestinal microbiota but does not prevent development of swine dysentery following experimental challenge. J Appl Microbiol 89: 678-686. http://dx.doi.org/10.1046/j.1365-2672.2000.01166.x PMid:11054173
Engylst HN, Kingman SN, Cummings JH, 1992. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46: S33-S50.
FEDNA, 2006. Necesidades nutricionales para ganado porcino (De Blas C, Gasa J, Mateos GG, eds). Fundación Espa-ola para el Desarrollo de la Nutrición Animal, Madrid, Spain. [In Spanish]. PMCid:PMC2749292
FEDNA, 2010. Tablas de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos (De Blas C, Mateos GG, García-Rebollar P, eds). Fundación Espa-ola para el Desarrollo de la Nutrición Animal, Madrid, Spain. [In Spanish].
Fondevila M, Pérez-Espés B, 2008. A new in vitro system to study the effect of liquid phase turnover and pH on microbial fermentation of concentrate diets for ruminants. Anim Feed Sci Technol 144: 196-211. http://dx.doi.org/10.1016/j.anifeedsci.2007.10.013
Fondevila M, Morales J, Pérez JF, Barrios-Urdaneta A, Baucells MD, 2002. Microbial caecal fermentation in Iberic or Landrace pigs given acorn/sorghum or maize diets estimated in vitro by the gas production technique. Anim Feed Sci Technol 102: 93-107. http://dx.doi.org/10.1016/S0377-8401(02)00252-3
Haralampu SG, 2000. Resistant starch- a review of the physical properties and biological impact of RS3. Carbohydr Polym 41: 285-292. http://dx.doi.org/10.1016/S0144-8617(99)00147-2
Hedemann MS, Bach Knudsen KE, 2007. Resistant starch for weaning pigs – Effect on concentration of short chain fatty acids in digesta and intestinal morphology. Livest Sci 108: 175-177. http://dx.doi.org/10.1016/j.livsci.2007.01.045
Kohn RA, Dunlap TF, 1998. Calculation of the buffering capacity of bicarbonate in the rumen and in vitro. J Anim Sci 76: 1702-1709. PMid:9655591
Konstantinov SR, Smith H, de Vos WM, 2005. Representational different analysis and real-time PCR for strain-specific quantification of Lactobacillus sobrius sp. nov. Appl Environ Microbiol 71: 7578-7581. http://dx.doi.org/10.1128/AEM.71.11.7578-7581.2005 PMid:16269808 PMCid:PMC1287691
Konstantinov SR, Awati A, Williams AG, Miller BG, Jones P, Stokes CR, Akkermans AD, Smidt H, de Vos WM, 2006. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8: 1191-1199. http://dx.doi.org/10.1111/j.1462-2920.2006.01009.x PMid:16817927
Le Blay G, Michel C, Blottiere HM, Cherbut C, 1999. Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch. Br J Nutr 82: 419-426. PMid:10673915
Marti R, Dabert P, Ziebal C, Pourcher AM, 2010. Evaluation of Lactobacillus sobrius/L. amylovorus as a new microbial marker of pig manure. Appl Environ Microbiol 76: 1456-1461. http://dx.doi.org/10.1128/AEM.01895-09 PMid:20038684 PMCid:PMC2832380
Martin LJM, Dumon HJW, Champ MMJ, 1998. Production of short-chain fatty acids from resistant starch in a pig model. J Sci Food Agric 77: 71-80. 3.0.CO;2-H" target="_blank">http://dx.doi.org/10.1002/(SICI)1097-0010(199805)77:1<71::AID-JSFA3>3.0.CO;2-H
Martínez-Puig D, Pérez JF, Castillo M, Andaluz A, Anguita M, Morales J, Gasa J, 2003. Consumption of raw potato starch increases colon length and fecal excretion of purine bases in growing pigs. J Nutr 133: 134-139. PMid:12514280
Morales J, Pérez JF, Martín-Orúe SM, Fondevila M, Gasa J, 2002. Large bowel fermentation of maize or sorghum-acorn diets fed as different source of carbohydrates to Landrace and Iberian pigs. Br J Nutr 88: 489-497. http://dx.doi.org/10.1079/BJN2002699 PMid:12425729
Mould FL, Morgan R, Kliem KE, Krystallidou E, 2005. A review and simplification of the in vitro incubation medium. Anim Feed Sci Technol 123-124: 155-172. http://dx.doi.org/10.1016/j.anifeedsci.2005.05.002
Muyzer G, de Waal C, Uitterlinden AG, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polimerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695-700. PMid:7683183 PMCid:PMC202176
Pérez-Vendrell AM, Torrallardona D, 2010. In vitro digestibility kinetics of diets containing different cereal sources. Livest Sci 134: 47-49. http://dx.doi.org/10.1016/j.livsci.2010.06.093
Pluske JR, Hampson DJ, Williams IH, 1997. Factors influencing the structure and function of the small intestine in the weaned pig – a review. Livest Prod Sci 51: 215-236. http://dx.doi.org/10.1016/S0301-6226(97)00057-2
Prates A, de Oliveira JA, Abecia L, Fondevila M, 2010. Effects of preservation procedures of rumen inoculum on in vitro microbial diversity and fermentation. Anim Feed Sci Technol 155: 186-193. http://dx.doi.org/10.1016/j.anifeedsci.2009.12.005
Regmi PR, Mezler-Zebeli BU, Gänzle MG, van Kempen TATG, Ziljstra RT, 2011. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes Bifidobacteria in pigs. J Nutr 141: 1273-1280. http://dx.doi.org/10.3945/jn.111.140509 PMid:21628635
Russell JB, 1992. Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73: 363–370. http://dx.doi.org/10.1111/j.1365-2672.1992.tb04990.x
SAS, 1990. User's guide: statistics, Vers. 6. SAS Inst. Cary, NC, USA.
Solá-Oriol D, van Kempen T, Torrallardona D, 2010. Relationships between glycaemic index and digesta passage of cereal-based diets in pigs. Livest Sci 134: 41-43. http://dx.doi.org/10.1016/j.livsci.2010.06.091
Sun T, Laerke KN, Jorgensen H, Bach Knudsen KE, 2006. The effects of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim Feed Sci Technol 131: 66-85. http://dx.doi.org/10.1016/j.anifeedsci.2006.02.009
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J, 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48: 185-197. http://dx.doi.org/10.1016/0377-8401(94)90171-6
Topping DL, Gooden JM, Brown I, Biebrick DA, McGrath L, Trimble RP, Choct M, Illman RJ, 1997. A high amylose (amylomaize) starch raises proximal large bowel starch and increases colon length in pigs. J Nutr 127: 615-622. PMid:9109613
van Kempen TATG, Regmi PR, Matte J, Ziljstra RT, 2010. In vitro starch digestion kinetics, corrected for estimated gastric emptying, predict portal glucose appearance in pigs. J Nutr 140: 1227-1233. http://dx.doi.org/10.3945/jn.109.120584 PMid:20444950
Van Soest PJ, Robertson JB, Lewis BA, 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74: 3583-3597. http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2
Wilfart A, Montagne L, Simmins H, Noblet J, van Milgen J, 2007. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Br J Nutr 98: 54-62. http://dx.doi.org/10.1017/S0007114507682981 PMid:17466091
Yu Y, Lee C, Kim J, Hwang S, 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction, Biotechnol Bioeng 89: 670-679. http://dx.doi.org/10.1002/bit.20347 PMid:1569653
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.