Field analysis of the deterioration after some years of use of four insect-proof screens utilized in Mediterranean greenhouses

  • A. López-Martínez Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • D. L. Valera-Martínez Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • F. D. Molina-Aiz Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • A. A. Peña-Fernández Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
  • P. Marín-Membrive Universidad de Almería. Centro de Investigación en Biotecnología Agroalimentaria BITAL. Ctra. de Sacramento s/n. 04120 Almería
Keywords: insect screens, geometric characterisation, accumulation of dust and dirt.

Abstract

The installation of insect-proof screens on greenhouse vents is one of the principal methods of protection against harmful insects for crops. Their main disadvantage lies on their negative effects on natural ventilation and greenhouse microclimate, which have been the focus of studies by several authors. However, few works have analysed the effect of accumulated dust and dirt on these screens. The present study has analysed four anti-insect screens, comparing their geometric characteristics before installation and after three to four years of use. Two negative effects have been observed and quantified: deterioration of the threads that make up the screen and reduction of porosity due to accumulated dirt in the pores. This deterioration over time gives leads to a mean increase in thread diameter of 3.1%, as well to a mean decrease in the pore size of 6.2% and 2.3% in the weft (Lpx) and the warp (Lpy), respectively. In fact, the insect-proof screen porosity (φ) decreased due to the deterioration of the threads by an average of 6.5%, in addition to an average 20.3% reduction due to the accumulation of dirt in the pores, making a total reduction in porosity of 26.8%. This decrease in porosity leads to lower greenhouse ventilation rates, and is therefore detrimental for the greenhouse microclimate. Consequently, it is recommended that insect-proof screens in arid areas such as Almería (Spain), with abundant dust suspended in the atmosphere, be washed monthly using water sprayed at high pressure.

Downloads

Download data is not yet available.

References

Álvarez AJ, 2010. Estudio de las características geométricas y del comportamiento aerodinámico de las mallas antiinsectos utilizadas en los invernaderos como medida de protección vegetal. Doctoral thesis. Universidad de Almería, Almería, Spain [In Spanish].

Álvarez AJ, Valera DL, Molina FD, 2006. A method for the analysis of the geometric characteristics of protection screens. Acta Hort 719: 557-564.

Álvarez AJ, Oliva RM, Valera DL, 2012. Software for the geometric characterisation of insect-proof screens. Comput Electron Agric 82: 134-144. http://dx.doi.org/10.1016/j.compag.2012.01.001

Antignus Y, 2000. Manupulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res 71: 213-220. http://dx.doi.org/10.1016/S0168-1702(00)00199-4

Baeza EJ, Pérez-Parra JJ, Montero JI, Bailey BJ, López JC, Gázquez JC, 2009. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst Eng 104: 86-96. http://dx.doi.org/10.1016/j.biosystemseng.2009.04.008

Baker JR, Jones RK, 1989. Screening as part of insect and disease management in the greenhouse. N.C. Flower Growers' Bulletin 34: 1-9.

Bartzanas T, Boulard T, Kittas C, 2002. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Comput Electron Agric 34: 207-221. http://dx.doi.org/10.1016/S0168-1699(01)00188-0

Berlinger MJ, Mordechl S, Leeper A, 1991. Application of screens to prevent whitefly penetration into greenhouses in the Mediterranean Basin. Proc of the Working Group Integrated Control in Protecting Crops under Mediterranean Climate, Alassio (Italy), Sept 29-Oct 2, pp: 105-110.

Berlinger MJ, Leblush-Mordechl S, Fridja D, Mor N, 1992. The effect of types of greenhouse screens on the presence of western flower thrips: a preliminary study. OILB-SROP Bulletin 16(2): 13-19.

BOJA, 2007. Reglamento Específico de Producción Integrada de Cultivos Hortícolas Protegidos. Boletín Oficial de la Junta de Andalucía 211 [In Spanish].

Capel JJ, 1990. Climatología de Almería. Cuadernos monográficos 7. Diputación Provincial de Almería, Instituto de Estudios Almerienses, Almería, Spain [In Spanish]. PMCid:PMC249487

Dayan J, Dayan E, Strassberg Y, Presnov E, 2004. Simulation and control of ventilation rates in greenhouses. Math Comput Simulat 65: 3-17. http://dx.doi.org/10.1016/j.matcom.2003.09.017

De Leon A, Arriba A, De la Plaza MC, 1989. Caracterización agroclimática de la provincia de Almería. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain [In Spanish].

Dierickx IE, 1998. Flow reduction of synthetic screens obtained with both a water and airflow apparatus. J Agr Eng Res 71: 67-73. http://dx.doi.org/10.1006/jaer.1998.0299

Fatnassi H, Boulard T, Demrati H, Bouirden L, Sappe G, 2002. Ventilation performance of a large Canarian-type greenhouse equipped with insect-proof nets. Biosyst Eng 82(1): 97-105. http://dx.doi.org/10.1006/bioe.2001.0056

Fatnassi H, Boulard T, Bouirden L, 2003. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agric Forest Meteorol 118: 97-111. http://dx.doi.org/10.1016/S0168-1923(03)00071-6

Fatnassi H, Boulard T, Poncet C, Chave M, 2006. Optimisation of greenhouse insect screening with computational fluid dynamics. Biosyst Eng 93(3): 301-312. http://dx.doi.org/10.1016/j.biosystemseng.2005.11.014

Harmanto, Tantau H, Salokhe VM, 2006. Microclimate and air exchange rates in greenhouses covered with different nets in the humid tropics. Biosyst Eng 94(2): 239-253. http://dx.doi.org/10.1016/j.biosystemseng.2006.02.016

Katsoulas N, Bartzanas T, Boulard T, Mermier M, Kittas C, 2006. Effect of vent openings and insect screens on greenhouse ventilation. Biosyst Eng 93(4): 427-436. http://dx.doi.org/10.1016/j.biosystemseng.2005.01.001

Kittas C, Boulard T, Bartzanas T, Katsoulas N, Mermier M, 2002. Influence of an insect screen on greenhouse ventilation. T ASAE 45(4): 1083-1090. http://dx.doi.org/10.13031/2013.9940

Kittas C, Katsoulas N, Bartzanas T, Mermier M, Boulard T, 2008. The impact of insect screens and ventilation openings on the greenhouse microclimate. T ASABE 51(6): 2151-2165. http://dx.doi.org/10.13031/2013.25396

Linker R, Tarnopolsky M, Seginer I, 2002. Increased resistance to flow and temperature-rise resulting from dust accumulation on greenhouse insect-proof screens. ASAE Annual International Meeting, Chicago (USA), Jun 28-31, 9 pp.

López A, Valera DL, Molina-Aiz FD, Pe-a A, 2012. Sonic anemometry to evaluate airflow characteristics and temperature distribution in empty Mediterranean greenhouses equipped with pad-fan and fog systems. Biosyst Eng 113: 334-350. http://dx.doi.org/10.1016/j.biosystemseng.2012.09.006

Miguel AF, Silva AM, 2000. Porous materials to control climate behaviour of enclosures: an application to the study of screened greenhouses. Energ Buildings 31: 195-209. http://dx.doi.org/10.1016/S0378-7788(99)00010-9

Miguel AF, Van de Braak NJ, Bot GPA, 1997. Analysis of the airflow characteristics of greenhouse screening materials. J Agr Eng Res 67: 105-112. http://dx.doi.org/10.1006/jaer.1997.0157

Mu-oz P, Montero JI, Antón A, Giuffrida F, 1999. Effect of insect-proof screens and roof openings on greenhouse ventilation. J Agr Eng Res 73: 171-178. http://dx.doi.org/10.1006/jaer.1998.0404

Smith KM, 1972. Plant virus diseases. Academic Press, NY, USA. 684 pp.

Soni P, Salokhe VM, Tantau HJ, 2005. Effect of screen mesh size on vertical temperature distribution in naturally ventilated tropical greenhouses. Biosyst Eng 92(4): 469-482. http://dx.doi.org/10.1016/j.biosystemseng.2005.08.005

Taylor RAJ, Shalhevet S, Spharim I, Berlinger MJ, Lebiush-Mordechi S, 2001. Economic evaluation of insect-proof screens for preventing tomato yellow leaf curl virus of tomatoes in Israel. Crop Prot 20: 561-569. http://dx.doi.org/10.1016/S0261-2194(01)00022-9

Teitel M, 2007. The effect of screened openings on greenhouse microclimate. Agric Forest Meteorol 143(3-4): 159-175. http://dx.doi.org/10.1016/j.agrformet.2007.01.005

Teitel M, 2010. Using computational fluid dynamics simulations to determine pressure drops on woven screens. Biosyst Eng 105: 172-179. http://dx.doi.org/10.1016/j.biosystemseng.2009.10.005

Valera DL, Álvarez AJ, Molina FD, Pe-a A, López JA, Madue-o A, 2003. Caracterización geométrica de diferentes tipos de agrotextiles utilizados en invernaderos. II Congreso Nacional de Agroingeniería, AG03-0722: 670-675, Córdoba (Spain) [In Spanish].

Valera DL, Molina FD, Álvarez AJ, López JA, Terrés-Nicoli JM, Madue-o A, 2005. Contribution to characterization of insect-proof screens: experimental measurements in wind tunnel and CFD simulation. Acta Hort 691: 441-448.

Valera DL, Álvarez AJ, Molina FD, 2006. Aerodynamic analysis of several insect-proof screens used in greenhouses. Span J Agric Res 4(4): 273-279. http://dx.doi.org/10.5424/sjar/2006044-204

Published
2013-09-25
How to Cite
López-Martínez, A., Valera-Martínez, D. L., Molina-Aiz, F. D., Peña-Fernández, A. A., & Marín-Membrive, P. (2013). Field analysis of the deterioration after some years of use of four insect-proof screens utilized in Mediterranean greenhouses. Spanish Journal of Agricultural Research, 11(4), 958-967. https://doi.org/10.5424/sjar/2013114-4093
Section
Agricultural engineering